JP3030950B2 - Calibration phantom and data calibration method - Google Patents
Calibration phantom and data calibration methodInfo
- Publication number
- JP3030950B2 JP3030950B2 JP3200618A JP20061891A JP3030950B2 JP 3030950 B2 JP3030950 B2 JP 3030950B2 JP 3200618 A JP3200618 A JP 3200618A JP 20061891 A JP20061891 A JP 20061891A JP 3030950 B2 JP3030950 B2 JP 3030950B2
- Authority
- JP
- Japan
- Prior art keywords
- calibration
- radiation
- phantom
- substance
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/582—Calibration
- A61B6/583—Calibration using calibration phantoms
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Nuclear Medicine (AREA)
Description
【0001】[0001]
【産業用の利用分野】本発明は、医療用X線診断装置、
骨塩定量装置、非破壊検査装置、X線分析装置等に使用
する校正用ファントムおよびデータ校正法関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical X-ray diagnostic apparatus,
The present invention relates to a calibration phantom and a data calibration method used for a bone mineral quantifying device, a nondestructive testing device, an X-ray analyzer, and the like.
【0002】[0002]
【従来の技術】複数の放射線検出素子を用いた放射線計
測機器においては、一般に計測開始前に、素子間の感度
ばらつきを知るために、一度、実際の測定対象にちかい
校正用ファントムの計測を行い、その各検出素子素子の
放射線強度を示す値から、演算装置により素子間の補正
係数を得る。その後、実際の計測を行い、そこで得た各
素子の放射線強度を示す値に補正係数を乗算して測定結
果とする。2. Description of the Related Art In a radiation measuring device using a plurality of radiation detecting elements, a calibration phantom is generally measured once before starting the measurement in order to know the sensitivity variation between the elements. From the value indicating the radiation intensity of each detection element, a correction coefficient between the elements is obtained by the arithmetic unit. Thereafter, actual measurement is performed, and a value indicating the radiation intensity of each element obtained therefrom is multiplied by a correction coefficient to obtain a measurement result.
【0003】この放射線検出素子の感度補正を行なう際
の校正用ファントムは、測定する範囲において、放射線
に対する吸収が均一な素材により作成されている。たと
えば、図4に示す校正用ファントム5は、厚さが一定の
アクリル板が用いられる。A calibration phantom for correcting the sensitivity of the radiation detecting element is made of a material having a uniform absorption of radiation in a range to be measured. For example, the calibration phantom 5 shown in FIG. 4 uses an acrylic plate having a constant thickness.
【0004】また、放射線と放射線検出器からなる物質
の定量装置においては、測定した定量値の正確度を再現
性よく得るために、測定開始前に含有量が既知のファン
トムの測定を行ない測定値の校正係数を算出している。[0004] In addition, in a substance quantifying device composed of radiation and a radiation detector, in order to obtain the accuracy of the measured quantitative value with good reproducibility, a phantom having a known content is measured before starting the measurement. Is calculated.
【0005】[0005]
【発明が解決しようとする課題】多数の放射線検出素子
を用いた定量装置では、放射線検出素子間の感度補正を
行なうための測定と、測定値の校正係数を得るための測
定を行なわなければならず、測定対象の計測を行なう前
に、少なくとも2度の測定操作を行なわなければならな
い。In a quantitative apparatus using a large number of radiation detecting elements, a measurement for correcting the sensitivity between the radiation detecting elements and a measurement for obtaining a calibration coefficient of the measured value must be performed. First, at least two measurement operations must be performed before measuring the measurement target.
【0006】[0006]
【課題を解決するための手段】放射線源と、一次元に配
置された複数の放射線検出素子とを備え、前記放射線源
と前記複数の放射線検出素子とを同期走査する物質の定
量装置に用いるための校正用ファントムであって、前記
校正用ファントム上には定量しようとする物質が設けら
れ、前記物質を透過した放射線が、すべての前記複数の
放射線検出素子で検出されるように前記物質が設けられ
ており、かつ前記物質が設けられていない前記校正用フ
ァントムの領域のみを透過した放射線が、すべての前記
複数の放射線検出素子で検出される校正用ファントムを
用いる。このファントムを測定し、放射線検出素子間の
感度補正係数と、測定密度の校正係数を同時に算出す
る。The radiation source comprises a radiation source and a plurality of radiation detecting elements arranged one-dimensionally.
And said plurality of radiation detection elements a calibration phantom for use in quantifying apparatus of a synchronous scanning a substance with the
The substance to be quantified is provided on the calibration phantom.
And the radiation transmitted through the substance
The substance is provided so as to be detected by a radiation detecting element.
Calibration
Radiation transmitted only through the phantom area
A calibration phantom detected by a plurality of radiation detection elements is used. The phantom is measured, and the sensitivity correction coefficient between the radiation detection elements and the calibration coefficient of the measured density are calculated at the same time.
【0007】[0007]
【作用】この手段により、1回の測定で、放射線検出素
子間の感度補正係数と、測定密度の校正係数を同時に得
ることができる。By this means, the sensitivity correction coefficient between the radiation detecting elements and the calibration coefficient of the measurement density can be obtained simultaneously by one measurement.
【0008】また、含有量の大小に対する直線性の校正
も、1回の測定のみで精度よく行なうことができる。Further, the linearity of the content can be accurately calibrated by only one measurement.
【0009】[0009]
【実施例】以下に本発明を実施例にもとづき説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
【0010】(実施例1)図1は、本発明の校正用ファ
ントムの一実施例の外観図である。本実施例の校正用フ
ァントムは、人骨中のCaやPを主とするミネラル量を
定量する際に用いられる。本実施例では、簡単のため、
Ca定量に限って説明する。厚さ12cmのアクリル板1
の中央部に厚さ1cmの骨等価ファントム2をはめ込んだ
ものである。アクリル板の60keVのγ線に対する質量減
弱係数は、0.190cm2/cmであり、骨等価ファントム2は
人骨にほぼ等しい成分組成を有するもので、質量減弱係
数は、0.274cm2/gである。骨等価ファントム中には、
Caを含有しており、そのCa含有量DCaFは1.0g/cm3
である。一方、アクリル中にはCaは含まれておらず、
人体の軟組織とほぼ等しい減弱係数をもつ。(Embodiment 1) FIG. 1 is an external view of an embodiment of a calibration phantom of the present invention. The calibration phantom of the present embodiment is used when quantifying the amount of minerals mainly including Ca and P in human bones. In this embodiment, for simplicity,
The description will be limited to the determination of Ca. Acrylic board 1 with 12cm thickness
A bone-equivalent phantom 2 having a thickness of 1 cm is fitted in the central part of the figure. The mass attenuation coefficient of the acrylic plate with respect to 60 keV γ-rays is 0.190 cm 2 / cm, and the bone equivalent phantom 2 has a composition almost equal to that of a human bone, and the mass attenuation coefficient is 0.274 cm 2 / g. During the bone equivalent phantom,
It contains Ca, and its Ca content D CaF is 1.0 g / cm 3
It is. On the other hand, Ca is not contained in the acrylic,
It has an attenuation coefficient approximately equal to that of human soft tissue.
【0011】この校正用ファントム5を用い、測定デー
タの校正を以下のように行った。密度測定装置は、図2
に示すように、X線発生装置3とCdTeを用いた51
2個のチャンネル7からなる多チャンネル型半導体X線
検出器4から構成される。Using the calibration phantom 5, the measurement data was calibrated as follows. Fig. 2
As shown in the figure, 51 using the X-ray generator 3 and CdTe
It comprises a multi-channel semiconductor X-ray detector 4 composed of two channels 7.
【0012】測定対象をX線発生装置3と多チャンネル
型半導体X線検出器4の間に設置し、X線発生装置3と
多チャンネル型半導体X線検出器4を同期して走査する
ことにより、2次元の領域の測定を行う。多チャンネル
型半導体X線検出器4では、高エネルギーのX線強度と
低エネルギーのX線強度を同時に、別々に分離して計測
している。An object to be measured is placed between the X-ray generator 3 and the multi-channel semiconductor X-ray detector 4, and the X-ray generator 3 and the multi-channel semiconductor X-ray detector 4 are scanned synchronously. And a two-dimensional area is measured. In the multi-channel semiconductor X-ray detector 4, the high-energy X-ray intensity and the low-energy X-ray intensity are simultaneously and separately measured.
【0013】図1の校正用ファントム5を、骨等価ファ
ントム2部分を透過したX線6が多チャンネル型半導体
X線検出器4のすべてのチャンネル7で測定されるよう
に設置した。校正用ファントム5を測定したデータか
ら、半導体X線検出器のチャンネル間の感度補正係数と
定量値の校正係数を以下のように求めた。The calibration phantom 5 shown in FIG. 1 was set such that X-rays 6 transmitted through the bone equivalent phantom 2 were measured in all the channels 7 of the multi-channel semiconductor X-ray detector 4. From the data obtained by measuring the calibration phantom 5, the sensitivity correction coefficient between channels of the semiconductor X-ray detector and the calibration coefficient of the quantitative value were obtained as follows.
【0014】まず、感度補正係数について説明する。ま
ず、高エネルギーX線の測定強度について行なう。各チ
ャンネルについて、走査を行なうことにより512個のデ
−タを得る。これにより得られた512×512全データの平
均値AVを求める。n番目のチャンネルのmラインのX
線強度をCn(m)とする。Cn(1)からCn(51
2)までの512個のデータの平均値Cnavを計算
し、各チャンネルごとに補正係数CnHを(数1)とし
て求めた。First, the sensitivity correction coefficient will be described. First, the measurement intensity of the high energy X-ray is performed. For each channel, 512 data are obtained by scanning. The average value AV of all the 512 × 512 data thus obtained is obtained. X of m line of nth channel
Let the line intensity be C n (m). C n (1) to C n (51
The average value C n av of the 512 pieces of data up to 2) was calculated, and the correction coefficient C n H was obtained as (Equation 1) for each channel.
【0015】[0015]
【数1】 (Equation 1)
【0016】これを低エネルギーX線の測定強度につい
ても行った。測定した領域の走査方向については、骨等
価ファントムが含まれるため、従来のように同一の材料
を測定した場合とはことなるが、各チャンネルは常に同
じ材料を測定しているためこの方法が可能である。This was also performed for the measured intensity of low energy X-rays. The scanning direction of the measured area includes the bone equivalent phantom, which is different from the case of measuring the same material as before, but this method is possible because each channel always measures the same material. It is.
【0017】次に、校正用ファントム内の骨等価ファン
トムのCaの単位面積あたりの密度を算出した。骨等価
ファントム部を透過した高エネルギーX線強度、低エネ
ルギーX線強度それぞれについて、平均値を計算した。
また、アクリル部のデータについても同様に平均値を算
出した。この結果を4つの測定値を用い、エネルギー差
分法にもとづき、骨等価ファントム内の単位面積あたり
のCa密度DCaHを計算した。これより、測定密度の校
正係数Dは、(数2)により得た。Next, the density of Ca per unit area of the bone equivalent phantom in the calibration phantom was calculated. The average value was calculated for each of the high energy X-ray intensity and the low energy X-ray intensity transmitted through the bone equivalent phantom.
The average value was similarly calculated for the data of the acrylic part. The Ca density D CaH per unit area in the bone equivalent phantom was calculated from these results using four measured values and based on the energy difference method. From this, the calibration coefficient D of the measured density was obtained by (Equation 2).
【0018】[0018]
【数2】 (Equation 2)
【0019】校正用ファントムに代えて、測定対象を設
置し、同様に測定した。チャンネル間の感度ばらつきを
補正するため、nチャンネルの各ラインのX線強度測定
値にチャンネル間感度補正係数CnHを乗算する。An object to be measured was set in place of the calibration phantom, and the measurement was performed in the same manner. In order to correct the sensitivity variation between channels, the measured X-ray intensity of each line of n channels is multiplied by an inter-channel sensitivity correction coefficient C n H.
【0020】この感度補正を行なったデータを用い、測
定対象中のCa密度を算出する。計算の方法は、校正係
数を求める場合と同様であり、エネルギー差分法を用い
る。得られたCa密度DCamに、校正係数Dを乗じた値
D×DCamを測定対象のCa密度とした。Using the data after the sensitivity correction, the Ca density in the measurement object is calculated. The calculation method is the same as that for obtaining the calibration coefficient, and the energy difference method is used. A value D × D Cam obtained by multiplying the obtained Ca density D Cam by the calibration coefficient D was defined as the Ca density to be measured.
【0021】以上の方法により、1回の事前の測定によ
り、感度補正と測定密度の校正が行うことができた。According to the above method, sensitivity correction and measurement density calibration could be performed by one preliminary measurement.
【0022】(実施例2)図3に、本発明の校正用ファ
ントムの他の実施例の外観図である。アクリル板の校正
用ファントム5の2カ所に、単位体積当りのCa量は同
じファントム材料11、12、を厚さを変えて設けたも
のである。ファントム材料12はファントム材料11の
1/2の厚さとしたため、単位面積あたりのCa量も1
/2となる。これらのファントム材料11、12のCa
量は、Dca11、Dca12で、ともに既知である。(Embodiment 2) FIG. 3 is an external view of another embodiment of the calibration phantom of the present invention. Phantom materials 11 and 12 having the same amount of Ca per unit volume but having different thicknesses are provided at two locations on a calibration phantom 5 of an acrylic plate. Since the thickness of the phantom material 12 was 1 / of that of the phantom material 11, the amount of Ca per unit area was also 1
/ 2. Ca of these phantom materials 11 and 12
The amounts are known, both D ca11 and D ca12 .
【0023】実施例1と同様に、多チャンネル型X線検
出器のすべてのチャンネルを覆うように設計されてい
る。Like the first embodiment, the multi-channel X-ray detector is designed to cover all the channels.
【0024】この校正用ファントムを実施例1と同様
に、測定してチャンネル間の感度補正係数をCnHを求
めた。This calibration phantom was measured in the same manner as in Example 1 to determine the sensitivity correction coefficient between channels C n H.
【0025】次に、ファントム材料11、12の単位面
積当りのCa密度を同じく、エネルギー差分法をもとに
求めた。算出されたファントム材料11、12のCa密
度をそれぞれDCaH11、DCaH12とする。この2つのCa
密度から、その日の密度定量装置の密度に対する直線性
をも考慮した校正式(数3)を得る。Next, the Ca density per unit area of the phantom materials 11 and 12 was similarly obtained based on the energy difference method. The calculated Ca densities of the phantom materials 11 and 12 are D CaH11 and D CaH12 , respectively. These two Ca
From the density, a calibration equation (Equation 3) is obtained that also takes into account the linearity with respect to the density of the density quantifier on that day.
【0026】[0026]
【数3】 (Equation 3)
【0027】ここで、(数3)において、yは校正され
たCa密度、Dcam は測定した密度、kは比例定数、D
0 は定数である。k、D0 は、それぞれ(数4)、(数
5)である。Here, in (Equation 3), y is the calibrated Ca density, D cam is the measured density, k is the proportionality constant, D
0 is a constant. k and D 0 are (Equation 4) and (Equation 5), respectively.
【0028】[0028]
【数4】 (Equation 4)
【0029】[0029]
【数5】 (Equation 5)
【0030】以上により、測定値Dcam を(数3)にし
たがい、より精度よく校正できる。本実施例では、校正
ファントム中のファントム材料を厚さの異なる2種類と
したが、3種類以上の厚さのファントム材料で構成して
もよい。この場合も、同様に最小2乗法などにより、
(数3)のような校正式をもとめ、密度に対する直線性
のよい校正を行なうことができる。As described above, the measured value D cam can be calibrated with higher accuracy according to (Equation 3). In the present embodiment, two types of phantom materials having different thicknesses are used in the calibration phantom. However, the phantom materials having three or more thicknesses may be used. Also in this case, the least square method is used.
By obtaining a calibration formula such as (Equation 3), it is possible to perform calibration with good linearity with respect to density.
【0031】また、校正用ファントム内のCa含有ファ
ントム材料は、厚さを一定にしCa含有量の異なるもの
を使用してもよい。The Ca-containing phantom material in the calibration phantom may have a constant thickness and a different Ca content.
【0032】本実施例の方法は、Ca以外の元素につい
ても、密度または厚さのことなる材料で構成したファン
トムにより、同様に行える。また、複数の元素の密度の
和や、化合物密度についても実施可能である。The method of this embodiment can be similarly applied to elements other than Ca by using phantoms made of materials having different densities or thicknesses. Further, the present invention can be applied to the sum of the densities of a plurality of elements and the compound density.
【0033】多チャンネル型X線検出器としては、半導
体X線検出器のほかにタングステン酸カドミウムにより
構成されたシンチレーション検出器を多数配列したもの
を用いることも可能である。As the multi-channel X-ray detector, it is also possible to use a semiconductor X-ray detector and a number of scintillation detectors made of cadmium tungstate arranged in addition to the semiconductor X-ray detector.
【0034】また、実施例1のように、検出器にX線エ
ネルギーを識別して計測することができない場合には、
X線管の管電圧を切り替えて、エネルギースペクトルを
変化させることによっても可能である。If the detector cannot identify and measure the X-ray energy as in the first embodiment,
It is also possible by switching the tube voltage of the X-ray tube to change the energy spectrum.
【0035】[0035]
【発明の効果】本実施例の校正用ファントムおよびデー
タ校正法を用いることにより、多チャンネル放射線検出
器のチャンネル感度補正と、測定密度の校正が同時に行
えるため、事前の測定が1回で容易に行なうことができ
た。By using the calibration phantom and the data calibration method of this embodiment, the channel sensitivity correction of the multi-channel radiation detector and the calibration of the measurement density can be performed at the same time, so that the prior measurement can be easily performed once. Could do it.
【0036】また、測定密度の直線性をも良好に校正す
ることができた。Further, the linearity of the measured density could be calibrated well.
【図1】本発明の校正用ファントムの一実施例の外観図FIG. 1 is an external view of an embodiment of a calibration phantom of the present invention.
【図2】図1の実施例の校正用ファントムを用いた定量
装置の構成図FIG. 2 is a configuration diagram of a quantitative device using the calibration phantom of the embodiment of FIG. 1;
【図3】本発明の校正用ファントムの他の実施例の外観
図FIG. 3 is an external view of another embodiment of the calibration phantom of the present invention.
【図4】従来の校正用ファントムの外観図FIG. 4 is an external view of a conventional calibration phantom.
1 アクリル板 2 骨等価ファントム 3 X線発生装置 4 多チャンネル型半導体X線検出器 5 校正用ファントム 6 X線 11 ファントム材料 12 ファントム材料 DESCRIPTION OF SYMBOLS 1 Acrylic board 2 Bone equivalent phantom 3 X-ray generator 4 Multichannel semiconductor X-ray detector 5 Calibration phantom 6 X-ray 11 Phantom material 12 Phantom material
───────────────────────────────────────────────────── フロントページの続き (72)発明者 筒井 博司 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 実開 昭59−105104(JP,U) 実開 昭61−34207(JP,U) 実開 平1−117315(JP,U) 実開 昭62−142305(JP,U) 実公 昭57−46966(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) A61B 6/00 - 6/14 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Tsutsui 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 34207 (JP, U) JP-A 1-117315 (JP, U) JP-A 62-142305 (JP, U) JP-A 57-46966 (JP, Y2) (58) Fields investigated (Int. Cl. 7 , DB name) A61B 6/00-6/14
Claims (5)
放射線検出素子とを備え、前記放射線源と前記複数の放
射線検出素子とを同期走査する物質の定量装置に用いる
ための校正用ファントムであって、 前記校正用ファントム上には定量しようとする物質が設
けられ、前記物質を透過した放射線が、すべての前記複
数の放射線検出素子で検出されるように前記物質が設け
られており、かつ前記物質が設けられていない前記校正
用ファントムの領域のみを透過した放射線が、すべての
前記複数の放射線検出素子で検出されるように前記物質
が設けられたことを特徴とする校正用ファントム。 1. A radiation source, comprising: a plurality of radiation detecting elements arranged one-dimensionally;
Used as a quantitative device for substances that scans synchronously with the ray detector
The substance as a calibration phantom, the substance to be quantified is provided on a calibration phantom, radiation that has passed through the pre-Symbol substances are detected in all of the plurality of radiation detecting elements for The calibration is provided and the substance is not provided
Radiation transmitted only through the area of the
The substance as detected by the plurality of radiation detection elements
A phantom for calibration, characterized by being provided with:
られ、かつそれぞれの物質の厚さが異なることを特徴と
する請求項1記載の校正用ファントム。2. The calibration phantom according to claim 1, wherein two or more substances to be quantified are provided, and the thickness of each substance is different.
る物質の定量装置において、校正用ファントムを測定す
ることにより、前記放射線検出素子間の感度補正と、測
定した物質の定量値の校正を同時に行なうことを特徴と
するデータ校正法。3. In a substance quantifying apparatus comprising a radiation source and a plurality of radiation detecting elements, by measuring a calibration phantom, sensitivity correction between the radiation detecting elements and calibration of a quantitative value of the measured substance are simultaneously performed. Data calibration method characterized by performing.
放射線検出素子とを備え、前記放射線源と前記複数の放
射線検出素子とを同期走査する物質の定量装置におい
て、校正用ファントムが測定対象となる物質の含有量の
異なる部分を2ヶ所以上含み、前記校正用ファントムの
物質の含有量の異なる部分をそれぞれ測定することによ
り、定量値の物質の含有量に対する直線性の校正を行な
うことを特徴とするデータ校正法。4. A radiation source and a plurality of one-dimensionally arranged radiation sources.
A radiation detecting element, wherein the radiation source and the plurality of
In a quantitative device for substances that scans synchronously with the radiation detector
The calibration phantom includes two or more portions having different contents of the substance to be measured ,
A data calibration method characterized by performing calibration of linearity of a quantitative value with respect to a content of a substance by measuring respective portions having different contents of the substance.
子が、多チャンネル型半導体放射線検出器よりなること
を特徴とする請求項3または4記載のデータ校正法。5. The data calibration method according to claim 3, wherein the radiation source is an X-ray tube, and the radiation detecting element is a multi-channel semiconductor radiation detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3200618A JP3030950B2 (en) | 1991-08-09 | 1991-08-09 | Calibration phantom and data calibration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3200618A JP3030950B2 (en) | 1991-08-09 | 1991-08-09 | Calibration phantom and data calibration method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0542130A JPH0542130A (en) | 1993-02-23 |
JP3030950B2 true JP3030950B2 (en) | 2000-04-10 |
Family
ID=16427375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3200618A Expired - Fee Related JP3030950B2 (en) | 1991-08-09 | 1991-08-09 | Calibration phantom and data calibration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3030950B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000278607A (en) | 1999-03-29 | 2000-10-06 | Matsushita Electric Ind Co Ltd | X-ray photographing device |
KR20040051938A (en) * | 2002-12-13 | 2004-06-19 | 한국전자통신연구원 | Method for calibrating bone mineral density index variation and storage medium for storing program of executing the same |
JP4754812B2 (en) * | 2004-11-25 | 2011-08-24 | 株式会社日立メディコ | X-ray equipment |
US10507005B2 (en) * | 2016-09-22 | 2019-12-17 | General Electric Company | Spectral calibration of spectral computed tomography (CT) |
-
1991
- 1991-08-09 JP JP3200618A patent/JP3030950B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0542130A (en) | 1993-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5493601A (en) | Radiographic calibration phantom | |
Dance et al. | Breast dosimetry | |
EP0385505B1 (en) | Radiographic image processing method and photographic imaging apparatus therefor | |
EP0137487B1 (en) | Energy separated quantum-counting radiography and apparatus | |
JPH04300525A (en) | Quantitative analysis of osteosalt | |
Rampado et al. | Dose and energy dependence of response of Gafchromic® XR-QA film for kilovoltage x-ray beams | |
US4016418A (en) | Method of radioactivity analysis | |
Doyle et al. | Calibrating automatic exposure control devices for digital radiography | |
JPH06121791A (en) | X-ray determination device and x-ray determination method | |
US8611625B2 (en) | Tomographic apparatus | |
JP3030950B2 (en) | Calibration phantom and data calibration method | |
US5682036A (en) | Method and apparatus for accurately calibrating an attenuation map for emission computed tomography | |
JP2820440B2 (en) | Method and apparatus for analyzing tissue | |
EP0659386B1 (en) | Radiographic calibration phantom | |
CA1164580A (en) | Compton scatter diagnostic apparatus for determining structures in a body | |
Clarke et al. | Calibration methods for measuring splenic sequestration by external scanning | |
Zink et al. | The measurement of radiation dose profiles for electron‐beam computed tomography using film dosimetry | |
JP2932019B2 (en) | Bone mineral analysis | |
JPH05216141A (en) | Method for processing radiographic image and radiographic imaging device | |
US5351689A (en) | Method and apparatus for low dose estimates of bone minerals in vivo gamma ray backscatter | |
JP2940243B2 (en) | X-ray image sensor and X-ray inspection device | |
JPH08266532A (en) | X-ray ct system | |
JP2998362B2 (en) | Measurement data correction method | |
JPH05329141A (en) | X-ray diagnostic system and correction method therefor | |
JPH0723876B2 (en) | Radiation analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |