[go: up one dir, main page]

JP3018020B2 - Purification method of iron chloride waste liquid containing chromium, etc. - Google Patents

Purification method of iron chloride waste liquid containing chromium, etc.

Info

Publication number
JP3018020B2
JP3018020B2 JP3326856A JP32685691A JP3018020B2 JP 3018020 B2 JP3018020 B2 JP 3018020B2 JP 3326856 A JP3326856 A JP 3326856A JP 32685691 A JP32685691 A JP 32685691A JP 3018020 B2 JP3018020 B2 JP 3018020B2
Authority
JP
Japan
Prior art keywords
waste liquid
iron
chromium
liquid containing
iron chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3326856A
Other languages
Japanese (ja)
Other versions
JPH05138178A (en
Inventor
忠雄 北澤
力 井下
正毅 永島
博徳 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Irie Co Ltd
Original Assignee
Astec Irie Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co Ltd filed Critical Astec Irie Co Ltd
Priority to JP3326856A priority Critical patent/JP3018020B2/en
Publication of JPH05138178A publication Critical patent/JPH05138178A/en
Application granted granted Critical
Publication of JP3018020B2 publication Critical patent/JP3018020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、クロムまたは該クロム
に合わせて銅・ニッケルを含む塩化鉄系の廃液(例え
ば、エッチング液)からクロム等の重金属を除去する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing heavy metals such as chromium from chromium or an iron chloride-based waste liquid (for example, an etching solution) containing copper / nickel in accordance with the chromium.

【0002】[0002]

【従来の技術】従来、特公昭61−44814号公報記
載の如く、鉄以外の重金属を含む強酸性塩化第二鉄廃液
に塊状の金属鉄を混入し、加温状態を保持し、且つ攪拌
することで析出した重金属を除去する塩化鉄系廃液の重
金属除去方法が提案されている。
2. Description of the Related Art Conventionally, as described in JP-B-61-44814, massive metallic iron is mixed into a strongly acidic ferric chloride waste liquid containing heavy metals other than iron, and the heated state is maintained and stirred. There has been proposed a method for removing heavy metals from iron chloride waste liquid, which removes heavy metals precipitated by the removal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来例に係る方法においては、中和素材として塊状の金属
鉄を用いるため、強酸性でない塩化鉄系廃液の場合には
中和、分離反応性が悪いという問題点があり、更には塊
状の金属鉄を投入した後は、攪拌装置の設計が難しく、
仮に可能であっても攪拌装置に多大の費用がかかるとい
う問題点があった。前記方法をニッケルを含む塩化鉄系
廃液に適用した場合には、ニッケルの分離性が悪いとい
う問題点があった。しかも、従来周知の塩化鉄系酸廃液
にクロムを含有する場合、あるいは更に銅・ニッケルを
含有する場合には、塩化鉄を汚染させずにクロムを効率
良く除去する手段がないため、石灰中和を実施して鉄、
クロムを水酸化物にして廃棄処分にしている。従って、
塩素、クロム等の有効成分の活用が図れていない実情に
あった。本発明はこのような事情に鑑みてなされたもの
で、装置全体を比較的安価に製造でき、クロムの分離、
更には銅、ニッケルの高効率分離の可能なクロム等を含
む塩化鉄系廃液の浄液方法を提供することを目的とす
る。
However, in the method according to the above-mentioned prior art, since massive metallic iron is used as a neutralizing material, the neutralization and separation reactivity is low in the case of a non-strongly acidic iron chloride waste liquid. There is a problem that it is bad, and furthermore, after putting in a lump of metallic iron, it is difficult to design a stirrer,
Even if possible, there was a problem that a great deal of cost was required for the stirring device. When the above method is applied to an iron chloride-based waste liquid containing nickel, there has been a problem that nickel separation is poor. Moreover, when chromium is contained in the conventionally known iron chloride acid waste liquid, or when copper or nickel is further contained, there is no means for efficiently removing chromium without contaminating the iron chloride. Carry out iron,
Chromium is converted to hydroxide for disposal. Therefore,
The fact was that the effective ingredients such as chlorine and chromium could not be used. The present invention has been made in view of such circumstances, and the entire apparatus can be manufactured relatively inexpensively, and chromium separation,
It is a further object of the present invention to provide a method for purifying an iron chloride waste liquid containing chromium or the like, which enables highly efficient separation of copper and nickel.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う請求項1
記載のクロム等を含む塩化鉄系廃液の浄液方法は、クロ
ムを含む塩化鉄系の廃液に鉄粉を混入してPHを2.3
〜5とすると共に、反応温度を40℃以上、鉄イオン濃
度を220g/l以下に制御してクロムを沈澱させるよ
うにして構成されている。また、請求項2記載のクロム
等を含む塩化鉄系廃液の浄液方法は、銅・ニッケル・ク
ロムを含む塩化鉄系の廃液に鉄粉を混入して所定条件で
銅を沈澱させる工程と、前記工程で銅が除去された廃液
に鉄粉を混入すると共にPHを2以下としてニッケルを
沈澱させる工程と、該ニッケルが除去された廃液のPH
を2.3〜5とし、反応温度を40℃以上、鉄イオン濃
度を140g/l以下に制御して廃液中のクロムを沈降
分離するようにして構成されている。
According to the present invention, there is provided a semiconductor device comprising:
In the method for purifying an iron chloride waste liquid containing chromium or the like described above, iron powder is mixed into an iron chloride waste liquid containing chromium to adjust the pH to 2.3.
And chromium is precipitated by controlling the reaction temperature to 40 ° C. or more and the iron ion concentration to 220 g / l or less. Further, the method for purifying an iron chloride waste liquid containing chromium and the like according to claim 2 is a step of mixing iron powder into an iron chloride waste liquid containing copper, nickel and chromium to precipitate copper under predetermined conditions, Mixing iron powder into the waste liquid from which copper has been removed in the above step, and precipitating nickel by setting the pH to 2 or less; and pH of the waste liquid from which the nickel has been removed.
Is set to 2.3 to 5, the reaction temperature is controlled to 40 ° C. or more, and the iron ion concentration is controlled to 140 g / l or less to precipitate and separate chromium in the waste liquid.

【0005】[0005]

【作用】請求項1記載のクロム等を含む塩化鉄系廃液の
浄液方法においては、まず廃液のPHを2.3〜5と
し、鉄イオン濃度を220g/l以下、反応温度を40
℃以上とすることによって、以下の反応が進行し、鉄澱
物の抑制を図り、クロムの沈澱を効率良く行った。 CrCl3 (L)+3H2 O(L) →Cr(OH)3 (S)+3HCl(L) (1) 3HCl(L)+3/2Fe(S) →3/2FeCl2 (L)+3/2H2 (G) (2) 請求項2記載のクロム等を含む塩化鉄系廃液の浄液方法
においては、エッチング廃液等の塩化鉄系廃液は、その
成分は塩化第二鉄を主成分とするが、これがエッチング
過程で銅、ニッケルあるいはクロム等の金属が溶解して
イオンとなっている。従って、このような銅・ニッケル
・クロムを含む塩化鉄系廃液に鉄粉(例えば、粒径1m
m以下、含有金属鉄90%以上の球状の転炉精製鉄粉)
を混入すると特定の条件(例えば、酸化還元電位ORP
が−100〜−300mV、PH2以下、温度40℃以
上、鉄イオン濃度260g/l以下)で銅が析出して該
酸廃液から除去される。そして、該残廃液からニッケル
を回収する場合には、PHを2以下として鉄粉を投入
し、更に例えばORP−450〜−520mV、鉄イオ
ン濃度260g/lとして、イオン化傾向の差からニッ
ケルを析出させて酸廃液から除去する。以上にようにし
て銅、ニッケルの除去された酸廃液からクロムを除去す
るのであるが、このクロムの回収は前記(1)、(2)
に示す反応式によってPH制御による塩化クロムの加水
分解により、酸廃液からCrが除去される。
In the method for purifying an iron chloride waste liquid containing chromium and the like according to the first aspect, the pH of the waste liquid is set to 2.3 to 5, the iron ion concentration is set to 220 g / l or less, and the reaction temperature is set to 40 g / l.
By setting the temperature to not less than ° C., the following reaction proceeded, the amount of iron deposits was suppressed, and the precipitation of chromium was performed efficiently. CrCl 3 (L) + 3H 2 O (L) → Cr (OH) 3 (S) + 3HCl (L) (1) 3HCl (L) + 3 / 2Fe (S) → 3 / 2FeCl 2 (L) + 3 / 2H 2 ( G) (2) In the method for purifying an iron chloride waste liquid containing chromium or the like according to claim 2, the component of the iron chloride waste liquid such as an etching waste liquid is mainly ferric chloride. During the etching process, metals such as copper, nickel and chromium are dissolved to form ions. Therefore, iron powder (for example, having a particle diameter of 1 m) is added to such an iron chloride waste liquid containing copper, nickel, and chromium.
m, spherical converter refined iron powder containing 90% or more metallic iron)
Is mixed under a specific condition (for example, the oxidation-reduction potential ORP
At −100 to −300 mV, PH 2 or less, temperature 40 ° C. or more, iron ion concentration 260 g / l or less), and copper is precipitated and removed from the acid waste liquid. When recovering nickel from the residual liquid, iron powder is added at a pH of 2 or less, and nickel is precipitated from the difference in ionization tendency at an ORP-450 to -520 mV and an iron ion concentration of 260 g / l. And remove from the acid waste liquor. As described above, chromium is removed from the acid waste liquid from which copper and nickel have been removed. This chromium is recovered by the methods (1) and (2).
Chromium chloride is removed from the acid waste solution by hydrolysis of chromium chloride by PH control according to the reaction formula shown below.

【0006】[0006]

【実施例】続いて、本発明に係るクロム等を含む塩化鉄
系廃液の浄液方法を具体化した実施例につき説明し、本
発明の理解に供する。ここに、図1は本発明の一実施例
に係る銅・ニッケル・クロムを含む塩化鉄系廃液の浄液
方法をステンレスのエッチングに使用した廃液に適用し
た場合の概略説明図である。図1に示すように、まず廃
液タンク10から脱銅槽11内に適量の銅・ニッケル・
クロムを含む塩化鉄系廃液の一例であるエッチング液を
入れ、加温して40℃以上し、更にPHを2以下とし、
OGPタンク12から粒径1mm以下の球状転炉精製鉄
粉を入れる。これによって廃液中の鉄イオン濃度が26
0g/l以下、そして酸化還元電位(ORP)が−10
0〜−300mVになるように調整する。これによって
以下の反応から銅が析出する。 2FeCl3 +Fe → 3FeCl2 (3) CuCl2 +Fe → FeCl2 +Cu (4) 以上の処理によって銅が析出するので、オーバーフロー
分をコーンタンク13に集めポンプ14によって液体サ
イクロン15に流し、比較的粒径の大きい鉄粉を除去し
て再度脱銅槽11に戻し、残りの懸濁液を遠心分離機1
6にかける。これによって、析出した銅が分離され、分
離された液体分は一旦クッションタンク17に蓄えられ
た後、脱ニッケル槽18に入れられる。
EXAMPLES Next, examples embodying a method for purifying an iron chloride waste liquid containing chromium and the like according to the present invention will be described to provide an understanding of the present invention. Here, FIG. 1 is a schematic explanatory view in the case where the method for purifying an iron chloride waste liquid containing copper, nickel and chromium according to one embodiment of the present invention is applied to a waste liquid used for etching stainless steel. As shown in FIG. 1, first, an appropriate amount of copper, nickel,
An etching solution, which is an example of an iron chloride waste solution containing chromium, is put therein, heated to 40 ° C. or more, and further reduced to a pH of 2 or less,
A spherical converter refined iron powder having a particle size of 1 mm or less is charged from the OGP tank 12. As a result, the concentration of iron ions in the waste liquid becomes 26
0 g / l or less, and an oxidation-reduction potential (ORP) of -10
Adjust so as to be 0 to -300 mV. Thereby, copper is precipitated from the following reaction. 2FeCl 3 + Fe → 3FeCl 2 (3) CuCl 2 + Fe → FeCl 2 + Cu (4) Since copper is precipitated by the above processing, the overflow is collected in the cone tank 13 and flowed to the liquid cyclone 15 by the pump 14, and the particle size is relatively large. Large iron powder is removed and returned to the copper removal tank 11 again.
Apply to 6. As a result, the deposited copper is separated, and the separated liquid is temporarily stored in the cushion tank 17 and then put into the nickel removal tank 18.

【0007】そして、脱ニッケル槽18においては、O
GPタンク19から転炉から回収された精製鉄粉と、必
要な場合には塩化第二鉄を入れてORP(−450〜−
520mV)、PH(2以下)及び鉄イオン濃度(26
0g/l以下)を調整して、温度を40℃以上に保ち、
次の反応を生じさせてNiを生じさせる。 NiCl2 +Fe → FeCl2 +Ni (5) この場合、投入した鉄の表面に不動態の膜を作り、反応
の進行を妨げる。そこで、少量の塩化第二鉄を混入する
ことによって、不動態の膜の生成を防止し、円滑な反応
を促進させる。該脱ニッケル槽18のオーバーフロー液
をコーンタンク20に入れて、ポンプ21によって汲み
上げられ液体サイクロン22によって粒径の大きい鉄粉
等を除去し希釈タンク23に入れる。ここで、析出した
ニッケルは鉄粉の周囲に付着するので、液体サイクロン
22で回収され、再度脱ニッケル槽18に入れられるこ
とになるので、適当な期間運転した後、攪拌装置を止め
て沈澱物からニッケルを回収する。
In the denickelization tank 18, O
The purified iron powder collected from the converter from the GP tank 19 and, if necessary, ferric chloride are added to the ORP (−450 to −450).
520 mV), PH (2 or less) and iron ion concentration (26
0 g / l or less) to maintain the temperature at 40 ° C. or more,
The following reaction occurs to produce Ni. NiCl 2 + Fe → FeCl 2 + Ni (5) In this case, a passive film is formed on the surface of the iron that has been charged, and the progress of the reaction is hindered. Therefore, by adding a small amount of ferric chloride, the formation of a passive film is prevented, and a smooth reaction is promoted. The overflow solution from the denickelization tank 18 is put into a cone tank 20, and iron powder having a large particle size is drawn up by a pump 21 and removed by a liquid cyclone 22. Here, since the deposited nickel adheres to the periphery of the iron powder, it is collected by the liquid cyclone 22 and is again put into the nickel removal tank 18. Therefore, after operating for an appropriate period, the stirring device is stopped and the sediment is removed. From the nickel.

【0008】ニッケル分が除去された酸廃液は一旦希釈
タンク23に投入されて、希釈水を入れて鉄イオン濃度
を下げて約120g/l程度に調整する。そしてこの
後、該希釈水タンク23の希釈液をポンプ24によって
汲み上げ、脱クロム槽25に入れる。クロムの塩化鉄溶
液からの分離は、PH制御による塩化クロムの加水分解
により、反応式は前記(1)、(2)の通りである。前
記反応の完結PHは、母液成分のFe2+濃度によって変
化する。その傾向はFe2+濃度が高いほど低PH領域に
なる。この現象はCr3+より同一PHでは安定なFe2+
が、高濃度になるほど加水分解開始PHが低いPH領域
に移行する。この為、Fe2+より不安定なCr3+の加水
分解終了PHは低PH領域で完結することになる。この
様子を表1に示す。
The acid waste liquid from which the nickel content has been removed is once introduced into a dilution tank 23, and diluted with water to adjust the iron ion concentration to about 120 g / l. Thereafter, the diluent in the diluting water tank 23 is pumped up by the pump 24 and put into the dechroming tank 25. The separation of chromium from the iron chloride solution is achieved by hydrolysis of chromium chloride under pH control, and the reaction formula is as described in the above (1) and (2). The complete pH of the reaction varies depending on the Fe 2+ concentration of the mother liquor component. The tendency is that the higher the Fe 2+ concentration, the lower the PH range. This phenomenon shows that Fe 2+ is more stable than Cr 3+ at the same PH.
However, as the concentration increases, the pH shifts to a PH region where the hydrolysis start PH is lower. Therefore, the hydrolysis termination PH of Cr 3+ , which is more unstable than Fe 2+ , is completed in the low PH region. This is shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】従って、前記脱クロム槽25に、OGPタ
ンク26から適当量の鉄粉を供給すると共に、PH調整
の為の塩酸等を供給する。そして、備えつけられている
PH計を見ながら、PHが3.5〜5.0(好ましくは
3.8〜4.0))に調整し、ORPを−450〜52
0mV、鉄イオン濃度は260g/l以下、温度40℃
以上に調整し、反応時間を60分以上取ると、前記
(1)の反応が促進され、水酸化クロムが沈澱し、浄液
される。この後、該脱クロム槽25の液をコーンタンク
27に入れ、ポンプ28によって汲み上げ液体サイクロ
ン29に流し、未反応鉄粉を分離し、遠心力脱水機30
によって生成水酸化物を分離し、浄液を回収する。以上
の実施例によって処理された液を表2に示す。
Therefore, an appropriate amount of iron powder is supplied to the dechroming tank 25 from the OGP tank 26, and hydrochloric acid or the like for adjusting pH is supplied. Then, while watching the provided PH meter, the pH is adjusted to 3.5 to 5.0 (preferably 3.8 to 4.0), and the ORP is set to -450 to 52.
0 mV, iron ion concentration 260 g / l or less, temperature 40 ° C
When the reaction time is 60 minutes or more after adjusting as described above, the reaction of the above (1) is promoted, chromium hydroxide precipitates, and the solution is purified. Thereafter, the liquid in the dechroming tank 25 is put into a cone tank 27, pumped up by a pump 28 and passed through a liquid cyclone 29 to separate unreacted iron powder, and a centrifugal dehydrator 30
The resulting hydroxide is separated and the purified liquid is recovered. Table 2 shows the liquids treated according to the above examples.

【0011】[0011]

【表2】 [Table 2]

【0012】なお、クロム除去工程でFe2+濃度120
〜140g/lが最適濃度であるから、そのままではエ
ッチング用にはリサイクルできない。しかし、鉄鋼業界
の酸洗廃液の鉄濃度と略同等である。従って酸洗廃液処
理用焙焼炉の高品位原料として使用することによって、
Fe2+は高純度酸化鉄に、Cl- は酸洗用塩酸に再生さ
れ資源は有効に活用される。
In the chromium removing step, an Fe 2+ concentration of 120
Since the optimum concentration is about 140 g / l, it cannot be recycled for etching as it is. However, it is almost equal to the iron concentration of the pickling waste liquid in the steel industry. Therefore, by using it as a high-grade raw material for a roasting furnace for treating pickling waste liquid,
Fe 2+ is regenerated into high-purity iron oxide and Cl is regenerated into hydrochloric acid for pickling, so that resources are effectively used.

【0013】次に、クロム等を含む塩化鉄系廃液として
Fe2+(69.2g/l)、Fe3+(128.7g/
l)及びCr+3(2.26g/l)を含む塩化鉄系廃液
に本発明の他の実施例を適用した例について説明する。
まず、これらの廃液を4000mlを容器に入れ、上水
で希釈して4312mlとする。そして、金属鉄242
gを含むOGP257gを入れて30分間攪拌する。こ
れによって、Fe2+は240.5g/l、Fe3+は1.
02g/l、Cr3+は2.30g/lとなることが確認
された。この溶液を定量ポンプで高速反応槽(ベッドと
して200ml初期投入している)に送り、OGP70
0gを投入し、ORPを500mVに調整すると共に、
35%の塩酸500mlを上水131mlで希釈した希
釈塩酸をPH調整液と注入し、反応を起こさせた。その
結果を表3に示す。
Next, Fe 2+ (69.2 g / l) and Fe 3+ (128.7 g /
An example in which another embodiment of the present invention is applied to an iron chloride waste liquid containing 1) and Cr +3 (2.26 g / l) will be described.
First, 4000 ml of these waste liquids are placed in a container and diluted with tap water to make 4312 ml. And metal iron 242
g of OGP containing 257 g, and stirred for 30 minutes. As a result, Fe 2+ contained 240.5 g / l and Fe 3+ contained 1.0.5 g / l.
It was confirmed that 02 g / l and Cr 3+ were 2.30 g / l. This solution was sent to a high-speed reaction tank (200 ml was initially charged as a bed) by a metering pump, and OGP70
0g, adjust ORP to 500mV,
Dilute hydrochloric acid obtained by diluting 500 ml of 35% hydrochloric acid with 131 ml of tap water was injected with the pH adjustment solution to cause a reaction. Table 3 shows the results.

【0014】[0014]

【表3】 [Table 3]

【0015】表3に示すように、最初の1時間ではPH
は1.75となり、Cr3+は2.151g/lであった
が、PHを2.00に変更して3Hr経過した後は、C
3+は1.555/lに減少し、更にPHを2.4に調
整して1Hr経過した後は、Cr3+が0.031g/l
となり、著しくクロムイオンの量を減少させた。
As shown in Table 3, PH for the first hour
Was 1.75 and Cr 3+ was 2.151 g / l, but after 3 hours passed after changing PH to 2.00, C
The r 3+ was reduced to 1.555 / l, and after the pH was adjusted to 2.4 and 1 hour passed, the Cr 3+ was reduced to 0.031 g / l.
And the amount of chromium ions was significantly reduced.

【発明の効果】請求項1または請求項2に記載のクロム
等を含む塩化鉄系廃液の浄液方法は以上の説明からも明
らかなように、装置全体を比較的安価に製造でき、クロ
ムの高効率除去及びこれらに合わせて銅・ニッケルの高
効率除去が可能なクロム等を含む塩化鉄系廃液の浄液方
法が提供できることになった。
As is clear from the above description, the method for purifying an iron chloride waste liquid containing chromium or the like according to claim 1 or 2 can manufacture the entire apparatus at a relatively low cost, and Thus, it is possible to provide a method for purifying an iron chloride-based waste liquid containing chromium or the like, which enables high-efficiency removal and copper / nickel removal in accordance therewith.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るクロム等を含む塩化鉄
系廃液の浄液方法のシステム構成図である。
FIG. 1 is a system configuration diagram of a method for purifying an iron chloride waste liquid containing chromium and the like according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 廃液タンク 11 脱銅槽 12 OGPタンク 13 コーンタンク 14 ポンプ 15 液体サイクロン 16 遠心分離機 17 クッションタンク 18 脱ニッケル槽 19 OGPタンク 20 コーンタンク 21 ポンプ 22 液体サイクロン 23 希釈タンク 24 ポンプ 25 脱クロム槽 26 OGPタンク 27 コーンタンク 28 ポンプ 29 液体サイクロン 30 遠心力脱水機 DESCRIPTION OF SYMBOLS 10 Waste liquid tank 11 Copper removal tank 12 OGP tank 13 Cone tank 14 Pump 15 Liquid cyclone 16 Centrifuge 17 Cushion tank 18 Nickel removal tank 19 OGP tank 20 Cone tank 21 Pump 22 Liquid cyclone 23 Dilution tank 24 Pump 25 Dechrome tank 26 OGP tank 27 Cone tank 28 Pump 29 Liquid cyclone 30 Centrifugal dehydrator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 博徳 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 昭53−23898(JP,A) 特開 平5−125563(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/62 C01G 49/10 C23F 1/46 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hironori Matsuo 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Yawata Works (56) References JP-A-53-23898 (JP, A) JP-A-5-125563 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/62 C01G 49/10 C23F 1/46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 クロムを含む塩化鉄系の廃液に鉄粉を混
入してPHを2.3〜5とすると共に、反応温度を40
℃以上、鉄イオン濃度を220g/l以下に制御してク
ロムを沈澱させることを特徴とするクロム等を含む塩化
鉄系廃液の浄液方法。
1. An iron powder is mixed with an iron chloride waste liquid containing chromium to adjust the pH to 2.3 to 5, and the reaction temperature to 40.
A method for purifying an iron chloride-based waste liquid containing chromium or the like, characterized in that chromium is precipitated by controlling the iron ion concentration to 220 g / l or lower at a temperature of not less than 220 ° C.
【請求項2】 銅・ニッケル・クロムを含む塩化鉄系の
廃液に鉄粉を混入して所定条件で銅を沈澱させる工程
と、前記工程で銅が除去された廃液に鉄粉を混入すると
共にPHを2以下としてニッケルを沈澱させる工程と、
該ニッケルが除去された廃液のPHを2.3〜5とし、
反応温度を40℃以上、鉄イオン濃度を140g/l以
下に制御して廃液中のクロムを沈降分離することを特徴
とするクロム等を含む塩化鉄系廃液の浄液方法。
2. A step of mixing iron powder into an iron chloride waste liquid containing copper, nickel and chromium to precipitate copper under predetermined conditions, and mixing iron powder into the waste liquid from which copper has been removed in said step. Precipitating nickel with a pH of 2 or less;
The pH of the waste liquid from which the nickel has been removed is set to 2.3 to 5,
A method for purifying an iron chloride waste liquid containing chromium or the like, characterized in that chromium in the waste liquid is precipitated and separated by controlling the reaction temperature to 40 ° C. or more and the iron ion concentration to 140 g / l or less.
JP3326856A 1991-11-14 1991-11-14 Purification method of iron chloride waste liquid containing chromium, etc. Expired - Lifetime JP3018020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3326856A JP3018020B2 (en) 1991-11-14 1991-11-14 Purification method of iron chloride waste liquid containing chromium, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3326856A JP3018020B2 (en) 1991-11-14 1991-11-14 Purification method of iron chloride waste liquid containing chromium, etc.

Publications (2)

Publication Number Publication Date
JPH05138178A JPH05138178A (en) 1993-06-01
JP3018020B2 true JP3018020B2 (en) 2000-03-13

Family

ID=18192486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326856A Expired - Lifetime JP3018020B2 (en) 1991-11-14 1991-11-14 Purification method of iron chloride waste liquid containing chromium, etc.

Country Status (1)

Country Link
JP (1) JP3018020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398693C (en) * 2005-08-11 2008-07-02 孙卓 Multifunction composite magnetic controlled plasma sputtering device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106925418B (en) * 2015-12-29 2019-10-08 四川省银河化学股份有限公司 A kind of apparatus system and method for chromium slag washing
WO2025058553A1 (en) * 2023-09-12 2025-03-20 Anferra Ab Process for recycling steel swarf sludge to produce an iron chloride solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398693C (en) * 2005-08-11 2008-07-02 孙卓 Multifunction composite magnetic controlled plasma sputtering device

Also Published As

Publication number Publication date
JPH05138178A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
TW438725B (en) Method of treating waste water to remove harmful ion by coagulating sedimentation
JP2003512160A (en) Method for reducing the concentration of dissolved metal and metalloid in aqueous solution
CN111018192A (en) Method for preparing high-purity ferrous iron by using heavy metal ions in ferrous solution precipitated by sodium sulfide solid
JPS60103028A (en) Treatment of iron or zinc-containing waste hydrochloric acid
JP2012224901A (en) Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same
JP3018020B2 (en) Purification method of iron chloride waste liquid containing chromium, etc.
USH1852H (en) Waste treatment of metal plating solutions
US4889697A (en) Method of refining ferrous ion-containing acid solution
JP3739845B2 (en) Treatment method of ferric chloride waste liquid
WO2016136087A1 (en) Wet smelting method for nickel oxide ore
RU2153026C2 (en) Purification of solutions containing metal
JPH0128635B2 (en)
CN115135607B (en) High-concentration iron-based flocculant and its production method
WO2021084986A1 (en) High-concentration iron-based flocculant, and method for producing same
JP2835772B2 (en) Heavy metal removal method for iron chloride waste liquid
JPS5846355B2 (en) Treatment method for fluorine-containing ammonia waste liquid
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
JP2018177547A (en) Iron removal method of crude nickel sulfate solution
JP2847864B2 (en) Chromium-containing wastewater treatment method
JP2000167571A (en) Treatment method for selenium-containing water
JPH085676B2 (en) A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel
JPH09150164A (en) Treatment of selenium-containing waste water
JP3597907B2 (en) Regeneration method of ferric chloride solution
CN1348020A (en) Method of eliminating nickel and heavy metal ion from waste ferric chloride liquid after etching or pickling
JPH10263557A (en) Treatment of selenium-containing waste water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

EXPY Cancellation because of completion of term