JP3040718B2 - Lead storage battery - Google Patents
Lead storage batteryInfo
- Publication number
- JP3040718B2 JP3040718B2 JP8177396A JP17739696A JP3040718B2 JP 3040718 B2 JP3040718 B2 JP 3040718B2 JP 8177396 A JP8177396 A JP 8177396A JP 17739696 A JP17739696 A JP 17739696A JP 3040718 B2 JP3040718 B2 JP 3040718B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- positive electrode
- active material
- electrode plate
- storage battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007774 positive electrode material Substances 0.000 claims description 17
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 8
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- 239000011149 active material Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 8
- 229910000978 Pb alloy Inorganic materials 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- UMKARVFXJJITLN-UHFFFAOYSA-N lead;phosphorous acid Chemical compound [Pb].OP(O)O UMKARVFXJJITLN-UHFFFAOYSA-N 0.000 description 4
- 229910000882 Ca alloy Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- AVVSGTOJTRSKRL-UHFFFAOYSA-L hydrogen phosphate;lead(2+) Chemical compound [Pb+2].OP([O-])([O-])=O AVVSGTOJTRSKRL-UHFFFAOYSA-L 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉛蓄電池に関す
る。[0001] The present invention relates to a lead storage battery.
【0002】[0002]
【従来の技術】従来の鉛蓄電池は、鉛合金格子基板に、
水又は硫酸に鉛粉を添加混練して成るペーストを鉛合金
格子基板に充填、乾燥し、化成処理して正極板と負極板
とした後、電槽内にその正,負極板の少なくとも1対を
セパレータを介して極板群としたものを組み込み希硫酸
電解液を注入し、蓋を施して製造される。2. Description of the Related Art A conventional lead-acid battery is composed of a lead alloy grid substrate,
A paste made by adding and kneading lead powder to water or sulfuric acid is filled in a lead alloy lattice substrate, dried, and subjected to a chemical conversion treatment to form a positive electrode plate and a negative electrode plate. Then, at least one pair of the positive and negative electrode plates is placed in a battery case. Is assembled by incorporating a group of electrode plates through a separator, a dilute sulfuric acid electrolytic solution is injected, and a lid is provided.
【0003】[0003]
【発明が解決しようとする課題】しかし乍ら、このよう
に製造された鉛蓄電池は、ニッケル・カドミウム蓄電池
などの他の蓄電池に比し、正極板の正極活物質の利用率
が低く、エネルギー密度が低い欠点がある。従って、正
極活物質の利用率を向上させ、鉛蓄電池のエネルギー密
度の向上を図ることが望ましい。However, the lead storage battery manufactured in this manner has a lower utilization rate of the positive electrode active material of the positive electrode plate and a lower energy density than other storage batteries such as a nickel-cadmium storage battery. However, there is a low disadvantage. Therefore, it is desirable to improve the utilization rate of the positive electrode active material and improve the energy density of the lead storage battery.
【0004】[0004]
【課題を解決するための手段】本発明は、上記の課題を
解決した鉛蓄電池を提供するもので、正極活物質中に、
塩基性リン酸鉛を混在せしめて成る正極板を具備したこ
とを特徴とする。この場合、塩基性リン酸鉛の添加量
は、正極活物質を鉛粉に換算して重量比で0.2〜4%
であることが好ましい。SUMMARY OF THE INVENTION The present invention provides a lead-acid battery which has solved the above-mentioned problems.
It is characterized by having a positive electrode plate mixed with basic lead phosphate. In this case, the amount of the basic lead phosphate added is 0.2 to 4% by weight in terms of the positive electrode active material converted to lead powder.
It is preferred that
【0005】[0005]
【発明の実施の形態】次に、本発明実施の形態を説明す
る。本発明の鉛蓄電池は、次のように製造する。鉛粉
(PbO)を水又は希硫酸水溶液で混練して鉛合金製格
子基板に充填、塗布するペーストを調製するに当たり、
これに塩基性リン酸鉛粉を添加、混練して正極用活物質
合剤ペーストを調製する。塩基性リン酸鉛として、例え
ば、2PbO・PbHPO3 ・0.5H2 Oなど任意の
二塩基性リン酸塩が使用できる。その添加量は、正極活
物質(PbO2)を(Pb)鉛量に換算して、重量比で
0.2〜4%の範囲が好ましい。0.2%未満では添加
効果が小さく、一方、4%を越えても添加効果は4%の
場合と変わりがないが、それだけ活物質の量が減少する
ので4%までにとゞめることが好ましい。次に、これら
の正極活物質合剤を夫々鉛合金製基板に充填、乾燥し、
化成処理して夫々の正極板を多数枚作製した。一方、鉛
粉(PbO)を水又は希硫酸水溶液で混練したペースト
状活物質を鉛合金製基板に充填、乾燥し、化成処理して
負極板を複数枚作製した。鉛合金製基板としては、Pb
−Ca系合金製基板、Pb−Sb系合金製基板などの所
望の鉛合金製基板が用いられる。このように作製した本
発明の添加剤を含む正極活物質合剤を充填された正極板
と上記の負極板とをセパレータを介して組み合わせ、こ
れを電槽内に収容し、希硫酸電解液を注入し、蓋を施し
て正極活物質(PbO2 )中に塩基性リン酸鉛粒子が前
記の所定量混在した本発明の正極板と通常の負極活物質
(Pb)から成る負極板とを具備した鉛蓄電池を製造す
る。Next, an embodiment of the present invention will be described. The lead storage battery of the present invention is manufactured as follows. In kneading lead powder (PbO) with water or a dilute sulfuric acid aqueous solution, filling a lead alloy lattice substrate and preparing a paste to be applied,
To this, a basic lead phosphate powder is added and kneaded to prepare a positive electrode active material mixture paste. As basic lead phosphate, for example, any dibasic phosphate such as 2PbO · PbHPO 3 · 0.5H 2 O can be used. The addition amount thereof is preferably in the range of 0.2 to 4% by weight in terms of the weight of the positive electrode active material (PbO 2 ) converted to the amount of (Pb) lead. If it is less than 0.2%, the effect of addition is small. On the other hand, if it exceeds 4%, the effect of addition is the same as that of 4%. However, the amount of active material decreases accordingly, so it should be limited to 4%. Is preferred. Next, each of these positive electrode active material mixtures was filled in a lead alloy substrate and dried,
A large number of each positive electrode plate was produced by chemical conversion treatment. On the other hand, a paste-like active material obtained by kneading lead powder (PbO) with water or a dilute sulfuric acid aqueous solution was filled in a lead alloy substrate, dried, and subjected to a chemical conversion treatment to produce a plurality of negative electrode plates. For lead alloy substrates, Pb
A desired lead alloy substrate such as a -Ca alloy substrate or a Pb-Sb alloy substrate is used. The positive electrode plate filled with the positive electrode active material mixture containing the additive of the present invention thus prepared and the negative electrode plate are combined via a separator, and this is accommodated in a battery case. A positive electrode plate of the present invention in which basic lead phosphate particles are mixed in the predetermined amount in the positive electrode active material (PbO 2 ), and a negative electrode plate made of a normal negative electrode active material (Pb) are provided. Manufactured lead storage batteries.
【0006】本発明の鉛蓄電池は、正極板の活物質中に
塩基性リン酸鉛を添加することにより、これを添加しな
い従来の正極板を具備した鉛蓄電池に比し、正極板の活
物質合剤の平均孔径のうち、放電作用に主に寄与する
0.1〜1μmの範囲の平均孔径を有する活物質合剤の
割合が増大し、その結果、活物質利用率が向上すること
が認められた。[0006] The lead-acid battery of the present invention is characterized in that basic lead phosphate is added to the active material of the positive electrode plate. Among the average pore diameters of the mixture, the ratio of the active material mixture having an average pore diameter in the range of 0.1 to 1 μm mainly contributing to the discharge action is increased, and as a result, the active material utilization rate is improved. Was done.
【0007】[0007]
【実施例】鉛粉(PbO)の2000gを水又は希硫酸
水溶液で混練してペーストを作製するに当たり、二塩基
性リン酸鉛粉末として二塩基性亜リン酸鉛2PbO・P
bHPO3 ・0.5H2 O(品川化工(株)製 DF−
301)をその鉛粉に対し重量比で0.2%、0.5
%、1%、2.5%、3.5%を添加しこれに180g
の水を加えて混練し、更に、比重1.265の希硫酸を
167g添加し混練して成る5種類の正極活物質合剤の
ペーストを調製し、その夫々をPb−Ca合金製基板に
夫々充填し、温度40℃、湿度95%で11時間熟成
し、その後60℃で5時間乾燥し、次で40時間化成を
施して本発明の正極板を夫々(寸法63.8mm×45
mm×2.7mm)を作製した。一方、Pb−Ca合金
基板に、常法により鉛粉を希硫酸水溶液で混練して成る
負極活物質のペーストを充填し、正極板と同様に熟成、
乾燥し、化成処理して(寸法66mm×45mm×2.
4mm)負極板を作製した。その添加剤の添加量の異な
る前記の各正極板1枚と前記の負極板2枚とをセパレー
タを介して積層して成る各極板群を夫々の電槽内に圧迫
収容し、希硫酸電解液を注入し、電槽蓋を施して、定格
容量1500mAの5種類の本発明の鉛蓄電池を夫々作
製した。かくして、その各鉛蓄電池の正極板の活物質
(PbO2 )には、重量比で二塩基性亜リン酸鉛が夫々
0.2%、0.5%、1%、2.5%、3.5%混在し
た正極板を具備した鉛蓄電池が得られる。一方、比較の
ため、正極板に上記添加剤を添加しない以外は、上記と
同様にして、従来の定格容量1500mAの鉛蓄電池を
製造した。EXAMPLE When 2,000 g of lead powder (PbO) was kneaded with water or a dilute sulfuric acid aqueous solution to prepare a paste, dibasic lead phosphite 2PbO.P was used as dibasic lead phosphate powder.
bHPO 3 · 0.5H 2 O (Shinagawa Chemical Industry Co., Ltd. DF-
301) is 0.2%, 0.5% by weight based on the lead powder.
%, 1%, 2.5%, 3.5% and 180 g to this
Of water, and kneaded. Further, 167 g of dilute sulfuric acid having a specific gravity of 1.265 was added and kneaded to prepare pastes of five kinds of positive electrode active material mixtures, and each of the pastes was formed on a Pb-Ca alloy substrate. The mixture was filled and aged at a temperature of 40 ° C. and a humidity of 95% for 11 hours, then dried at 60 ° C. for 5 hours, and then subjected to a chemical conversion for 40 hours.
mm × 2.7 mm). On the other hand, a Pb-Ca alloy substrate is filled with a paste of a negative electrode active material obtained by kneading lead powder with a dilute sulfuric acid aqueous solution by a conventional method, and aging is performed similarly to the positive electrode plate.
After drying and chemical conversion treatment (dimensions 66 mm × 45 mm × 2.
4 mm) A negative electrode plate was produced. Each of the electrode plates, each of which is obtained by laminating one of the above-described positive electrode plates and two of the above-described negative electrode plates with different amounts of the additives interposed therebetween through a separator, is pressed and accommodated in each battery case. The solution was injected, and the battery case was covered. Five types of the lead storage batteries of the present invention having a rated capacity of 1500 mA were produced. Thus, the active material (PbO 2 ) of the positive electrode plate of each lead storage battery contains 0.2%, 0.5%, 1%, 2.5%, and 3% by weight of dibasic lead phosphite, respectively. A lead-acid battery having a positive electrode plate mixed with 0.5% is obtained. On the other hand, for comparison, a conventional lead-acid battery having a rated capacity of 1500 mA was manufactured in the same manner as described above except that the above-mentioned additive was not added to the positive electrode plate.
【0008】上記の5種類の本発明の鉛蓄電池の正極板
の活物質合剤の孔径分布及び従来の鉛蓄電池の正極板の
活物質の孔径分布を夫々の極板からサンプリングし、水
銀ポロシメーター(マイクロメリティックス社製)によ
り測定した。その結果は、夫々図1(a)、図1
(b)、図1(c)、図1(d)、図1(e)及び図2
に夫々示す通りであった。これらの図から明らかなよう
に、塩基性リン酸鉛を正極活物質中に添加することによ
り、本発明の正極板は、放電によって主に正極活物質が
反応する0.1〜1μmの範囲の孔径の分布割合が著し
く増大することが認められ、これによって、後記するよ
うに、正極活物質の利用率が増大する結果が得られた。
従って、それだけ、鉛蓄電池のエネルギー密度の増大を
もたらすことが判った。[0008] The pore size distribution of the active material mixture of the positive electrode plate of the above five lead-acid batteries of the present invention and the pore size distribution of the active material of the positive electrode plate of the conventional lead-acid battery are sampled from the respective electrode plates, and the mercury porosimeter ( Micromeritics). The results are shown in FIG. 1 (a) and FIG.
