JP3021785B2 - Magnetoresistive material and method of manufacturing the same - Google Patents
Magnetoresistive material and method of manufacturing the sameInfo
- Publication number
- JP3021785B2 JP3021785B2 JP3148474A JP14847491A JP3021785B2 JP 3021785 B2 JP3021785 B2 JP 3021785B2 JP 3148474 A JP3148474 A JP 3148474A JP 14847491 A JP14847491 A JP 14847491A JP 3021785 B2 JP3021785 B2 JP 3021785B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- thickness
- metal
- magnetoresistive
- magnetic thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 230000005291 magnetic effect Effects 0.000 claims description 37
- 239000010409 thin film Substances 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000010408 film Substances 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 7
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 229910017709 Ni Co Inorganic materials 0.000 claims description 6
- 229910003267 Ni-Co Inorganic materials 0.000 claims description 6
- 229910003262 Ni‐Co Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002772 conduction electron Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910003266 NiCo Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気媒体より信号を読み
とるための磁気抵抗効果材料およびその製造方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive material for reading signals from a magnetic medium and a method of manufacturing the same.
【0002】[0002]
【従来の技術】従来より磁気抵抗素子を用いた磁気抵抗
センサ−(以下MRセンサ−という)、磁気抵抗ヘッド
(以下MRヘッドという)の開発が進められており、磁
性体には主にNi0.8Fe0.2のパ−マロイが用いられてい
る。ただしこの材料の場合は抵抗変化率(以下ΔR/R
と記す)が2.5%程度であり、より高感度な磁気抵抗素
を得るにはよりΔR/Rの大きなものが求められてお
り、その一つにNiを60〜80原子%含むNi-Co合金膜があ
るが、これでもΔR/Rの値は最大でも5.8%程度であ
った。BACKGROUND ART magnetoresistive sensor using a magnetoresistance element conventionally - (hereinafter MR sensor - called), has been advanced development of magnetoresistive head (hereinafter referred to as MR head), mainly Ni 0.8 to magnetic Permalloy of Fe 0.2 is used. However, in the case of this material, the resistance change rate (hereinafter, ΔR / R
) Is about 2.5%, and a higher ΔR / R is required to obtain a more sensitive magnetoresistive element. One of them is a Ni-Co alloy containing 60 to 80 atomic% of Ni. Although there is a film, the value of ΔR / R was still about 5.8% at the maximum.
【0003】近年[Fe/Cr]人工格子膜で大きな磁気抵抗
効果が起きることが発見された(フィジカル レビュー
レター ブイオーエル61、ピー2472、1988
「Physical Review Letter Vol.61, p2472, 1988」)
が、この材料の場合は十数kOe以上の大きな磁界を印加
しないと大きなΔR/Rが得られず、実用性に難点があ
った。In recent years, it has been discovered that a large magnetoresistance effect occurs in [Fe / Cr] artificial lattice films (Physical Review Letter V. Biol 61, P2472, 1988).
"Physical Review Letter Vol.61, p2472, 1988")
However, in the case of this material, a large ΔR / R cannot be obtained unless a large magnetic field of more than tens of kOe is applied, and there is a problem in practicality.
【0004】また、超高真空蒸着装置を用いNi0.8Fe0.2
(30Å)/Cu(50Å)/Co(30Å)/Cu(50Å)×15層の人工
格子膜でΔR/Rが約10%(3kOeの磁界を印加)の抵抗変
化が観測された報告がある。(1990年秋 応用物理
学会 予稿)しかしながら、膜を製作するのに高価な多
元の超高真空蒸着装置が必要なことや、3kOe程度の大き
な磁界を印加しないと大きなΔR/Rが得られない問題
があった。In addition, Ni 0.8 Fe 0.2
(30 報告) / Cu (50Å) / Co (30Å) / Cu (50Å) x 15 layers of artificial lattice film showed a resistance change of ΔR / R of about 10% (3 kOe magnetic field applied). . (Preliminary report of the Japan Society of Applied Physics, Fall 1990) However, there are problems that expensive multi-element ultra-high vacuum deposition equipment is required to produce films, and large ΔR / R cannot be obtained unless a large magnetic field of about 3 kOe is applied. there were.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記の問題点
を解決し、タ−ゲットを実質的に2個しか必要としない
多元スパッタ装置で成膜ができ、かつ実用性のある低磁
界で比較的大きなΔR/Rを示す磁気抵抗効果材料を可
能とするものである。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and can be formed by a multi-source sputtering apparatus requiring substantially only two targets, and has a practically low magnetic field. This enables a magnetoresistive material exhibiting a relatively large ΔR / R.
【0006】[0006]
【課題を解決するための手段】上記の課題を解決すべく
本発明の磁気抵抗素子は以下の構成より成る。すなわ
ち、スパッタ装置を用い厚さ10〜100Åの50原子%以上
のNiを含むNi-Coより成る金属磁性薄膜層と厚さ10〜25
ÅのCuより成る金属非磁性薄膜層とを積層した構造から
なる磁気抵抗効果材料である。In order to solve the above-mentioned problems, a magnetoresistive element according to the present invention has the following configuration. That is, using a sputtering apparatus, a metal magnetic thin film layer made of Ni-Co containing Ni of 50 atomic% or more and having a thickness of 10 to 100 mm and a thickness of 10 to 25 mm
磁 気 is a magnetoresistive material having a structure in which a metal nonmagnetic thin film layer made of Cu is laminated.
【0007】[0007]
【作用】金属非磁性薄膜層によって分離された隣接する
2つの金属磁性薄膜層間には、前記金属非磁性薄膜層が
ある層厚のとき反強磁性的な相互作用が働き、前記隣接
する2つの磁性薄膜層のスピン配列は互いに逆平行とな
り伝導電子のスピン散乱が極大となって大きな磁気抵抗
を示すと考えられる。更に印加磁界を強くすると磁性薄
膜層のスピン配列は平行となり伝導電子のスピン散乱が
小さくなり磁気抵抗は減少する。この様にして大きなΔ
R/Rが得られると考えられるが金属非磁性薄膜層が無
いと磁性薄膜層が強磁性的に平行に結合してしまい逆平
行の状態を実現できないため大きな磁気抵抗効果が得ら
れない。又金属非磁性薄膜層の層厚があまり厚くなる
と、上記の相互作用がRKKY的に振動して減衰するた
めにやはり大きな磁気抵抗効果が得られない。When the metal non-magnetic thin film layer has a certain thickness, an antiferromagnetic interaction acts between two adjacent metal magnetic thin film layers separated by the metal non-magnetic thin film layer. It is considered that the spin arrangement of the magnetic thin film layer is antiparallel to each other, and the spin scattering of conduction electrons is maximal, indicating a large magnetoresistance. When the applied magnetic field is further increased, the spin arrangement of the magnetic thin film layer becomes parallel, so that spin scattering of conduction electrons is reduced and the magnetoresistance is reduced. In this way, a large Δ
It is considered that R / R can be obtained, but if there is no metal non-magnetic thin film layer, the magnetic thin film layers are ferromagnetically coupled in parallel and an antiparallel state cannot be realized, so that a large magnetoresistance effect cannot be obtained. If the thickness of the metal non-magnetic thin film layer is too large, the above interaction vibrates like RKKY and attenuates, so that a large magnetoresistance effect cannot be obtained.
【0008】[0008]
【実施例】磁性薄膜層は厚さ10〜100Åの少なくとも原
子%で50%以上Niを含むNi-Coより成る膜である。Niが
これより少ないと軟磁性が得られにくくなる問題が生ず
る。これらの条件を満足する代表的なものはNi0.8Co0.2
である。又更に軟磁性を改良したり耐摩耗性及び耐食性
を改良するためにNb,Mo,Cr,W,Ru等を添加しても良い。
これら磁性薄膜層はその厚さが10Å未満ではキュリ−温
度の低下による室温での磁化の低減等が問題となり、又
実用上磁気抵抗素子は全膜厚が数百Åで用いられるた
め、本発明のように積層効果を利用するには各磁性薄膜
層を少なくとも100Å以下にする必要がある。従ってこ
れら磁性薄膜層の厚さはは10〜100Åとすることが望ま
しい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The magnetic thin film layer is a film made of Ni--Co having a thickness of 10 to 100.degree. If the content of Ni is less than this, there arises a problem that it is difficult to obtain soft magnetism. A typical material that satisfies these conditions is Ni 0.8 Co 0.2
It is. Further, Nb, Mo, Cr, W, Ru, etc. may be added in order to further improve the soft magnetism and the abrasion resistance and corrosion resistance.
When the thickness of these magnetic thin film layers is less than 10 mm, there is a problem of a decrease in magnetization at room temperature due to a decrease in Curie temperature, and in practice, the total thickness of a magnetoresistive element is hundreds of mm. In order to utilize the lamination effect as described above, each magnetic thin film layer must be at least 100 ° or less. Therefore, the thickness of these magnetic thin film layers is desirably 10 to 100 °.
【0009】これらの磁性薄膜の間に介在させる金属薄
膜はNi-Co系磁性薄膜と界面での反応が少なくかつ非磁
性であることが必要で、Cuが適している。このCu層の厚
さは20Åぐらいが最適で、10Å未満ではCu層を介して隣
接する2つの磁性薄膜層が磁気的に結合して(図1)の
ように磁性層間のスピンが反平行となる状態の実現が困
難となる。The metal thin film interposed between these magnetic thin films must have a small reaction at the interface with the Ni—Co-based magnetic thin film and be non-magnetic, and Cu is suitable. The thickness of this Cu layer is optimally about 20 mm, and when it is less than 10 mm, two adjacent magnetic thin film layers are magnetically coupled via the Cu layer (FIG. 1), and the spin between the magnetic layers is antiparallel. It becomes difficult to realize such a state.
【0010】又理由はさだかでないがΔR/Rの値はCu
層の厚さによってRKKY的な振動を示し極大の第1ピ
−クまでを利用する場合はCu層の厚さは25Å以下とする
ことがより望ましい。Although the reason is not obvious, the value of ΔR / R is Cu
When RKKY-like vibration is exhibited depending on the thickness of the layer and the maximum first peak is used, it is more preferable that the thickness of the Cu layer be 25 ° or less.
【0011】以下具体的な実施例により本発明の効果の
説明を行う。 (実施例1)多元RFスパッタ装置を用いて、タ−ゲッ
トに Cu, Ni0.8Co0.2を用いスパッタ装置内部を2×10-7
Torrに排気した後Arガスを導入して8×10-3Torrとし、
スパッタ法により順次以下に示した構成の磁気抵抗素子
をガラス基板上に作製した。Hereinafter, the effects of the present invention will be described with reference to specific examples. (Example 1) Using a multi-source RF sputtering apparatus, Cu, Ni 0.8 Co 0.2 was used as a target, and the inside of the sputtering apparatus was 2 × 10 −7.
After exhausting to Torr, Ar gas was introduced to 8 × 10 -3 Torr,
Magnetoresistive elements having the following structures were sequentially formed on a glass substrate by sputtering.
【0012】[NiCo(30)/Cu(0〜50)](( )内は厚さ(Å)
を表わす)、又各膜厚はスパッタ時間とシャッタ−によ
り制御し、総厚約0.2μmの膜を作製した。[NiCo (30) / Cu (0-50)] (() indicates thickness ()
The film thickness was controlled by a sputtering time and a shutter to produce a film having a total thickness of about 0.2 μm.
【0013】得られた磁気抵抗材料の特性を(図2)に
示した。なお、ΔR/Rは300Oeの印加磁界にて測定し
た。The characteristics of the obtained magnetoresistive material are shown in FIG. Note that ΔR / R was measured with an applied magnetic field of 300 Oe.
【0014】(図2)より明らかなように、ΔR/Rの
極大値はCu層が20Å付近に存在し、それ以上ではCu層の
層厚の増加とともに減少することが分かった。従って最
大のΔR/Rを得ようとすると、Cu層が20Å付近が最適
となる。As apparent from FIG. 2, it is found that the maximum value of ΔR / R exists in the vicinity of 20 ° in the Cu layer, and that the maximum value decreases with an increase in the thickness of the Cu layer when the Cu layer is more than 20 °. Therefore, in order to obtain the maximum ΔR / R, the optimum value is about 20 ° for the Cu layer.
【0015】(実施例2)RFスパッタ装置を用いて、
タ−ゲットとして、Cu, Ni0.8Co0.2を用いCu層の厚さを
一定とし磁性層の厚さを変えた膜をスパッタ法により
(実施例1)と同様に作製した。(Embodiment 2) Using an RF sputtering apparatus,
A film in which the thickness of the Cu layer was fixed and the thickness of the magnetic layer was changed using Cu, Ni 0.8 Co 0.2 as a target was produced in the same manner as in Example 1 by sputtering.
【0016】得られた膜の特性を(表1)に示した。The properties of the obtained film are shown in Table 1.
【0017】[0017]
【表1】 [Table 1]
【0018】なお、参考までにNo.Bと同じ構成で、Ni
0.8Co0.2の代わりにCoを使用した試料のΔR/Rは5%で
あった。For reference, the same structure as that of No.
The ΔR / R of the sample using Co instead of 0.8 Co 0.2 was 5%.
【0019】[0019]
【発明の効果】以上説明したように本発明は高価な超高
真空蒸着装置を用いず、通常のスパッタ装置で実質的に
タ−ゲットを2個必要とするだけで作製出来る事、又室
温でかつ実用的な印加磁界で大きな磁気抵抗効果を示す
磁気抵抗素子を可能とするもので、高感度MRヘッドや
MRセンサ−等への応用に適したものである。As described above, according to the present invention, it is possible to fabricate a conventional sputter apparatus by using only two targets without using an expensive ultra-high vacuum deposition apparatus. Further, it enables a magnetoresistive element exhibiting a large magnetoresistance effect with a practically applied magnetic field, and is suitable for application to a high-sensitivity MR head, an MR sensor, and the like.
【図1】印加磁界が弱い場合における本発明磁気抵抗材
料の各磁性層のスピンの配列方向を示す図である。FIG. 1 is a view showing the arrangement direction of spins in each magnetic layer of a magnetoresistive material of the present invention when an applied magnetic field is weak.
【図2】(実施例1)における磁気抵抗材料のMR変化
率のCu層厚依存性を示す図である。FIG. 2 is a diagram showing the dependence of the MR change rate of a magnetoresistive material in Example 1 on the thickness of a Cu layer.
1、1’ 金属磁性薄膜層 2 金属非磁性薄膜層 1, 1 'metal magnetic thin film layer 2 metal nonmagnetic thin film layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 G11B 5/39 H01F 10/16 H01F 41/18 H01L 43/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 43/08 G11B 5/39 H01F 10/16 H01F 41/18 H01L 43/12
Claims (5)
Ni-Coより成る金属磁性薄膜層と、厚さが10〜25ÅのCu
より成る金属非磁性薄膜層とを交互に積層した構造から
なる磁気抵抗効果材料。(1) a thickness of 10 to 100 mm and containing at least 50 atomic% of Ni;
Metal magnetic thin film layer composed of Ni-Co and Cu with a thickness of 10 to 25 mm
A magnetoresistive material having a structure in which metal nonmagnetic thin film layers made of metal are alternately stacked.
厚さが10〜100Åの第一の磁性薄膜層と、Niを50原子%以A first magnetic thin film layer having a thickness of 10 to 100 mm and Ni
上含むNi-Coよりなり、厚さが10〜100Åの第二の磁性薄A second magnetic thin film made of Ni-Co containing 10 to 100 mm thick
膜層とを、Cuを主成分とし厚さが10〜25Åの金属非磁性The film layer is made of non-magnetic metal with Cu as the main component and thickness of 10 ~ 25mm
薄膜層を介して交互に積層してなる磁気抵抗効果材料。A magnetoresistive material that is alternately stacked with thin film layers interposed.
料を製造するにあたって、金属磁性薄膜層、金属非磁性
薄膜層を多元スパッタ装置を用いて逐次積層して形成す
ることを特徴とする磁気抵抗効果材料の製造方法。3. A magnetoresistive material according to claim 1, wherein
A method for producing a magnetoresistive material, comprising: forming a metal magnetic thin film layer and a metal non-magnetic thin film layer sequentially using a multi-source sputtering apparatus.
いた磁気抵抗センサー。Had a magnetoresistive sensor.
いた磁気抵抗ヘッド。Had a magnetoresistive head.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3148474A JP3021785B2 (en) | 1991-06-20 | 1991-06-20 | Magnetoresistive material and method of manufacturing the same |
US07/840,821 US5277991A (en) | 1991-03-08 | 1992-02-25 | Magnetoresistive materials |
DE69200169T DE69200169T3 (en) | 1991-03-08 | 1992-03-06 | Magnetoresistive materials. |
EP92103874A EP0503499B2 (en) | 1991-03-08 | 1992-03-06 | Magnetoresistive materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3148474A JP3021785B2 (en) | 1991-06-20 | 1991-06-20 | Magnetoresistive material and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0590025A JPH0590025A (en) | 1993-04-09 |
JP3021785B2 true JP3021785B2 (en) | 2000-03-15 |
Family
ID=15453562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3148474A Expired - Fee Related JP3021785B2 (en) | 1991-03-08 | 1991-06-20 | Magnetoresistive material and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3021785B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200230131Y1 (en) * | 2000-12-15 | 2001-07-03 | 명보상 | A case for beauty shop accessories |
-
1991
- 1991-06-20 JP JP3148474A patent/JP3021785B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200230131Y1 (en) * | 2000-12-15 | 2001-07-03 | 명보상 | A case for beauty shop accessories |
Also Published As
Publication number | Publication date |
---|---|
JPH0590025A (en) | 1993-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2690623B2 (en) | Magnetoresistance effect element | |
JP2771128B2 (en) | Magnetoresistive element, magnetoresistive head using the same, memory element, and amplifying element | |
US6198610B1 (en) | Magnetoresistive device and magnetoresistive head | |
US6340520B1 (en) | Giant magnetoresistive material film, method of producing the same magnetic head using the same | |
JP3184352B2 (en) | Memory element | |
US5843589A (en) | Magnetic layered material, and magnetic sensor and magnetic storage/read system based thereon | |
JPH08127864A (en) | Magneto resistance effect film and its production | |
US6256222B1 (en) | Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same | |
US6083632A (en) | Magnetoresistive effect film and method of manufacture thereof | |
JPH09293611A (en) | Magnetoresistive effect element thin film and its manufacturing method | |
JPH10188235A (en) | Magneto-resistive film and its production | |
JP2924819B2 (en) | Magnetoresistive film and method of manufacturing the same | |
EP0560350B1 (en) | Magneto-resistance effect element | |
JP2961914B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JP2830513B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JP3247535B2 (en) | Magnetoresistance effect element | |
JP3219329B2 (en) | Magnetoresistance effect element | |
JP3021785B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JP3575672B2 (en) | Magnetoresistance effect film and magnetoresistance effect element | |
JP2002314171A (en) | Layer to be fixed, forming method therefor, spin valve structure and forming method therefor | |
JP3242279B2 (en) | Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film | |
JPH0936455A (en) | Magnetoresistive effect element | |
JP2964690B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JP2848083B2 (en) | Magnetoresistance effect element | |
JPH0794326A (en) | Magnetoresistance effect film and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080114 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100114 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |