JP3029701B2 - Magnetic damper device - Google Patents
Magnetic damper deviceInfo
- Publication number
- JP3029701B2 JP3029701B2 JP3140980A JP14098091A JP3029701B2 JP 3029701 B2 JP3029701 B2 JP 3029701B2 JP 3140980 A JP3140980 A JP 3140980A JP 14098091 A JP14098091 A JP 14098091A JP 3029701 B2 JP3029701 B2 JP 3029701B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- damper device
- conductor plate
- magnet
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004020 conductor Substances 0.000 claims description 49
- 230000004907 flux Effects 0.000 claims description 21
- 238000013016 damping Methods 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Vibration Prevention Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種装置の振動を減衰
させたり、運動に負荷を与えたりするための磁気ダンパ
装置に関し、より具体的には係る負荷等を与えるための
制動力の制御を図るものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic damper device for attenuating vibrations of various devices and for applying a load to motion, and more specifically for controlling a braking force for applying such loads and the like. To plan.
【0002】[0002]
【従来の技術】この種の磁気ダンパ装置については、文
献として例えば「日本機械学会講演論文集No,890
−26」などによりその理論的基礎が与えられている。
図6(A),(B)にはその従来における並進形磁気ダ
ンパ装置の基本モデルが示されている。図における磁気
ダンパ装置は、一端がコ字形に連結され、他端を上下に
対向させたヨーク1,2と、各ヨーク1,2の上下対向
面にそれぞれ配置され、そのN極およびS極を対向させ
た永久磁石3,4と、両永久磁石3,4により構成され
る磁気回路の高磁束密度を有する空隙dに非接触状態で
配置された導体板5とを備えている。2. Description of the Related Art A magnetic damper device of this type is disclosed in the literature, for example, “Transactions of the Japan Society of Mechanical Engineers, No. 890.
−26 ”provides the theoretical basis.
6A and 6B show a basic model of the conventional translational magnetic damper device. The magnetic damper device in the figure has yokes 1 and 2 having one end connected in a U-shape and the other end facing up and down, and arranged on upper and lower opposing surfaces of the yokes 1 and 2, respectively. The permanent magnet includes opposing permanent magnets and a conductor plate arranged in a non-contact state in a gap having a high magnetic flux density in a magnetic circuit formed by the permanent magnets.
【0003】以上の構成において、導体板5が所定の速
度vで矢印方向に相対移動すると上記空隙d内の磁束を
切るため、電磁誘導の原理により起電力Eが導体板5に
生じ、その結果、同図(A)のB−B線矢視図である同
図(B)(以下、平面図を描く場合の見方は同じ)に鎖
線で示すように渦電流が流れる。この渦電流が磁界との
作用によって前記導体板5に前記矢印A方向と逆向きの
制動力を生じさせる。In the above arrangement, when the conductor plate 5 relatively moves in the direction of the arrow at a predetermined speed v, the magnetic flux in the air gap d is cut off, so that an electromotive force E is generated in the conductor plate 5 by the principle of electromagnetic induction. An eddy current flows as shown by a dashed line in FIG. 2B, which is a view taken along line BB of FIG. 2A (the same applies to the case where a plan view is drawn hereinafter). The eddy current causes the conductor plate 5 to generate a braking force in the direction opposite to the direction of the arrow A by the action of the magnetic field.
【0004】この制動力は、導体板5あるいはヨーク
1,2側に連結された図示しない各種装置や構造物の振
動の減衰や運動に負荷を与え、減衰力が運動速度に極め
て正確に比例すること、無接触で作用し安定しているこ
とおよび温度に対する変化が少ないことなどの利点があ
るので、例えば特開昭61−131841号公報に示す
テーブル装置の高精度位置決めなどに用いられているほ
か、各種の用途に応用することができる。[0004] This braking force applies a load to the damping and movement of vibrations of various devices and structures (not shown) connected to the conductor plate 5 or the yokes 1 and 2, and the damping force is very accurately proportional to the speed of movement. It has the advantages of being stable and acting without contact, and having little change with respect to temperature. For example, it is used for high-precision positioning of a table apparatus disclosed in JP-A-61-131841. , Can be applied to various uses.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来の
磁気ダンパ装置は、以下に示す問題を有する。すなわ
ち、導体板5が移動する際にその導体板5が受ける制動
力は、導体板5の移動速度vに比例し、永久磁石3,4
による生じる磁場の強さの2乗に比例し、かつ導体板5
の抵抗率に逆比例するが、このうち上記従来の磁気ダン
パ装置では、磁場の強さと導体板5の抵抗率は一定であ
るため、その制動力は移動速度にのみ比例することにな
る。However, the conventional magnetic damper device has the following problems. That is, when the conductor plate 5 moves, the braking force received by the conductor plate 5 is proportional to the moving speed v of the conductor plate 5, and the permanent magnets 3, 4
Is proportional to the square of the strength of the magnetic field generated by the
In the conventional magnetic damper device, since the strength of the magnetic field and the resistivity of the conductive plate 5 are constant, the braking force is proportional only to the moving speed.
【0006】従って、その磁気ダンパ装置を各種装置に
連結し、その装置の振動を防止するといった制振装置と
して用いると、係る装置に加わる振動には、振動時の相
対移動速度が種々の異なるものがあるが、それ以外に、
振動の大きさ(振幅)や振動の周波数も様々なものがあ
るため、結局ある固有の振動の大きさ(振幅)や振動の
周波数に対する制振力は有するものの、複数種のファク
ターに対応して効率良く制振することができなかった。
本発明は以上の問題を解決するものであって、この種の
磁気ダンパ装置において、異なる振幅,周波数に対する
振動に対しても確実に制振,制動させることのできる磁
気ダンパ装置を提供することを目的としている。Accordingly, when the magnetic damper device is connected to various devices and used as a vibration damping device for preventing the vibration of the device, the vibration applied to the device has various relative moving speeds at the time of vibration. There is, but besides that,
Since there are various vibration magnitudes (amplitudes) and vibration frequencies, there is ultimately a vibration damping force for a specific vibration magnitude (amplitude) and vibration frequency. I could not control the vibration efficiently.
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of this type of magnetic damper device is to provide a magnetic damper device capable of reliably damping and damping vibrations having different amplitudes and frequencies. The purpose is.
【0007】[0007]
【課題を解決するための手段】上記した目的を達成する
ため、本発明に係る磁気ダンパ装置では、ヨークの対向
面の一方ないしは双方に磁石を配置することにより構成
される磁気回路と、この磁気回路の高磁束密度を有する
空隙に非接触状態で配置された導体を備え、その導体と
該磁石との相対移動によって該磁石から発生する磁束を
切るようにした磁気ダンパ装置において、同一ヨーク面
に配置される前記磁石の磁極が2極以上存在するととも
に、隣り合う磁極が少なくとも1ヶ所以上は異極に形成
され、該磁石を前記導体の略平行な平面内で回転自在に
し、前記異極同士の境界線と前記相対移動の方向とのな
す角を変更可能に構成した。In order to achieve the above object, in a magnetic damper device according to the present invention, a magnetic circuit constituted by arranging a magnet on one or both of opposing surfaces of a yoke, In a magnetic damper device having a conductor arranged in a non-contact state in a gap having a high magnetic flux density of a circuit and cutting off magnetic flux generated from the magnet by relative movement between the conductor and the magnet, the same yoke surface There are two or more magnetic poles of the magnet to be arranged, and at least one adjacent magnetic pole is formed as a different pole, and the magnet is rotatable in a substantially parallel plane of the conductor. The angle formed between the boundary line and the direction of the relative movement can be changed.
【0008】[0008]
【作用】以上の構成の磁気ダンパ装置にあっては、高磁
束密度の空隙で磁界の向きが複数存在し、導体板が相対
移動したとき、前記磁石の極数に応じたそれぞれ隣同士
逆方向の起電力が発生するため、高磁束密度空隙内での
導体板に渦電流がより多く流れ、その分だけ外部側に向
かう渦電流は減少し、前記空隙内での渦電流を多くする
ことができる。磁石を所定角度回転させると、磁石の向
き、より厳密には異なる磁極相互の境界線が、導体板の
相対移動方向に対して所定のなす角で交差する。する
と、その移動により各磁極に対応して生じる起電力の一
部が相互に打ち消し合う状態を生じ、発生する渦電流の
量もその打ち消し合う度合いにより変動する。これによ
り、その渦電流と高磁束密度領域中の磁界の強さとによ
り決定される制動力の大きさが変化し、よって、上記異
なる方向への移動量を調整することにより、種々の振動
の振幅,周波数に対応して、効果的な制振,制動が行わ
れる。In the magnetic damper device having the above construction, there are a plurality of directions of the magnetic field in the air gap having a high magnetic flux density, and when the conductor plate relatively moves, the adjacent directions are opposite to each other according to the number of poles of the magnet. Is generated, more eddy current flows in the conductor plate in the high magnetic flux density gap, the eddy current toward the outside decreases by that much, and the eddy current in the gap can be increased. it can. When the magnet is rotated by a predetermined angle, the orientation of the magnet, more strictly, the boundary between mutually different magnetic poles intersects at a predetermined angle with respect to the direction of relative movement of the conductor plate. Then, a part of the electromotive force generated corresponding to each magnetic pole due to the movement cancels each other, and the amount of generated eddy current also varies depending on the degree of the cancellation. As a result, the magnitude of the braking force determined by the eddy current and the strength of the magnetic field in the high magnetic flux density region changes. Therefore, by adjusting the amount of movement in the different direction, the amplitude of various vibrations Effective damping and braking are performed according to the frequency.
【0009】[0009]
【実施例】以下、本発明に係るダンパ装置の好適な一実
施例を添付図面を用いて詳細に説明する。図1は導体板
を直線移動させる並進形磁気ダンパ装置に対して本発明
の基本的な構成である2極形の極配列を適用した場合の
第1実施例を示しており、同図(A)は係るダンパ装置
の一例を示す斜視図を、また、同図(B)は同図(A)
のB−B線矢視断面図をそれぞれ示している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of a damper device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a first embodiment in which a bipolar pole arrangement, which is a basic configuration of the present invention, is applied to a translation type magnetic damper device for linearly moving a conductor plate. ) Is a perspective view showing an example of such a damper device, and FIG.
BB line of FIG.
【0010】同図に示すように、磁性体からなる一端が
コ字形に連結された上下のヨーク10,12の他端側対
向面には、異極同士の一対の永久磁石14(S極),1
6(N極)および18(N極),20(S極)がそれぞ
れ対向配置され、対向面においてそれぞれの永久磁石1
4,16、18,20間で図中矢印に示すN極からS極
に向かう双方向の磁場により磁気回路を構成している。
そして、この磁気回路の高磁束密度を有する空隙dに
は、非接触状態でアルミニウム板などの電気的良導体で
あって非磁性体からなる導体板22が配置され、並進形
磁気ダンパ装置が構成されている。すなわち、導体板2
2は直進移動する。As shown in FIG. 1, a pair of permanent magnets 14 (S-poles) of different poles are provided on opposite surfaces of upper and lower yokes 10 and 12 each having one end made of a magnetic material and connected in a U-shape. , 1
6 (N-pole), 18 (N-pole), and 20 (S-pole) are opposed to each other.
A magnetic circuit is formed between 4, 16, 18, and 20 by a bidirectional magnetic field from the north pole to the south pole indicated by an arrow in the figure.
In the gap d having a high magnetic flux density of the magnetic circuit, a conductor plate 22 made of a non-magnetic material, which is an electrically good conductor such as an aluminum plate in a non-contact state, is arranged, and a translation type magnetic damper device is configured. ing. That is, the conductor plate 2
2 moves straight.
【0011】ここで本発明では、上記一対の永久磁石1
4,16並びに18,20がそれぞれ水平平面内で回動
自在に配設されている。具体的な構成は以下の通りであ
る。説明の便宜上、上方に位置するヨーク10に対して
のみ説明すると、そのヨーク10の所定位置に上下に貫
通する窓孔24を設け、その窓孔24の内周面中央部に
は、内方に突出するリング状の係合突条26を形成して
いる。そして、その窓孔24の上方には、略円盤状のダ
イヤル部材28を回動自在に挿入配置している。そのダ
イヤル部材28の上面には、径方向対向位置に2つの凹
部30,30が形成され、その凹部30,30内に指等
を挿入することにより、そのダイヤル部材28をつま
み、所定量回動できるようになっている。また、ダイヤ
ル部材28の下方は、上記係合突条26に符合すべく一
段縮径された形状となっている。Here, in the present invention, the pair of permanent magnets 1
4, 16 and 18, 20 are arranged rotatably in a horizontal plane. The specific configuration is as follows. For convenience of description, only the yoke 10 located above will be described. A window hole 24 that penetrates vertically at a predetermined position of the yoke 10 is provided. A projecting ring-shaped engaging ridge 26 is formed. Above the window hole 24, a substantially disk-shaped dial member 28 is rotatably inserted and arranged. Two concave portions 30, 30 are formed on the upper surface of the dial member 28 at radially opposite positions. By inserting a finger or the like into the concave portions 30, 30, the dial member 28 is pinched and rotated by a predetermined amount. I can do it. The lower part of the dial member 28 has a shape in which the diameter is reduced by one step so as to match the engaging ridge 26.
【0012】一方、窓孔24の下方には、円盤状のベー
ス部材32が回動自在に挿入配置され、そのベース部材
32の上面と上記ダイヤル部材28の下面とを接合一体
化している。これにより、ダイヤル部材28並びにベー
ス部材32は窓孔24内に離脱不能に装着される。On the other hand, a disk-shaped base member 32 is rotatably inserted below the window hole 24, and the upper surface of the base member 32 and the lower surface of the dial member 28 are joined and integrated. As a result, the dial member 28 and the base member 32 are undetachably mounted in the window holes 24.
【0013】さらに、上記ベース部材32の下面に上記
の一対の永久磁石14,16が固定される。これによ
り、上記ダイヤル部材28を、回動させることにより、
それと一体化された永久磁石14,16が回動されるこ
とになる。Further, the pair of permanent magnets 14 and 16 are fixed to the lower surface of the base member 32. Thereby, by rotating the dial member 28,
The permanent magnets 14, 16 integrated therewith are rotated.
【0014】なお、上記ベース部材32並びにダイヤル
部材28は、好ましくは磁性材料から構成されること
で、上記ヨーク10,12と同一材料で形成するとより
好ましい。また本例では、ダイヤル部材28に設けた凹
部30,30を結ぶ線を一対の永久磁石14,16の接
合面と直交するように配置したため、凹部30,30の
位置、ヨーク10の軸線方向に対する角度を見ることに
より、永久磁石14,16の向きが判る。The base member 32 and the dial member 28 are preferably made of a magnetic material, and are more preferably formed of the same material as the yokes 10, 12. Further, in this example, since the line connecting the concave portions 30 provided in the dial member 28 is disposed so as to be orthogonal to the joining surface of the pair of permanent magnets 14 and 16, the position of the concave portions 30 and 30 with respect to the axial direction of the yoke 10 is provided. By looking at the angle, the orientation of the permanent magnets 14, 16 can be determined.
【0015】なお、下側のヨーク12に設けた永久磁石
18,20を回動させる機構も上記上側のヨーク10に
設けた永久磁石14,16のそれと同一の構成からなる
ため、同一符合を付すことによりその説明を省略する。The mechanism for rotating the permanent magnets 18 and 20 provided on the lower yoke 12 has the same structure as that of the permanent magnets 14 and 16 provided on the upper yoke 10, and thus the same reference numerals are used. Thus, the description thereof will be omitted.
【0016】以上の構成において、図1すなわち図2
(A)に示すように、一対の永久磁石14,16並びに
18,20の境界線が、導体板22の移動方向に対し直
交方向に位置された状態(この状態を便宜上「0度」の
位置とする)にある場合に、導体板22を矢印方向に一
定速度で移動させると、導体板22が上記空隙d内の磁
束を切るため、フレミングの右手の法則によって起電力
E1,E2が導体板22に誘導され、その結果、導体板
22上には、図示するような3つの渦電流が流れる。In the above configuration, FIG.
As shown in (A), a state in which the boundary line between the pair of permanent magnets 14, 16 and 18, 20 is located in a direction orthogonal to the moving direction of the conductive plate 22 (this state is referred to as “0 °” for convenience). In this case, when the conductor plate 22 is moved at a constant speed in the direction of the arrow, the conductor plate 22 cuts off the magnetic flux in the gap d, so that the electromotive forces E1, E2 are generated by the Fleming's right-hand rule. As a result, three eddy currents flow on the conductive plate 22 as shown in the figure.
【0017】この時、上記渦電流が磁界との作用によっ
て前記導体板22に前記矢印方向と逆向きの制動力を生
じさせ、導体板22あるいはヨーク10,12側に連結
された図示しない各種装置の振動の減衰や運動に負荷を
与えるのであるが、この実施例においては、中央の実線
で示す渦電流iaが主に流れ、その分その左右の鎖線で
示す外側に向かう渦電流ibは上記iaより流れない。At this time, the eddy current causes a braking force in the direction opposite to the direction of the arrow to be generated in the conductor plate 22 by the action of the magnetic field, and various devices (not shown) connected to the conductor plate 22 or the yokes 10 and 12 side. In this embodiment, the eddy current ia indicated by the solid line at the center mainly flows, and the eddy current ib directed outward by the dashed lines on the left and right corresponds to the ia. Does not flow more.
【0018】これは隣同士でそれぞれ逆向きの起電力E
1,E2が発生するため、隣り合う磁石14,16、1
8,20間の実線で示す渦電流は流れ易くなり、その分
左右では流れなくなる。それゆえ高磁束密度の空隙d内
での渦電流は従来より二倍の起電力を有しており、流れ
る経路も短くなるため、より多く流れ制動力に有効に使
われることになるのである。また、左右の渦電流は広範
囲に流れにくくなる分だけ導体板22の面積も減少でき
る。This is because the electromotive forces E of the opposite directions are adjacent to each other.
1, E2 is generated, so that adjacent magnets 14, 16, 1
The eddy current shown by the solid line between 8 and 20 becomes easier to flow, and does not flow to the left and right. Therefore, the eddy current in the air gap d having a high magnetic flux density has twice the electromotive force as compared with the conventional one, and the flowing path is shortened, so that the eddy current is more effectively used for the braking force. In addition, the area of the conductor plate 22 can be reduced by the amount that the left and right eddy currents hardly flow over a wide range.
【0019】次に、ダイヤル部材28を回動させ、同図
(B)に示すように、両永久磁石14,16並びに1
8,20の境界線を導体板22の移動方向に対して所定
の角度(20度)だけ傾けた状態に位置させる。この状
態で、導体板22が矢印方向に移動すると、上記と同様
に各永久磁石14,16,18,20に基づく起電力E
1,E2が導体板22上に発生し、渦電流ia′,i
b′も磁界の方向並びに導体板22の移動方向の両者に
直交する方向となるため、図示のごとく発生する。Next, the dial member 28 is rotated, and as shown in FIG.
The boundary between the lines 8 and 20 is inclined by a predetermined angle (20 degrees) with respect to the moving direction of the conductive plate 22. In this state, when the conductor plate 22 moves in the direction of the arrow, the electromotive force E based on each of the permanent magnets 14, 16, 18, 20 as described above.
1 and E2 are generated on the conductive plate 22, and the eddy currents ia ', i
Since b 'is also a direction orthogonal to both the direction of the magnetic field and the moving direction of the conductive plate 22, it is generated as shown in the figure.
【0020】ところで、永久磁石により形成される高磁
束密度領域内全体を見ると、永久磁石の境界線近傍部N
では、その起電力の向きが逆向きとなり相殺されてしま
う。従って、実際には、上記N以外の部位にのみ起電力
が生じ、それに基づいて図中矢印で示すような渦電流が
流れることになる。よって、本状態では、上記図(A)
に示された場合に比し、誘導起電力が小さく、渦電流も
小さいため、それにともない生じる制動力も小さくな
る。By the way, looking at the whole inside of the high magnetic flux density region formed by the permanent magnet, the portion N near the boundary of the permanent magnet is considered.
In this case, the direction of the electromotive force is reversed and is canceled. Therefore, actually, an electromotive force is generated only in a portion other than the above N, and based on this, an eddy current flows as indicated by an arrow in the figure. Therefore, in this state, FIG.
Since the induced electromotive force is small and the eddy current is small as compared to the case shown in FIG.
【0021】さらにダイヤル部材28を回動させて、同
図(C)に示すように、境界線と導体板22の移動方向
とを略一致させた状態にすると、導体板22を移動させ
た場合に生じる両起電力E1,E2は、完全に互いに反
対側を向いて、相互に相殺し合う。従って、渦電流ic
も図示するように高磁束密度領域の両端部で小さく流れ
るに過ぎず、制動力もほとんど発生しない。When the dial member 28 is further rotated so that the boundary line and the moving direction of the conductor plate 22 are substantially coincident with each other as shown in FIG. , The two electromotive forces E1, E2 are completely opposite to each other and cancel each other. Therefore, the eddy current ic
Also, as shown in the figure, only small flow occurs at both ends of the high magnetic flux density region, and almost no braking force is generated.
【0022】上述のごとく、本例では、ダイヤル部材2
8すなわち永久磁石14,16,18,20を回動させ
ることにより、永久磁石の境界線と導体板の移動方向と
の相対角度位置関係を同図(A)から同図(C)の状態
まで変化させることにより、任意の制動力を得ることが
でき、種々の振動の振幅,周波数に対応して、効果的な
制振,制動が行われる。なお、同図(B)は、同図
(A)と同図(C)の中間における一例を示したもので
あり、境界線の角度は任意にできるのはいうまでもな
い。また、上記ダイヤル部材28を他の機械と連動する
ようにして、導体板の移動途中で回転させるようにして
も良い。係る構成にすることにより、導体板の移動途中
で制動力を変化させることができる。As described above, in this embodiment, the dial member 2
8, that is, by rotating the permanent magnets 14, 16, 18, and 20, the relative angular positional relationship between the boundary line of the permanent magnet and the moving direction of the conductor plate is changed from the state shown in FIG. By changing it, an arbitrary braking force can be obtained, and effective vibration suppression and braking are performed according to the amplitude and frequency of various vibrations. FIG. 2B shows an example in the middle between FIGS. 2A and 2C, and it goes without saying that the angle of the boundary line can be arbitrarily set. Further, the dial member 28 may be rotated in the middle of the movement of the conductor plate by interlocking with another machine. With this configuration, the braking force can be changed during the movement of the conductor plate.
【0023】図3は本発明の第2実施例を示している。
本例では、上記した実施例と相違して、回転型磁気ダン
パ装置に適用した例について示している。まず、この回
転型磁気ダンパ装置の基本構成について説明すると、軸
30に、上下一対の円盤型のヨーク32,34が装着さ
れ、この各ヨーク32,34の対向面の所定位置に永久
磁石が配設される。そして、上下に対向配置された永久
磁石の磁極は異なるようにしている。そして、従来一般
の回転型磁気ダンパ装置では、同一ヨークに配設される
永久磁石は、1個づづ所定の間隔をおいて配設されてい
るが、本実施例では、一方のヨークの面上には周方向に
沿って所定間隔おいて複数対の異極同士が密着した2個
の永久磁石36,38が配置されている。また、他方の
ヨークの対向面には、上記の永久磁石36,38の配置
とは磁極が逆の複数対の異極の永久磁石の対が対向配置
され、その間に円盤状の導体板40が非接触状態で回転
可能に設けられている。FIG. 3 shows a second embodiment of the present invention.
In this embodiment, an example is shown in which the present invention is applied to a rotary magnetic damper device, unlike the above-described embodiment. First, the basic configuration of the rotary magnetic damper device will be described. A pair of upper and lower disc-shaped yokes 32, 34 are mounted on a shaft 30, and permanent magnets are arranged at predetermined positions on the opposing surfaces of the yokes 32, 34. Is established. Then, the magnetic poles of the permanent magnets arranged vertically opposite each other are made different. In the conventional general rotary magnetic damper device, the permanent magnets disposed on the same yoke are disposed one by one at predetermined intervals, but in this embodiment, the permanent magnets are disposed on the surface of one yoke. Are disposed at predetermined intervals along the circumferential direction, two permanent magnets 36 and 38 in which a plurality of pairs of different poles are in close contact with each other. Further, on the opposing surface of the other yoke, a plurality of pairs of different-polarity permanent magnets whose magnetic poles are opposite to those of the above-described permanent magnets 36 and 38 are disposed to face each other, and a disc-shaped conductor plate 40 is interposed therebetween. It is provided rotatably in a non-contact state.
【0024】ここで本発明では、上記第1実施例と同様
に、ヨーク32,34の所定位置に設けた窓孔42内に
回動自在に設けたベース部材44の下面に上記永久磁石
36,38を取り付けると共に、そのベース部材44の
上面に接着固定されたダイヤル部材46を介して、永久
磁石36,38を回動可能としている。Here, in the present invention, similarly to the first embodiment, the permanent magnets 36, 34 are provided on the lower surface of a base member 44 rotatably provided in window holes 42 provided at predetermined positions of the yokes 32, 34. At the same time, the permanent magnets 36 and 38 are rotatable via a dial member 46 fixed and adhered to the upper surface of the base member 44.
【0025】したがって以上の構成によれば、各永久磁
石36,38間は各永久磁石間のエアギャップが存在し
ない分磁路が短くなるため、磁束密度が高くなり、磁束
密度の二乗に比例する制動力にとって有効となる。ま
た、導体板40が所定の速度vで矢印方向に速度vで回
転すると、導体板40を挟んで対向する各永久磁石の磁
束を切るため、フレミングの右手の法則によって起電力
が導体板40に誘導され、その結果導体板40にはそれ
ぞれ所定の渦電流がループ状に流れる。そして、ダイヤ
ル部材46を回動させることにより、図4(A)に示す
最大制動力を発生できる状態から、同図(B)に示すよ
うに、最小制動力を発生する状態まで、任意の制動力を
得ることができる。なお、その他の構成並びに作用は、
上記した第1実施例と同様であるため、詳細な説明を省
略する。Therefore, according to the above configuration, the magnetic flux density is increased between the permanent magnets 36 and 38 since there is no air gap between the permanent magnets, so that the magnetic flux density increases and is proportional to the square of the magnetic flux density. This is effective for braking force. When the conductor plate 40 rotates at a predetermined speed v at a speed v in the direction of the arrow, the electromotive force is applied to the conductor plate 40 by Fleming's right-hand rule in order to cut off the magnetic flux of each of the permanent magnets facing each other across the conductor plate 40. As a result, a predetermined eddy current flows through the conductor plate 40 in a loop shape. Then, by rotating the dial member 46, an arbitrary control is performed from a state where the maximum braking force can be generated as shown in FIG. 4A to a state where the minimum braking force is generated as shown in FIG. 4B. Power can be obtained. In addition, other configurations and actions are as follows.
Since this is the same as in the first embodiment, detailed description will be omitted.
【0026】図5は、本発明の第3実施例を示してい
る。本例では、上記第2実施例と同様回転する円盤状の
導体板50を用いた回転型磁気ダンパ装置ではあるが、
磁気回路を構成するヨーク並びに永久磁石を上記第1実
施例に用いたものを使用している。すなわち、コ字状に
連結された上下一対のヨーク52,54の対向面に、そ
れぞれ異極同士の一対の永久磁石56,58を対向配置
し、その永久磁石56,58をヨーク52,54に設け
たダイヤル部材60を介して回動させることにより制動
力を制御するようにしている。なお、その他の構成並び
に作用は、上記した各実施例と同様であるため、詳細な
説明を省略する。FIG. 5 shows a third embodiment of the present invention. In the present embodiment, a rotary magnetic damper device using a disk-shaped conductor plate 50 that rotates similarly to the second embodiment is described.
The yoke and the permanent magnet constituting the magnetic circuit are the same as those used in the first embodiment. In other words, a pair of permanent magnets 56 and 58 having different polarities are respectively opposed to opposing surfaces of a pair of upper and lower yokes 52 and 54 connected in a U-shape, and the permanent magnets 56 and 58 are attached to the yokes 52 and 54. The braking force is controlled by rotating through a dial member 60 provided. The other configurations and operations are the same as those of the above-described embodiments, and thus detailed description is omitted.
【0027】なおまた、上記各実施例では磁気回路を構
成する磁石を永久磁石としたが、例えば制動力を制御す
る必要があるなど、用途によっては電磁石を用いても良
く、また一方のヨークのみに磁石を設けても良い。そし
て、一つのヨークに設ける磁極の数は、上記した実施例
のごとく2つに限ることなく、3つ以上でも良く、しか
も、複数の磁石で複数の磁極を形成しても良く、或いは
1つの磁性体上に所望の着磁を行うことにより、1つの
磁石上で複数の磁極を形成しても良く任意である。In each of the above embodiments, the permanent magnet is used as the magnet constituting the magnetic circuit. However, an electromagnet may be used depending on the application, for example, it is necessary to control the braking force. May be provided with a magnet. The number of magnetic poles provided in one yoke is not limited to two as in the above-described embodiment, but may be three or more. Further, a plurality of magnetic poles may be formed by a plurality of magnets. By performing desired magnetization on the magnetic material, a plurality of magnetic poles may be formed on one magnet, which is optional.
【0028】さらにまた、導体板22,40,50とし
て、上記各実施例ではアルミニウム板などの金属製の電
気的良導体を用いた例について説明したが、本発明はこ
れに限ることなく、例えば、非金属材料の電気的良導体
を用いても良く、さらには、固体に限ることなく、液体
状のものでも構わない。但し、液体状の場合には、その
液体を収納するための所定のケース(導体でも非導体で
も可)などが必要なのはいうまでもない。Further, in each of the above embodiments, an example was described in which a metal electric good conductor such as an aluminum plate was used as the conductor plates 22, 40, and 50. However, the present invention is not limited to this. A good electrical conductor made of a non-metallic material may be used. Further, the material is not limited to a solid but may be a liquid. However, in the case of a liquid, it goes without saying that a predetermined case (either a conductor or a non-conductor) for accommodating the liquid is required.
【0029】[0029]
【発明の効果】以上のように、本発明による磁気ダンパ
装置にあっては、高磁束密度の空隙で磁界の向きが複数
存在し、導体板が相対移動したとき上記磁石の極数に応
じたそれぞれ隣同士逆方向の起電力が発生するため、高
磁束密度空隙内での導体板に渦電流がより多く流れ、そ
の分だけ外部側に向かう渦電流は減少することにより、
上記空隙内での渦電流を多くすることができ、導体板の
面積も小さくできる。しかも、同一ヨーク面に配置され
る前記磁石の磁極が2極以上存在するとともに、隣り合
う磁極が少なくとも1ヶ所以上は異極に形成され、か
つ、該磁石を前記導体板の略平行な平面内で回転自在に
したことにより、導体板の相対移動方向と磁極の向きの
位置関係を変えることにより、導体板中を流れる渦電流
の量を変えることができる。その結果、その渦電流と高
磁束密度領域中の磁界の強さとにより決定される制動力
の大きさを制御でき、種々の振動の振幅,周波数に対応
して、効果的な制振,制動を行うことが可能となる。As described above, in the magnetic damper device according to the present invention, there are a plurality of directions of the magnetic field in the air gap having a high magnetic flux density, and when the conductor plate moves relatively, it corresponds to the number of poles of the magnet. Since an electromotive force is generated in the opposite direction to each other, more eddy current flows in the conductor plate in the high magnetic flux density gap, and the eddy current toward the outside decreases by that much,
The eddy current in the gap can be increased, and the area of the conductor plate can be reduced. In addition, there are two or more magnetic poles of the magnet arranged on the same yoke surface, and at least one adjacent magnetic pole is formed as a different pole, and the magnet is formed in a substantially parallel plane of the conductor plate. , The amount of eddy current flowing in the conductor plate can be changed by changing the positional relationship between the relative movement direction of the conductor plate and the direction of the magnetic pole. As a result, the magnitude of the braking force determined by the eddy current and the strength of the magnetic field in the high magnetic flux density region can be controlled, and effective vibration suppression and braking can be performed in accordance with various vibration amplitudes and frequencies. It is possible to do.
【図1】(A)は本発明に係る磁気ダンパ装置の第1実
施例を示す斜視図である。 (B)はそのB−B線矢視断面図である。FIG. 1A is a perspective view showing a first embodiment of a magnetic damper device according to the present invention. (B) is a sectional view taken along line BB.
【図2】図1に示した磁気ダンパ装置の作用を説明する
ための図である。FIG. 2 is a diagram for explaining the operation of the magnetic damper device shown in FIG.
【図3】本発明に係る磁気ダンパ装置の第2実施例を示
す一部破断正面図である。FIG. 3 is a partially broken front view showing a second embodiment of the magnetic damper device according to the present invention.
【図4】図3に示した磁気ダンパ装置の作用を説明する
ための図である。FIG. 4 is a diagram for explaining the operation of the magnetic damper device shown in FIG.
【図5】本発明に係る磁気ダンパ装置の第3実施例を示
す一部破断正面図である。FIG. 5 is a partially broken front view showing a third embodiment of the magnetic damper device according to the present invention.
【図6】(A)は従来の並進形磁気ダンパ装置の基本モ
デルを示す正面図である。 (B)は同導体板を移動させたときの渦電流の発生状態
を示す説明図である。FIG. 6A is a front view showing a basic model of a conventional translation type magnetic damper device. (B) is an explanatory view showing a state of occurrence of an eddy current when the conductor plate is moved.
10,12 ヨーク 14,16 永久磁石 22 導体板 10, 12 Yoke 14, 16 Permanent magnet 22 Conductor plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 一雄 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平3−47379(JP,A) 特開 昭61−286635(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16F 15/03 F16F 6/00 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Kazuo Matsui 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (56) References JP-A-3-47379 (JP, A) JP 61-286635 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F16F 15/03 F16F 6/00
Claims (1)
石を配置することにより構成される磁気回路と、この磁
気回路の高磁束密度を有する空隙に非接触状態で配置さ
れた導体を備え、その導体と該磁石との相対移動によっ
て該磁石から発生する磁束を切るようにした磁気ダンパ
装置において、 同一ヨーク面に配置される前記磁石の磁極が2極以上存
在するとともに、隣り合う磁極が少なくとも1ヶ所以上
は異極に形成され、 該磁石を前記導体の略平行な平面内で回転自在にし、前
記異極同士の境界線と前記相対移動の方向とのなす角を
変更可能としてなることを特徴とする磁気ダンパ装置。1. A magnetic circuit comprising magnets arranged on one or both of opposing surfaces of a yoke, and a conductor arranged in a non-contact state in a gap having a high magnetic flux density of the magnetic circuit. In a magnetic damper device configured to cut off a magnetic flux generated from a magnet by a relative movement between a conductor and the magnet, there are two or more magnetic poles of the magnet arranged on the same yoke surface, and at least one adjacent magnetic pole is provided. The magnet is rotatable in a plane substantially parallel to the conductor, and an angle between a boundary between the different poles and the direction of the relative movement can be changed. And a magnetic damper device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3140980A JP3029701B2 (en) | 1991-05-16 | 1991-05-16 | Magnetic damper device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3140980A JP3029701B2 (en) | 1991-05-16 | 1991-05-16 | Magnetic damper device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04341632A JPH04341632A (en) | 1992-11-27 |
JP3029701B2 true JP3029701B2 (en) | 2000-04-04 |
Family
ID=15281332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3140980A Expired - Fee Related JP3029701B2 (en) | 1991-05-16 | 1991-05-16 | Magnetic damper device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3029701B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4603396B2 (en) * | 2005-03-15 | 2010-12-22 | 株式会社デルタツーリング | Seat suspension control mechanism |
CN103728006A (en) * | 2014-01-24 | 2014-04-16 | 中国计量科学研究院 | Electromagnetic damping device and method with three-dimensional magnetic field |
CN104132086B (en) * | 2014-07-28 | 2015-12-30 | 山西大学 | Planar unsymmetrical electromagnetic damper |
-
1991
- 1991-05-16 JP JP3140980A patent/JP3029701B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04341632A (en) | 1992-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3584473B2 (en) | Magnetic damper device | |
KR950701464A (en) | High Torque and Speed DC Motors | |
JPH06161655A (en) | Joy stick | |
JP3029701B2 (en) | Magnetic damper device | |
JPS58184319A (en) | Magnetic bearing | |
JPH01216138A (en) | Magnetic adjusting type vibration suppressing device | |
JP3582660B2 (en) | Magnetic damper device | |
JP3599529B2 (en) | Vibration energy converter | |
JP3979452B2 (en) | Damper device | |
JP3029697B2 (en) | Translation type magnetic damper device | |
JP2004112937A (en) | Magnetic actuator and tactile display device | |
JP3029703B2 (en) | Magnetic damper device | |
JP4720024B2 (en) | Permanent magnet synchronous motor | |
JPH04337140A (en) | Magnetic damper device | |
JP3022610B2 (en) | Rotary magnetic damper device | |
JPH1162878A (en) | Turbo molecular pump | |
JP3029700B2 (en) | Rotary magnetic damper device | |
JP4258872B2 (en) | Oscillating actuator | |
JPH0338679Y2 (en) | ||
JPH0587187A (en) | Magnetic damper device | |
JPH04337141A (en) | magnetic damper device | |
JPH04254027A (en) | Magnetic damper device | |
JPS59117915A (en) | magnetic bearing device | |
JP3368419B2 (en) | Vibration generator | |
JP2024103444A (en) | Rotating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000125 |
|
LAPS | Cancellation because of no payment of annual fees |