(B), FIG. 1 (c), FIG. 1 (d), FIG. 1 (e) and FIG.
Respectively. As is clear from these figures, by adding basic lead phosphate to the positive electrode active material, the positive electrode plate of the present invention has a range of 0.1 to 1 μm in which the positive electrode active material mainly reacts by discharge. It was recognized that the distribution ratio of the pore diameter was significantly increased, and as a result, the result that the utilization rate of the positive electrode active material was increased, as described later, was obtained.
Therefore, it was found that the energy density of the lead storage battery was increased accordingly.
【0009】上記の5種類の本発明の鉛蓄電池と従来の
鉛蓄電池について、DOD80%の充放電サイクル試験
を行い、75サイクル目の放電容量を測定した。更に詳
細には、(a)DOD80%試験は、上記の夫々の電池
について、その定格容量1500mAhに対し80%の
容量1200mAhまで放電させ、その後それに対し1
10%の電気量を充電することを繰り返し、放電の際に
電圧が1.65Vを切ったところで寿命と判定するもの
である。このサイクル試験の過程で、(b)容量試験を
行い、サイクル試験中の夫々の電池の75サイクル目の
放電容量を確認した。具体的には、これら(a)(b)
の試験の充放電条件は、以下の通りである。 (a)DOD80%容量試験 放電;500mA×2.4時間(1.65Vまで低下し
たら終了) 充電;2段定電流充電 1段目 600mA×1.83時間 2段目 120mA×1.76時間 (b)容量試験 放電;500mAで1.65Vまで低下するまで続け、
容量を測定する。 充電;定電圧充電 2.35V(最大電流値 300mA)×10時間 このようにして測定した夫々の電池の75サイクル目の
電池容量に対し、夫々の電池の正極板の正極活物質の全
てが放電反応に利用された場合の容量を100として活
物質の利用率を計算し、添加量と活物質利用率の関係を
図3に示した。図3から明らかなように、二塩基性亜リ
ン酸鉛を添加した場合は、特に、0.2〜4%の添加量
において、無添加の場合に比し、正極板の活物質利用率
が著しく向上することが判る。就中、添加量1%が活物
質の利用率が最大であった。尚、添加量は4%を越えて
も同様の効果が得られるが、その添加量が増大するだけ
活物質量が減少するので、この程度にとゞめることが好
ましい。For the above five types of lead storage batteries of the present invention and the conventional lead storage batteries, a charge / discharge cycle test with a DOD of 80% was performed, and the discharge capacity at the 75th cycle was measured. More specifically, (a) a DOD 80% test was performed to discharge each of the above batteries to a rated capacity of 1500 mAh to an 80% capacity of 1200 mAh, and then to a 1
The charging of 10% of electricity is repeated, and when the voltage drops below 1.65 V at the time of discharging, the life is determined. In the course of this cycle test, (b) a capacity test was performed, and the discharge capacity at the 75th cycle of each battery during the cycle test was confirmed. Specifically, these (a) and (b)
The charge / discharge conditions of the test are as follows. (A) DOD 80% capacity test Discharge; 500 mA x 2.4 hours (finished when the voltage drops to 1.65 V) Charging; 2-stage constant current charging First stage 600 mA x 1.83 hours Second stage 120 mA x 1.76 hours ( b) Capacitance test Discharge; continue at 500 mA until it drops to 1.65 V;
Measure the capacity. Charging; constant voltage charging 2.35 V (maximum current value 300 mA) × 10 hours With respect to the battery capacity at the 75th cycle of each battery measured in this way, all of the positive electrode active material of the positive electrode plate of each battery was discharged. The utilization rate of the active material was calculated by assuming that the capacity used for the reaction as 100, and the relationship between the added amount and the utilization rate of the active material is shown in FIG. As is clear from FIG. 3, when the dibasic lead phosphite is added, the active material utilization rate of the positive electrode plate is higher than that in the case where no addition is made, particularly at an addition amount of 0.2 to 4%. It turns out that it improves remarkably. In particular, the addition rate of 1% had the highest utilization rate of the active material. The same effect can be obtained when the amount of addition exceeds 4%. However, the amount of active material decreases as the amount of addition increases, so it is preferable to keep the amount to this extent.
【0010】[0010]
【発明の効果】このように本発明によるときは、鉛蓄電
池の正極板として、その活物質に塩基性リン酸鉛を添加
したので、正極活物質の利用率が向上し得られ、鉛蓄電
池のエネルギー密度の向上をもたらす。特に、添加量
0.2〜4wt.%において利用率の向上に著効をもた
らす。As described above, according to the present invention, as the positive electrode plate of the lead storage battery, basic lead phosphate is added to the active material, so that the utilization rate of the positive electrode active material can be improved, and the lead storage battery can be used. This leads to an increase in energy density. In particular, the addition amount of 0.2 to 4 wt. % Significantly improves the utilization.
【図1(a)〜(e)】 本発明の鉛蓄電池の塩基性リ
ン酸鉛の添加と正極板の孔径分布との関係を示す図であ
る。1 (a) to 1 (e) are diagrams showing the relationship between the addition of basic lead phosphate and the pore size distribution of a positive electrode plate in the lead storage battery of the present invention.
【図2】 従来の鉛蓄電池の正極板の孔径分布図であ
る。FIG. 2 is a pore size distribution diagram of a positive electrode plate of a conventional lead storage battery.
【図3】 二塩基性亜リン酸鉛の添加量と正極活物質利
用率との関係を示す図である。FIG. 3 is a graph showing the relationship between the amount of dibasic lead phosphite added and the positive electrode active material utilization.
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/14 - 4/23 H01M 4/56 - 4/57 H01M 4/62 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/14-4/23 H01M 4/56-4/57 H01M 4/62
Claims (2)
せしめて成る正極板を具備したことを特徴とする鉛蓄電
池。1. A lead storage battery comprising a positive electrode plate in which a basic lead phosphate is mixed in a positive electrode active material.
を鉛粉(PbO)に換算して重量比で0.2〜4%であ
る請求項1記載の鉛蓄電池。2. The lead-acid battery according to claim 1, wherein the basic lead phosphate is added in an amount of 0.2 to 4% by weight in terms of weight of the positive electrode active material in terms of lead powder (PbO).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8177396A JP3040718B2 (en) | 1996-06-18 | 1996-06-18 | Lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8177396A JP3040718B2 (en) | 1996-06-18 | 1996-06-18 | Lead storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1012225A JPH1012225A (en) | 1998-01-16 |
JP3040718B2 true JP3040718B2 (en) | 2000-05-15 |
Family
ID=16030202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8177396A Expired - Fee Related JP3040718B2 (en) | 1996-06-18 | 1996-06-18 | Lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3040718B2 (en) |
-
1996
- 1996-06-18 JP JP8177396A patent/JP3040718B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1012225A (en) | 1998-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI539644B (en) | Flooded lead-acid battery and method of making the same | |
US5302476A (en) | High performance positive electrode for a lead-acid battery | |
JP2004199950A (en) | Method for manufacturing positive electrode plate for lead-acid battery | |
JP2009048800A (en) | Manufacturing method of paste type positive electrode plate | |
JP4186197B2 (en) | Positive electrode plate for lead acid battery | |
JP3040718B2 (en) | Lead storage battery | |
JP2008071717A (en) | Lead acid battery conversion method | |
JP3339080B2 (en) | Anode plate for lead storage battery and method of manufacturing the same | |
JP3091167B2 (en) | Lead storage battery | |
JP3764978B2 (en) | Manufacturing method of lead acid battery | |
JPH11339788A (en) | Lead-acid battery | |
JP4066509B2 (en) | Manufacturing method of lead acid battery | |
JPH11329420A (en) | Manufacture of lead-acid battery | |
JP2003317711A (en) | Formation method of lead storage battery | |
JP4742424B2 (en) | Control valve type lead acid battery | |
JP3284860B2 (en) | Electrode for lead-acid battery and its manufacturing method | |
JP2773311B2 (en) | Manufacturing method of sealed lead-acid battery | |
JP2548227B2 (en) | Manufacturing method of electrode plate for lead-acid battery | |
JP2003123744A (en) | Control valve type lead storage battery | |
JPH1040922A (en) | Pole plate for lead-acid battery and manufacture thereof | |
JPH0770318B2 (en) | Lead acid battery | |
JPH10223211A (en) | Lead-acid battery and manufacture therefor | |
JPH11144719A (en) | Sealed lead-acid battery | |
Kao et al. | High performance positive electrode for a lead-acid battery | |
JPH0589873A (en) | Negative electrode plate for lead-acid storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |