JP3028576B2 - Heat shielding glass - Google Patents
Heat shielding glassInfo
- Publication number
- JP3028576B2 JP3028576B2 JP02253832A JP25383290A JP3028576B2 JP 3028576 B2 JP3028576 B2 JP 3028576B2 JP 02253832 A JP02253832 A JP 02253832A JP 25383290 A JP25383290 A JP 25383290A JP 3028576 B2 JP3028576 B2 JP 3028576B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- glass
- heat ray
- heat
- protective film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は熱線遮蔽ガラスに関し、とりわけ単板の状態
で使用可能な耐摩耗性を有し、自動車や建築用の窓ガラ
スに適した熱線遮蔽性のガラスに関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-shielding glass, and more particularly, to a heat-shielding glass having wear resistance that can be used in a single plate state and suitable for a window glass for automobiles and buildings. About the nature of the glass.
[従来技術] 近年、車両や建築物の窓ガラスに、車両内部に流入す
る太陽光エネルギーを低減する目的で、熱線遮蔽性の被
膜を被覆した熱線遮蔽ガラスが用いられている。このよ
うな熱線遮蔽ガラスの例としては、Cu、Al、Agのような
金属膜や、窒化チタン、窒化ジルコニウムのような金属
窒化膜の熱線反射特性を利用したもの、あるいは高屈折
率材料の膜と低屈折率材料の膜を交互に積層して光学干
渉作用により熱線を反射するようにしたガラスが知られ
ている。これらの中でCu、Al、Agのような金属膜を利用
したものは、化学的耐久性すなわち酸やアルカリを含む
雰囲気による腐食や機械的な耐久性すなわちクラッチに
よる被膜の傷の問題を克服するために、積層ガラスや合
せガラスにして被膜を外部環境に露出しないようにして
用いられている。また、熱線遮蔽性の膜として耐久性が
優れているといわれる金属窒化膜を利用したものでも、
単板ガラスとして用いるには耐久性が十分とは言えな
い。[Related Art] In recent years, a heat-shielding glass coated with a heat-shielding coating has been used for a window glass of a vehicle or a building in order to reduce sunlight energy flowing into the vehicle. Examples of such a heat-shielding glass include those utilizing a heat-reflecting property of a metal film such as Cu, Al and Ag, a metal nitride film such as titanium nitride and zirconium nitride, or a film of a high refractive index material. There is known a glass in which films of low refractive index materials are alternately laminated to reflect heat rays by an optical interference effect. Among them, those utilizing metal films such as Cu, Al and Ag overcome the problem of chemical durability, that is, corrosion due to an atmosphere containing acids and alkalis, and mechanical durability, that is, damage to the film due to clutches. Therefore, it is used as a laminated glass or laminated glass so that the coating is not exposed to the external environment. Also, even those using a metal nitride film that is said to have excellent durability as a heat ray shielding film,
The durability is not sufficient for use as single-pane glass.
したがって熱線遮蔽ガラスの耐久性を向上させるため
に最上層に耐久性の優れた保護膜を被覆する研究が活発
に行われており、例えば基板の上に耐摩耗性の被膜を被
覆した耐久性の高い熱線遮蔽ガラスとしては、特開昭63
−206333号に開示されているように、被膜の最上層に酸
化物の厚膜、例えばSiO2膜の少なくとも1μm以上を被
覆したものが提案されている。Therefore, in order to improve the durability of the heat-shielding glass, research on coating a protective film with excellent durability on the uppermost layer is being actively conducted. As a high heat ray shielding glass,
As disclosed in JP-A-206333, a coating in which the uppermost layer of a coating is coated with a thick oxide film, for example, at least 1 μm or more of a SiO 2 film has been proposed.
[発明が解決しようとする課題] 車両や建築用のガラスのように直接外部の雰囲気にさ
らされる状態で用いられる場合、被膜には機械的および
化学的耐久性が要求されるが、とりわけスクラッチに対
する耐摩耗性が強いことが重要である。上記した従来技
術のSiO2の如き酸化物の厚膜を最上層に被覆したもの
は、十分な耐久性を有するようにするには被膜の厚みを
厚くすることが必要であり、そのために被覆に長時間を
必要とし、生産性が悪いという欠点がある。また上記の
SiO2膜は、石英ガラスをターゲットとして高周波スパッ
タリングで被覆されるか、シリコンをターゲットとして
直流スパッタリングにより被覆されるが、いずれの方法
でも大面積の基体に被覆するのに必要な大きなプラズマ
放電を安定して得るのは困難であるという問題点があっ
た。本発明の目的は、上記のSiO2の如き酸化物を保護膜
とする熱線遮蔽ガラスを製造する際の問題点を解決する
ためになされたものであって、保護膜のスクラッチ傷の
ような機械的強度が大きく、かつ、前記保護膜の被覆を
大面積の基板に安定してできる熱線遮蔽ガラスを提供す
るものである。[Problem to be Solved by the Invention] When used in a state of being directly exposed to an external atmosphere such as glass for vehicles and buildings, the coating is required to have mechanical and chemical durability. It is important that the wear resistance is strong. In the case of coating the uppermost layer with a thick oxide film such as SiO 2 of the above-described prior art, it is necessary to increase the thickness of the coating in order to have sufficient durability. There is a disadvantage that it requires a long time and the productivity is poor. Also above
The SiO 2 film is coated by high-frequency sputtering using quartz glass as a target, or by DC sputtering using silicon as a target.Either method stabilizes the large plasma discharge required for coating large-area substrates. There is a problem that it is difficult to obtain. An object of the present invention is to solve the problems when manufacturing a heat-shielding glass having an oxide such as SiO 2 as a protective film, and a machine such as a scratch for the protective film. An object of the present invention is to provide a heat ray shielding glass having a high mechanical strength and capable of stably coating the protective film on a large-area substrate.
[課題を解決するための手段] 本発明は、透明なガラス板の上に少なくとも一層から
なる熱線遮蔽性の被膜が被覆され、前記熱線遮蔽性の被
膜の上にシリコンと炭素と窒素と酸素とからなる保護膜
が被覆された熱線遮蔽ガラスである。本発明の保護膜
は、SiCxNyOzなる化学式であらわすことができ、x、
y、zの比は必要とする透明性や耐摩耗性や熱線遮蔽性
を考慮して定められる。すなわち可視域の全波長にわた
って透明であることを重視する場合は、xを相対的に小
さな値とし、一方yとzを大きくする。xが1.22以下、
yが0.7以下、zが0.4以上とした保護膜は、可視域にお
ける光学的な吸収が実質上生じることがなく、かつ、膜
の屈折率が2.0以下になるので、可視域において高透過
性、低反射性で、かつ、耐久性が優れた熱線遮蔽ガラス
の保護膜となる。本発明にかかるシリコンと炭素と窒素
と酸素とからなる保護膜の被覆方法としては、減圧した
雰囲気内でおこなうスパッタリング法やアーク蒸着法や
真空蒸着法が用いられるが、なかでもスパッタリング法
が大きな面積の基板の上に安定して被膜を被覆する上で
好ましい。上記方法で被覆するときの雰囲気ガスとして
は、不活性ガスと窒素と酸素の混合ガス、または窒素と
酸素の混合ガスのいずれも用いることができる。そして
これらのガスの割合を変えることにより保護膜の組成が
調整される。アルゴンと窒素と酸素の雰囲気では、少な
くとも窒素は0.066Pa以上の圧を有し、全圧の20%以上
を占めるように雰囲気の組成を調整するのが好ましい。
さらに、酸素の分圧は全圧の1%以上とすることが好ま
しい。[Means for Solving the Problems] According to the present invention, a transparent glass plate is coated with at least one heat ray shielding film, and silicon, carbon, nitrogen, and oxygen are coated on the heat ray shielding film. This is a heat ray shielding glass covered with a protective film made of. The protective film of the present invention can be represented by a chemical formula of SiCxNyOz, x,
The ratio of y and z is determined in consideration of required transparency, abrasion resistance and heat ray shielding property. That is, when importance is placed on transparency over all wavelengths in the visible region, x is set to a relatively small value, and y and z are increased. x is 1.22 or less,
The protective film having y of 0.7 or less and z of 0.4 or more has substantially no optical absorption in the visible region, and the refractive index of the film is 2.0 or less. It becomes a protective film of the heat ray shielding glass having low reflectivity and excellent durability. As a method of coating a protective film comprising silicon, carbon, nitrogen and oxygen according to the present invention, a sputtering method, an arc evaporation method, or a vacuum evaporation method performed in a reduced-pressure atmosphere is used. It is preferable to stably coat the film on the substrate. As an atmosphere gas for coating by the above method, any of a mixed gas of an inert gas and nitrogen and oxygen, or a mixed gas of nitrogen and oxygen can be used. The composition of the protective film is adjusted by changing the ratio of these gases. In an atmosphere of argon, nitrogen and oxygen, it is preferable to adjust the composition of the atmosphere so that at least nitrogen has a pressure of 0.066 Pa or more and accounts for 20% or more of the total pressure.
Further, the partial pressure of oxygen is preferably 1% or more of the total pressure.
また、得られるガラスの熱線遮蔽性を重視するとき
は、可視域での吸収が大きくならない程度にxを相対的
に大きな値とし、一方yとzの値を相対的に小さくする
ことができる。zを0.4以下にすることにより可視域の
透過率を大きく低下させることなく熱線遮蔽性能を大き
くすることができる。When importance is placed on the heat ray shielding properties of the obtained glass, x can be set to a relatively large value so that the absorption in the visible region does not increase, while the values of y and z can be set relatively small. By setting z to 0.4 or less, the heat ray shielding performance can be increased without significantly lowering the transmittance in the visible region.
本発明の保護膜をスパッタリングで被覆するときは、
炭化ケイ素の焼結体からなるターゲットを用い、少なく
とも窒素と酸素を含む減圧された雰囲気内でおこなう反
応性スパッタリングの方法を用いるのが好ましい。この
とき遊離シリコンを含有している炭化ケイ素のターゲッ
トを用いることは、ターゲットの導電性が向上し、直流
による反応性スパッタリングが可能となるので、窓ガラ
スのような大きなサイズの絶縁性の基板に安定して被覆
をおこなう上で好ましい。ここで炭化ケイ素に含有させ
るシリコンの重量比率は、5〜20重量%が好ましく10〜
15重量%がさらに好ましい。5重量%よりも少ないと、
ターゲットの導電性が十分でなく、大電流を印加する高
速直流スパッタリングを行うときのグロー放電が不安定
になるので好ましくない。また20重量%より多いと、タ
ーゲットがもろくなり安定した放電を長く続けることが
困難になるので好ましくない。When coating the protective film of the present invention by sputtering,
It is preferable to use a reactive sputtering method performed in a reduced-pressure atmosphere containing at least nitrogen and oxygen using a target formed of a sintered body of silicon carbide. At this time, the use of a silicon carbide target containing free silicon improves the conductivity of the target and enables reactive sputtering by direct current, so that it can be applied to a large-sized insulating substrate such as a window glass. It is preferable for stable coating. Here, the weight ratio of silicon contained in silicon carbide is preferably 5 to 20% by weight,
15% by weight is more preferred. If less than 5% by weight,
It is not preferable because the conductivity of the target is not sufficient and glow discharge becomes unstable when performing high-speed DC sputtering applying a large current. On the other hand, if it is more than 20% by weight, the target becomes brittle and it becomes difficult to maintain stable discharge for a long time, which is not preferable.
本発明にかかる保護膜の厚みとしては5nm以上である
ことが望ましい。これよりも薄い厚みでは、実用上必要
な対摩耗性を得ることが困難となる。逆に100nm以上厚
く被覆しても、耐摩耗性が厚みに応じて大きくなること
がなく被覆に時間がかかるばかりでなく、膜の剥離を生
じることがあるので好ましくない。上記の理由から被覆
の経済性、得られるガラスの光学特性を考慮して20〜80
nmの範囲に設定するのがさらに好ましい。The thickness of the protective film according to the present invention is desirably 5 nm or more. If the thickness is smaller than this, it becomes difficult to obtain practically necessary abrasion resistance. Conversely, coating with a thickness of 100 nm or more is not preferred because the abrasion resistance does not increase with the thickness and not only takes a long time to coat, but also may cause peeling of the film. For the above reasons, the economics of coating, considering the optical properties of the resulting glass, 20-80
More preferably, it is set in the range of nm.
透明なガラス板上に被覆される熱線遮蔽性を有する被
膜は、特に限定されない。窒化チタン、窒化ジルコニウ
ム、窒化ハフニウム、窒化クロムの群から選ばれる少な
くとも一種が好んで用いられる。このときの金属窒化物
の膜の厚みは、可視光線透過率を高くするためには薄い
方が好ましく、熱線の遮蔽性を大きくするためには厚い
方が好ましく、とりわけ自動車の窓ガラスとして要求さ
れ可視光線透過率が高いガラスとするには2.5〜7nmの範
囲が好ましい。さらに前記熱線遮蔽性の被膜が、低屈折
率材料の被膜と高屈折率材料の被膜が交互に積層された
多層膜の構成の被膜であってもよい。低屈折率材料の被
膜と高屈折率材料の被膜の厚みは、遮蔽したい熱線の波
長をλとすると、その光学膜厚で約λ/4に定められる。There is no particular limitation on the coating having heat-ray shielding properties that is coated on the transparent glass plate. At least one selected from the group consisting of titanium nitride, zirconium nitride, hafnium nitride, and chromium nitride is preferably used. At this time, the thickness of the metal nitride film is preferably thin in order to increase the visible light transmittance, and is preferably large in order to increase the heat ray shielding property. The range of 2.5 to 7 nm is preferable for a glass having a high visible light transmittance. Further, the heat ray shielding film may be a film having a multilayer structure in which a film of a low refractive index material and a film of a high refractive index material are alternately laminated. The thickness of the film of the low refractive index material and the thickness of the film of the high refractive index material are determined to be approximately λ / 4 in terms of optical film thickness, where λ is the wavelength of the heat ray to be shielded.
ここで高屈折率材料の被膜としては、TiO2、SnO2、In
2O3、ITO(酸化錫を含む酸化インジウム)、ZrO2、Zn
O、TaO2などの高屈折率を有する被膜が例示でき、低屈
折率材料の膜としては、SiO2、Al2O3、MgF2などの膜が
例示できる。Here, TiO 2 , SnO 2 , In
2 O 3 , ITO (indium oxide containing tin oxide), ZrO 2 , Zn
A film having a high refractive index such as O or TaO 2 can be exemplified, and a film such as SiO 2 , Al 2 O 3 or MgF 2 can be exemplified as the film of the low refractive index material.
本発明にかかる保護膜は、光の吸収率が小さいことに
基づき可視光線透過率が高く、また屈折率が小さいこと
に基づき表面反射率が小さいので、熱線遮蔽性の被膜の
厚みと保護膜の厚みを選ぶことにより、自動車の窓ガラ
スに適した可視光透過率が70%以上の熱線遮蔽性のガラ
スとすることができる。The protective film according to the present invention has a high visible light transmittance based on a small light absorptivity and a small surface reflectivity based on a small refractive index. By selecting the thickness, a heat-shielding glass having a visible light transmittance of 70% or more suitable for a window glass of an automobile can be obtained.
本発明の透明なガラス板としては、無色透明のフロー
トガラスやブロンズ、グレー、ブルーなどの着色フロー
トガラスを用いることができる。As the transparent glass plate of the present invention, a colorless transparent float glass or a colored float glass such as bronze, gray, and blue can be used.
[作用] 本発明の熱線遮蔽ガラスの最上層のシリコンと炭素と
窒素と酸素とからなる保護膜は、可視域で透明でかつ摩
耗強度が大きいので、透明基体上に被覆された熱線遮蔽
性の被膜を摩耗やスクラッチなどの外力から保護し、キ
ズを生じにくくする。[Function] Since the protective film made of silicon, carbon, nitrogen and oxygen in the uppermost layer of the heat-shielding glass of the present invention is transparent in the visible region and has high wear strength, the heat-shielding property coated on the transparent substrate is high. Protects the coating from external forces such as abrasion and scratches, making it less prone to scratches.
また、保護膜中の酸素は、被膜の屈折率を低下させる
とともに、被膜の耐摩耗性を向上させる。これは酸素を
含むことによって、膜中および基板との間のSi−Oの結
合が増加することによると考えられる。さらに、保護膜
の厚みおよび屈折率を調整することにより、熱線遮蔽ガ
ラスの可視光反射率を低く抑えることができる。Oxygen in the protective film lowers the refractive index of the film and improves the wear resistance of the film. This is considered to be due to the fact that the inclusion of oxygen increases the bonding of Si—O in the film and between the film and the substrate. Further, by adjusting the thickness and the refractive index of the protective film, the visible light reflectance of the heat ray shielding glass can be suppressed low.
[実施例] 以下の実施例に基づいて、本発明を詳細に説明する。
第1図は本発明の熱線遮蔽ガラスの一部断面図で、1は
ガラス板、2は熱線遮蔽性の被膜、3はシリコンと炭素
と窒素と酸素とからなる保護膜である。[Examples] The present invention will be described in detail based on the following examples.
FIG. 1 is a partial cross-sectional view of the heat ray shielding glass of the present invention, 1 is a glass plate, 2 is a heat ray shielding film, and 3 is a protective film made of silicon, carbon, nitrogen and oxygen.
実施例1 2つのカソードが設置された直流マグネトロンスパッ
タ装置の一方のカソードには金属チタンを、他方のカソ
ードには約18重量%の遊離のシリコンを含む炭化ケイ素
焼結体を、それぞれターゲットとして設置した。清浄に
された2.1mm厚のフロートガラス板をスパッタ装置の真
空槽に入れ、クライオポンプで5.3×10-4Paまで真空に
排気した。その後、窒素ガスを50sccmの流量で真空槽内
に導入して、真空槽内の圧力を0.4Paに調節した。そし
て、直流電源から金属チタンターゲットに電力を投入し
グロー放電を生起させた。1Aの電流値にセットした後、
金属チタンターゲットの上方にあるシャッターを20秒間
開いて、金属チタンに対向する位置にあるガラス板に窒
化チタンの膜を被覆した。ターゲットへの電力の印加を
停止し、さらにガス導入を停止して、再びクライオポン
プで5.3×10-4Paまで排気後、窒素ガスを47.5sccm、酸
素ガス2.5sccm真空槽内に導入し、真空槽内の圧力を0.4
Paに調整した。そして直流電源から炭化ケイ素ターゲッ
トに電力を印加し、2Aの電流値でグロー放電を生起させ
た。その後炭化ケイ素ターゲット上のシャッターを1分
間開いて、前記窒化チタン被膜の上にさらにシリコンと
炭素と窒素と酸素とからなり化学式でSiCxNyOzで表せる
保護膜を被膜した。Example 1 In a DC magnetron sputtering apparatus provided with two cathodes, one cathode was provided with titanium metal, and the other cathode was provided with a silicon carbide sintered body containing about 18% by weight of free silicon as targets. did. The cleaned float glass plate having a thickness of 2.1 mm was put in a vacuum chamber of a sputtering apparatus, and evacuated to 5.3 × 10 −4 Pa by a cryopump. Thereafter, nitrogen gas was introduced into the vacuum chamber at a flow rate of 50 sccm, and the pressure in the vacuum chamber was adjusted to 0.4 Pa. Then, power was supplied from a DC power supply to the metal titanium target to cause glow discharge. After setting to the current value of 1A,
The shutter above the titanium metal target was opened for 20 seconds, and the glass plate facing the titanium metal was coated with a titanium nitride film. The application of power to the target was stopped, the gas introduction was stopped, and the gas was again evacuated to 5.3 × 10 -4 Pa with a cryopump.Then, nitrogen gas was introduced into the vacuum tank at 47.5 sccm and oxygen gas at 2.5 sccm, and the vacuum was introduced. Set the pressure in the tank to 0.4
It was adjusted to Pa. Then, power was applied from a DC power supply to the silicon carbide target, and glow discharge was generated at a current value of 2 A. Thereafter, the shutter on the silicon carbide target was opened for 1 minute, and a protective film composed of silicon, carbon, nitrogen and oxygen and represented by the chemical formula of SiCxNyOz was further coated on the titanium nitride film.
このようにして得たガラスサンプルは、ガラス上に約
5nmの厚みの窒化チタンの被膜およびその上に約75nmの
シリコンと炭素と窒素と酸素とからなる保護膜が被覆さ
れた熱線遮蔽性を有するガラスで、可視光線透過率が7
2.3%、可視光線反射率がガラス面から入射する光に対
して6.4%、太陽輻射透過率が65.3%であった。このガ
ラスサンプルの被膜を市販のテーバー摩耗試験機を用い
て耐摩耗試験をおこなった。No.CS10Fの2つの摩耗輪に
各500gの荷重をかけ、60rpmの回転数で1000回転の摩耗
を被膜に加えた後、ヘイズ率を測定したところ、わずか
0.1%の変化が認められたのみで、キズはほとんど目立
たなかった。The glass sample obtained in this way is placed on the glass
A glass having a heat ray shielding property coated with a titanium nitride film having a thickness of 5 nm and a protective film made of silicon, carbon, nitrogen and oxygen having a thickness of about 75 nm, and having a visible light transmittance of 7
The visible light reflectance was 2.3% for light incident from the glass surface, and the solar radiation transmittance was 65.3%. The coating of this glass sample was subjected to a wear resistance test using a commercially available Taber abrasion tester. A load of 500 g was applied to each of the two wear wheels of No. CS10F, and 1000 rotations of wear were applied to the coating at a rotation speed of 60 rpm. The haze ratio was measured.
Only a 0.1% change was observed, and scars were hardly noticeable.
同じスパッタ装置を用いて、ガラス基板上に約75nmの
シリコンと炭素と窒素と酸素とからなる化合物の単層の
被膜を付着させ、X線回折測定と電子顕微鏡観察をおこ
なった。X線回折によれば、ガラス板に基づくブロード
なピーク以外には、保護膜の結晶に基づく回折ピークは
観測されず、得られた保護膜は非晶質であることが分か
った。一方電子顕微鏡観察によれば、保護膜はち密で柱
状構造は認められず、かつその被膜の表面は極めて平滑
であることがわかった。Using the same sputtering apparatus, a monolayer film of a compound consisting of silicon, carbon, nitrogen and oxygen of about 75 nm was attached on a glass substrate, and X-ray diffraction measurement and electron microscopic observation were performed. According to the X-ray diffraction, diffraction peaks based on the crystals of the protective film were not observed except for the broad peak based on the glass plate, and it was found that the obtained protective film was amorphous. On the other hand, electron microscopic observation revealed that the protective film was dense and no columnar structure was observed, and that the surface of the film was extremely smooth.
実施例2 実施例1と同様の方法を用い、真空層に導入するガス
の流量の割合を種々変化させて、シリコンと炭素と窒素
と酸素とからなる保護膜のみをガラス板の上に被覆し
た。得られた被膜について耐摩耗性を測定し、保護膜Si
CxNyOzの光学定数を測定した結果を第1表に示す。第1
表より耐摩耗試験前後の可視光線透過率の変化は1.23%
以下の小さい値であり、また試験後の被膜のヘイズ率も
約2.1%と小さく、保護膜SiCxNyOzは耐摩耗性が優れて
いることが分かった。Example 2 Using a method similar to that of Example 1, the protective film composed of silicon, carbon, nitrogen and oxygen was coated on the glass plate only by changing the flow rate of the gas introduced into the vacuum layer. . The abrasion resistance of the obtained coating was measured, and the protective film Si
Table 1 shows the results of measuring the optical constants of CxNyOz. First
From the table, the change in visible light transmittance before and after the wear test is 1.23%
The following values were small, and the haze ratio of the coating after the test was as small as about 2.1%. It was found that the protective film SiCxNyOz had excellent wear resistance.
実施例3 炭化ケイ素ターゲットに印加する電流とスパッタリン
グする時間を変えてシリコンと炭素と窒素と酸素とから
なり化学式でSiCxNyOzで表せる保護膜の厚みを10nmとし
たことのほかは、実施例1と同じようにして熱線遮蔽ガ
ラスを製作した。このガラスサンプルの被膜を市販のテ
ーバー摩耗試験機を用いて、実施例1と同じようにして
耐摩耗試験をおこなった。No.CS10Fの2つの摩耗輪に各
500gの荷重をかけ、60rpmの回転数で1000回転の摩耗を
被膜に加えた後、ヘイズ率を測定したところ、わずか0.
1%の変化が認められたのみで、キズはほとんど目立た
なかった。Example 3 The same as Example 1 except that the thickness of the protective film composed of silicon, carbon, nitrogen, and oxygen and represented by the chemical formula of SiCxNyOz was changed to 10 nm by changing the current applied to the silicon carbide target and the sputtering time. Thus, a heat ray shielding glass was manufactured. The coating of this glass sample was subjected to a wear resistance test in the same manner as in Example 1 using a commercially available Taber abrasion tester. No.CS10F for each of the two wear wheels
After applying a load of 500 g and applying abrasion of 1000 rotations to the coating at a rotation speed of 60 rpm, when the haze ratio was measured, only 0.
Only a 1% change was observed, and scars were hardly noticeable.
比較例1 実施例1と同様の方法を用い、真空槽内に導入するガ
ス流量の割合を種々変化させて、シリコンと炭素と酸素
とからなる保護膜のみをガラス板の上に被覆した。得ら
れたシリコンと炭素と酸素とからなる化学式でSiCxOzと
表せる被膜の耐摩耗性試験を実施例1と同じように行
い、また光学定数を測定した結果を第2表に示す。第2
表に示すとおり、摩耗試験の結果可視光線透過率は10%
以上変化し、またヘイズ率も3〜4%であった。 Comparative Example 1 Using the same method as in Example 1, the protective film composed of silicon, carbon and oxygen was coated on the glass plate only by changing the ratio of the flow rate of the gas introduced into the vacuum chamber. Table 2 shows the results of the abrasion resistance test of the obtained film which can be expressed as SiCxOz by the chemical formula consisting of silicon, carbon and oxygen in the same manner as in Example 1, and the optical constants were measured. Second
As shown in the table, the visible light transmittance was 10% as a result of the abrasion test.
The above changes and the haze ratio was 3-4%.
比較例2 実施例1と同じスパッタ装置を用いて洗浄した2.1mm
厚のガラス板上に、アルゴンのみを真空槽に導入した雰
囲気によるスパッタリングにより、SiCxの化学式で表せ
る被膜を75nm被覆した。この被膜の屈折率は3.79と極め
て高く、かつ可視域で光の吸収を示すものであった。ま
た同条件での耐摩耗試験後のヘイズ率は4.0%と大きい
値であった。Comparative Example 2 2.1 mm cleaned using the same sputtering apparatus as in Example 1.
A 75-nm thick film represented by the chemical formula of SiCx was coated on a thick glass plate by sputtering in an atmosphere in which only argon was introduced into a vacuum chamber. This film had an extremely high refractive index of 3.79, and exhibited light absorption in the visible region. The haze ratio after the wear test under the same conditions was a large value of 4.0%.
比較例3 実施例1と同じスパッタ装置を用いて洗浄した2.1mm
厚のガラス板上に、窒素ガスのみを真空層に導入した雰
囲気によるスパッタリングでSiCxNyの化学式で表せる被
膜を75nm被覆した。この被膜の屈折率は2.04であった。
また実施例1と同条件行った耐摩耗試験後のヘイズ率は
3.1%であった。 Comparative Example 3 2.1 mm cleaned using the same sputtering apparatus as in Example 1.
On a thick glass plate, a film represented by the chemical formula of SiCxNy was coated to a thickness of 75 nm by sputtering in an atmosphere in which only nitrogen gas was introduced into a vacuum layer. The refractive index of this coating was 2.04.
The haze ratio after the abrasion resistance test performed under the same conditions as in Example 1 was
It was 3.1%.
上記のように、本発明にかかるシリコンと炭素と窒素
と酸素とからなる保護膜は、耐摩耗性が優れていること
がわかる。As described above, it can be seen that the protective film according to the present invention composed of silicon, carbon, nitrogen, and oxygen has excellent wear resistance.
[発明の効果] 本発明の熱線遮蔽ガラスの空気と接する最外層は、シ
リコンと炭素と窒素と酸素とからなる耐摩耗性に優れた
保護膜を有するので、直接外気に触れる状態で使用して
もスクラッチなどによる傷がつきにくい。したがって自
動車の窓ガラスや建物の窓ガラスとして複層ガラスや合
わせガラスにすることなく単板の状態で用いることがで
きる。[Effect of the Invention] Since the outermost layer of the heat ray shielding glass of the present invention, which is in contact with air, has a protective film made of silicon, carbon, nitrogen and oxygen and has excellent wear resistance, it can be used in a state where it is directly exposed to the outside air. It is hard to be scratched by scratches. Therefore, it can be used in the form of a single plate without being made into a multi-layer glass or a laminated glass as an automobile window glass or a building window glass.
また、本発明の保護膜は直流スパッタリング法により
被覆できるので、大きな基板に安定して被覆することが
できる。Further, since the protective film of the present invention can be coated by a direct current sputtering method, it can be stably coated on a large substrate.
第1図は、本発明の熱線遮蔽ガラスの一部断面図であ
る。 1……ガラス板、2……熱線遮蔽性の被膜、3……シリ
コンと炭素と窒素と酸素とからなる保護膜。FIG. 1 is a partial cross-sectional view of the heat ray shielding glass of the present invention. 1 ... a glass plate, 2 ... a heat ray shielding film, 3 ... a protective film made of silicon, carbon, nitrogen and oxygen.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03C 17/00 - 17/44 C23C 14/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C03C 17/00-17/44 C23C 14/06
Claims (5)
なる熱線遮蔽性の被膜が被覆され、前記熱線遮蔽性の被
膜の上にシリコンと炭素と窒素と酸素とからなる保護膜
が被覆された熱線遮蔽ガラス。1. A transparent glass plate is coated with at least one heat ray shielding film, and a protective film made of silicon, carbon, nitrogen and oxygen is coated on the heat ray shielding film. Heat shielding glass.
化ジルコニウム、窒化ハフニウム、窒化クロムの群から
選ばれた少なくとも一種であることを特徴とする特許請
求の範囲第1項に記載の熱線遮蔽ガラス。2. The heat ray according to claim 1, wherein the heat ray shielding film is at least one selected from the group consisting of titanium nitride, zirconium nitride, hafnium nitride, and chromium nitride. Shielding glass.
らなる被膜と高屈折率材料からなる被膜が交互に積層さ
れた多層構成の被膜であることを特徴とする特許請求の
範囲第1項ないし第2項に記載の熱線遮蔽ガラス。3. A heat-shielding film according to claim 1, wherein said heat-shielding film has a multilayer structure in which films made of a low-refractive-index material and films made of a high-refractive-index material are alternately laminated. Item 3. The heat ray shielding glass according to Item 1 or 2.
ある特許請求の範囲第1項ないし第3項のいずれかの項
に記載の熱線遮蔽ガラス。4. The heat ray shielding glass according to claim 1, wherein said protective film has a thickness of 5 nm or more and 100 nm or less.
炭化ケイ素のターゲットを用いて、減圧された雰囲気内
での直流反応性スパッタリングにより被覆されたことを
特徴とする特許請求の範囲第1項ないし第4項のいずれ
かの項に記載の熱線遮蔽ガラス。5. The method according to claim 1, wherein said protective film is coated by direct current reactive sputtering in a reduced-pressure atmosphere using a target of silicon carbide containing free silicon. Item 5. The heat ray shielding glass according to any one of Items 4 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02253832A JP3028576B2 (en) | 1990-09-21 | 1990-09-21 | Heat shielding glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02253832A JP3028576B2 (en) | 1990-09-21 | 1990-09-21 | Heat shielding glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04132639A JPH04132639A (en) | 1992-05-06 |
JP3028576B2 true JP3028576B2 (en) | 2000-04-04 |
Family
ID=17256757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02253832A Expired - Fee Related JP3028576B2 (en) | 1990-09-21 | 1990-09-21 | Heat shielding glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3028576B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020047879A (en) * | 2000-12-14 | 2002-06-22 | 엘지전자 주식회사 | hydrophilic coated film |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2759362B1 (en) * | 1997-02-10 | 1999-03-12 | Saint Gobain Vitrage | TRANSPARENT SUBSTRATE EQUIPPED WITH AT LEAST ONE THIN LAYER BASED ON SILICON NITRIDE OR OXYNITRIDE AND ITS PROCESS FOR OBTAINING IT |
WO2001027345A1 (en) | 1999-10-13 | 2001-04-19 | Asahi Glass Company, Limited | Sputtering target and method for preparing the same and film-forming method |
-
1990
- 1990-09-21 JP JP02253832A patent/JP3028576B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020047879A (en) * | 2000-12-14 | 2002-06-22 | 엘지전자 주식회사 | hydrophilic coated film |
Also Published As
Publication number | Publication date |
---|---|
JPH04132639A (en) | 1992-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1194385B1 (en) | Protective layers for sputter coated article | |
US4861669A (en) | Sputtered titanium oxynitride films | |
US5110637A (en) | Amorphous oxide film and article having such film thereon | |
US5399435A (en) | Amorphous oxide film and article having such film thereon | |
US4900633A (en) | High performance multilayer coatings | |
US6833194B1 (en) | Protective layers for sputter coated article | |
WO1999058736A2 (en) | Zinc-tin alloy sputtering target | |
JPH029731A (en) | Matter of high gray color-permeability and low radioactivity and method for its manufacture | |
JPS63247352A (en) | Transparent coating by reactive sputtering | |
JP2007501766A (en) | Transparent substrate including antireflection film | |
WO1991002102A1 (en) | Film based on silicon dioxide and production thereof | |
JPH04229805A (en) | Durable low-emissivity thin-film interference filter | |
JP2720919B2 (en) | target | |
JP3028576B2 (en) | Heat shielding glass | |
JP3200637B2 (en) | Heat shielding glass | |
JP2811885B2 (en) | Heat shielding glass | |
JP2576637B2 (en) | Heat ray reflective glass | |
JP2697000B2 (en) | Article coated with optical film | |
JP3057785B2 (en) | Heat shielding glass | |
JP2817287B2 (en) | Transparent goods | |
JP3208795B2 (en) | Transparent article and method for producing the same | |
JPH02901A (en) | Optical body having excellent durability | |
JPH04265252A (en) | Optical body excellent in durability | |
JP3121851B2 (en) | Thin film and manufacturing method | |
JPH03134157A (en) | Wear resistant transparent parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |