JP3012101B2 - Glass optical element molding equipment - Google Patents
Glass optical element molding equipmentInfo
- Publication number
- JP3012101B2 JP3012101B2 JP4332815A JP33281592A JP3012101B2 JP 3012101 B2 JP3012101 B2 JP 3012101B2 JP 4332815 A JP4332815 A JP 4332815A JP 33281592 A JP33281592 A JP 33281592A JP 3012101 B2 JP3012101 B2 JP 3012101B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- electrode
- heat
- heated
- optical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/084—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
- C03B11/086—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/10—Die base materials
- C03B2215/11—Metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/14—Die top coat materials, e.g. materials for the glass-contacting layers
- C03B2215/20—Oxide ceramics
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガラス光学素子を直接
プレス成形により製造するためのガラス光学素子成形装
置に係わるものであって、特に通電加熱方式の成形装置
の通電用電極に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass optical element molding apparatus for manufacturing a glass optical element by direct press molding, and more particularly to an energizing electrode of an electric heating type molding apparatus. .
【0002】[0002]
【従来の技術】近年、光学ガラスを素材としたレンズの
製造方法は、高精度な金型を用いて加熱軟化したガラス
材料を精密プレスすることにより、所定の性能を有する
ガラス光学素子を得る方法が注目されている。2. Description of the Related Art In recent years, a method for producing a lens using optical glass as a material is to obtain a glass optical element having a predetermined performance by precision pressing a heat-softened glass material using a high-precision mold. Is attracting attention.
【0003】このガラス光学素子をプレス成形する装置
の金型及びガラス材料の加熱方法はいろいろ提案されて
いるが、成形用金型を保持する胴型を導電性材料で形成
して、胴型自体を通電することにより発熱させ金型及び
ガラス材料を加熱する通電加熱方式は、金型及びガラス
材料を効率良く均一に加熱することができ、大口径化や
マルチキャビティ化に非常に適した加熱方式である。ま
た、電気を直接熱に変換するため変換効率が高く消費電
力が少ない。しかも、発熱させる胴型自体の温度を直接
モニターすることができるため、胴型及び金型の温度を
コントロールしやすく、装置的にも他の加熱方式に比べ
小型化が可能になる。Various methods have been proposed for a mold and a heating method for a glass material of an apparatus for press-molding the glass optical element. However, a barrel for holding the molding die is formed of a conductive material, and the barrel itself is formed. The energization heating method, which heats the mold and the glass material by applying heat to the mold and heats the mold and the glass material, can heat the mold and the glass material efficiently and uniformly, making it a very suitable heating method for large diameters and multi-cavities. It is. Also, since electricity is directly converted to heat, conversion efficiency is high and power consumption is low. In addition, since the temperature of the body mold itself to be heated can be directly monitored, the temperature of the body mold and the mold can be easily controlled, and the size of the apparatus can be reduced as compared with other heating methods.
【0004】従来の通電加熱方式の金型、胴型及び電極
の構成例を図2に示す。金型1は炭化珪素(SiC)で
構成し、金型1を保持する胴型2は炭化珪素(SiC)
含有の炭素系複合材料で構成され、円筒状に形成されて
いる。この胴型2に発熱に必要な6kVA程度の電力を
供給する電線5を、銅製電極13を介してステンレスの
ネジ7及び耐熱性バネ6で機械的に取り付けている。こ
こで、胴型2自体に電流を流し発熱させ、この発熱した
胴型2の伝熱及び熱輻射により金型1及びガラス材料8
が加熱される。この金型1の温度を熱電対11で測温し
ており、ガラスの軟化点近傍の温度まで加熱され、ガラ
ス材料8が軟化後バックアッププレート9を介して下軸
10を上昇させて成形を行う。プレス成形した後冷却し
ガラスの転移点以下の温度になったところで、下軸10
を降下させて成形されたガラス光学素子を取り出すよう
にしたものが、本願出願人から提案されている(特願平
4−95328号)。[0004] Fig. 2 shows an example of the configuration of a conventional energization heating type mold, body mold and electrodes. The mold 1 is made of silicon carbide (SiC), and the body mold 2 holding the mold 1 is made of silicon carbide (SiC).
And is formed in a cylindrical shape. An electric wire 5 for supplying electric power of about 6 kVA necessary for heat generation to the body mold 2 is mechanically attached to the body mold 2 with a stainless steel screw 7 and a heat-resistant spring 6 via a copper electrode 13. Here, an electric current is applied to the body mold 2 itself to generate heat, and the heat and heat radiation of the heated body mold 2 cause the mold 1 and the glass material 8 to be heated.
Is heated. The temperature of the mold 1 is measured by a thermocouple 11 and is heated to a temperature near the softening point of the glass. After the glass material 8 is softened, the lower shaft 10 is raised via the backup plate 9 to perform molding. . After being pressed and cooled to a temperature below the glass transition temperature, the lower shaft 10
Has been proposed by the present applicant (Japanese Patent Application No. 4-95328).
【0005】[0005]
【従来技術の課題】通電加熱方式は成形用金型及びガラ
ス材料を均一に加熱する方法として非常に適した加熱方
式であるが、導電性材料で形成された胴型と銅の電極と
では熱膨張係数が5倍以上違うため胴型と電極がなじみ
にくい。すなわち、温度の昇降を繰り返すと銅の電極の
内側が変形してしまい、胴型と電極の接触面積が減少
し、局部的に電流の片寄りや発熱が起こってしまう。そ
のため、胴型が均一に加熱されなくなり、成形用金型及
びガラス材料の温度が不均一となり、成形されたレンズ
の形状精度が悪くなってしまう。2. Description of the Related Art An electric heating method is a heating method which is very suitable as a method for uniformly heating a molding die and a glass material. However, a heating method is not suitable for a body mold made of a conductive material and a copper electrode. Since the expansion coefficient is different by more than 5 times, the body type and the electrode are hardly adapted. That is, when the temperature is repeatedly increased and decreased, the inside of the copper electrode is deformed, the contact area between the body and the electrode is reduced, and current bias and heat generation occur locally. As a result, the body mold is not heated uniformly, the temperature of the molding die and the temperature of the glass material become non-uniform, and the shape accuracy of the molded lens deteriorates.
【0006】また、胴型をより均一に加熱するために
は、胴型の広い範囲にわたり電流を均一に流すことが望
ましいが、電極を大きく長くしなければならないため、
特に胴型が大きくなる大口径化やマルチキャビティ化が
困難である。Further, in order to heat the body more uniformly, it is desirable to make the current flow uniformly over a wide range of the body. However, since the electrodes must be greatly lengthened,
In particular, it is difficult to increase the diameter of the body mold and increase the number of cavities.
【0007】更に、胴型の曲面部には電極を取り付ける
ことが困難なため、胴型の形状及び大きさが制限される
という問題がある。Further, since it is difficult to attach an electrode to the curved surface of the body, there is a problem that the shape and size of the body are limited.
【0008】[0008]
【課題を解決するための手段】本発明は、成形用金型と
該金型を保持する胴型とを具備し、導電性材料で形成し
た該胴型自体を通電発熱させてガラス光学素子を加熱成
形するプレス成形装置において、該胴型の表面の一部又
は全部に主としてAg−Cu−TiまたはCu−Ti合
金から成る該胴型と一体化した通電用電極を形成する。
この通電用電極の上に炭素で形成された補助電極を重ね
て、金属製のネジ及び耐熱性バネにより機械的に取り付
け、発熱に必要な電力を胴型に供給する。SUMMARY OF THE INVENTION The present invention comprises a molding die and a barrel for holding the mold, and the body formed of a conductive material is energized and heated to produce a glass optical element. In a press forming apparatus for performing heat forming, a current-carrying electrode formed of Ag-Cu-Ti or a Cu-Ti alloy and integrated with the die is formed on a part or the entire surface of the die.
An auxiliary electrode made of carbon is superimposed on the current-carrying electrode and mechanically attached with a metal screw and a heat-resistant spring to supply power required for heat generation to the drum.
【0009】[0009]
【作用】前記構成によれば、導電性材料で形成された胴
型の表面に胴型材料よりも低抵抗である通電用電極が胴
型と一体に形成され、密着性が非常に強く、熱膨張係数
が2倍以上違っていても剥離しない。そのため胴型と電
極の接触面積が減少して局部的に電流の片寄りや発熱が
起こることがなくなる。According to the above construction, a current-carrying electrode having a lower resistance than the body material is formed integrally on the surface of the body formed of a conductive material, and the adhesion is extremely strong. Even if the expansion coefficients differ by more than twice, they do not peel. For this reason, the contact area between the body die and the electrode is reduced, so that local current bias and heat generation do not occur locally.
【0010】[0010]
【実施例】本発明の実施例を図面を用いて説明する。こ
こで、従来例と共通する構成要素には同一の番号を付し
てある。Embodiments of the present invention will be described with reference to the drawings. Here, the same components as those in the conventional example are denoted by the same reference numerals.
【0011】実験例1 図1は、金型、胴型及び電極の構成図である。金型1
は、炭化珪素(SiC、体積抵抗率:5×10-1Ωm)
で構成し、その成形面にCVD法によりSiC膜を厚さ
数100μm成膜し、このSiC膜の表面をRa=1n
m以下になるように鏡面仕上げをする。その金型1を保
持する胴型2は、炭化珪素(SiC)含有の炭素系複合
材料(体積抵抗率:5×10-4Ωm)で構成し円筒状に
形成する。この胴型2の両端の平面部2a及び曲面部2
b、2cにメタライズ用Ag−Cu−Ti合金のペース
トを塗布し、焼成炉にて真空中で焼成し、胴型の表面を
メタライズして通電用電極3を形成する。この通電用電
極3の上に厚さ2mm程度の炭素で形成された補助電極
4を重ね、電力を供給する電線5を金属製のネジ7及び
耐熱性バネ6で機械的に取り付ける。 Experimental Example 1 FIG. 1 is a structural diagram of a mold, a body mold and electrodes. Mold 1
Is silicon carbide (SiC, volume resistivity: 5 × 10 −1 Ωm)
A SiC film having a thickness of several hundred μm is formed on the molding surface by the CVD method, and the surface of this SiC film is Ra = 1n
Mirror finish to less than m. The body mold 2 holding the mold 1 is made of a carbon-based composite material (volume resistivity: 5 × 10 −4 Ωm) containing silicon carbide (SiC) and is formed in a cylindrical shape. The flat portion 2a and the curved surface portion 2 at both ends of the body mold 2
A paste of a metallizing Ag-Cu-Ti alloy is applied to b and 2c, and the paste is fired in a firing furnace in a vacuum to metallize the surface of the body mold to form the current-carrying electrode 3. An auxiliary electrode 4 made of carbon having a thickness of about 2 mm is overlapped on the current-carrying electrode 3, and an electric wire 5 for supplying electric power is mechanically attached with a metal screw 7 and a heat-resistant spring 6.
【0012】ここで、胴型2に最大4kVA程度の電力
を供給し加熱実験を行った。従来は、対向した銅製電極
13の間の胴型の部分から局部的に発熱し、胴型の熱伝
導によって胴型全体が加熱されていった。それに対し
て、本実験では胴型2は通電用電極3が長く広いため胴
型2全体が発熱し胴型2全体が加熱され、従来よりも胴
型2をより均一に加熱することができた。また、胴型2
を700℃以上まで加熱したが、通電用電極3の変形及
び剥離等の異常は全く見られなかった。Here, a heating experiment was performed by supplying power of about 4 kVA at the maximum to the drum mold 2. Conventionally, heat is locally generated from the body-shaped portion between the opposed copper electrodes 13, and the entire body-shaped body is heated by heat conduction of the body-shaped body. On the other hand, in the present experiment, the body mold 2 has a long and wide current-carrying electrode 3, so that the entire body mold 2 generates heat and the whole body mold 2 is heated, so that the body mold 2 can be heated more uniformly than in the past. . In addition, body type 2
Was heated to 700 ° C. or higher, but no abnormality such as deformation and peeling of the current-carrying electrode 3 was observed at all.
【0013】次に、ガラス材料8としてPBL6(LL
F6)を用いて外形φ33mm、肉厚6.6mm、R1
=35mm、R2=71mmの両凸レンズを成形した。
ガラス材料8を下型用金型1の上にセットし、非酸化性
雰囲気中(N2 ガス中)で通電加熱方式により590℃
まで加熱し、240sec保持した後、500kgfの
圧力で120sec間加圧した。プレス成形後、200
℃以下の温度まで冷却した後、型を開き成形された両凸
レンズを取り出した。Next, PBL 6 (LL) is used as the glass material 8.
F6), outer diameter φ33 mm, wall thickness 6.6 mm, R1
= 35 mm and R2 = 71 mm were molded.
The glass material 8 is set on the lower mold 1 and is heated to 590 ° C. in a non-oxidizing atmosphere (in N 2 gas) by an electric heating method.
After heating for 240 sec, the pressure was increased to 500 kgf for 120 sec. After press molding, 200
After cooling to a temperature of not more than ℃, the mold was opened and the formed biconvex lens was taken out.
【0014】従来は、成形レンズの電極方向にアス(部
品の光学的表面の直径方向による差異)が発生していた
が、実験例1で得られた成形レンズは全くアスがなく、
形状精度がλ/2以下に向上した。Conventionally, asbestos (difference due to the diameter direction of the optical surface of a part) occurs in the electrode direction of the molded lens, but the molded lens obtained in Experimental Example 1 has no asbestos.
The shape accuracy has been improved to λ / 2 or less.
【0015】実験例2 次に、実験例2について図面を用いて説明する。図1に
おいて、金型1及び胴型2は実験例1と同様のものを使
用し、その胴型2の両端の平面部2a及び曲面部2b、
2cにメタライズ用Cu−Ti合金のペーストを塗布
し、焼成炉にて真空中で焼成し、胴型2の表面をメタラ
イズして通電用電極3を形成する。 Experimental Example 2 Next, Experimental Example 2 will be described with reference to the drawings. In FIG. 1, a mold 1 and a body mold 2 used are the same as those in the experimental example 1, and the plane part 2 a and the curved surface part 2 b at both ends of the body mold 2
A paste of a metallizing Cu-Ti alloy is applied to 2c and fired in a firing furnace in a vacuum to metallize the surface of the body mold 2 to form the current-carrying electrodes 3.
【0016】ここで、胴型2に最大4kVA程度の電力
を供給し加熱実験を行った。実験例1と同様に、胴型2
全体が発熱し胴型2全体が加熱され、従来よりも胴型2
をより均一に加熱することができた。また、Cu−Ti
合金のメタライズにより形成した通電用電極3はAg−
Cu−Ti合金に比べて耐熱温度が高いため、胴型2を
850℃以上まで加熱しても、実験例1と同様に通電用
電極3の変形及び剥離等の異常は全く見られなかった。Here, a heating experiment was performed by supplying electric power of at most about 4 kVA to the drum mold 2. As in the case of the experimental example 1, the body mold 2
The whole body is heated and the whole body 2 is heated, and the body 2
Was heated more uniformly. In addition, Cu-Ti
The current-carrying electrode 3 formed by metallizing the alloy is made of Ag-
Since the heat resistance temperature is higher than that of the Cu-Ti alloy, even when the body mold 2 is heated to 850 ° C or more, no abnormality such as deformation and peeling of the current-carrying electrode 3 was observed at all, as in Experimental Example 1.
【0017】次に、この胴型2を用いて実験例1と同様
に両凸レンズをプレス成形し、実験例1と同等の特性の
成形レンズを得ることができた。Next, a biconvex lens was press-molded using this barrel mold 2 in the same manner as in Experimental Example 1 to obtain a molded lens having the same characteristics as in Experimental Example 1.
【0018】[0018]
【発明の効果】以上説明したように本発明によれば、導
電性材料で形成された胴型の表面をAg−Cu−Tiま
たはCu−Ti合金でメタライズするため、メタライズ
された胴型の表面自体が通電用電極になり、またAg−
Cu−TiまたはCu−Ti合金が胴型の材料自体に浸
透して胴型と一体になるため、密着性が非常に強く、熱
膨張係数が2倍以上違っていても剥離しない。そのため
胴型と電極の接触面積が減少して局部的に電流の片寄り
や発熱が起こる様な不具合がなくなる。As described above, according to the present invention, since the surface of the barrel formed of a conductive material is metallized with Ag-Cu-Ti or Cu-Ti alloy, the surface of the metallized barrel is formed. The electrode itself becomes a current-carrying electrode, and Ag-
Since Cu-Ti or Cu-Ti alloy penetrates into the body material of the body and becomes integral with the body, the adhesion is very strong, and even if the coefficient of thermal expansion differs by more than twice, it does not peel. For this reason, the contact area between the body die and the electrode is reduced, and the disadvantage that the current is locally deviated or heat is generated is eliminated.
【0019】また、メタライズ処理は胴型の曲面部分に
も施すことができるため、電極の形状や大きさを自由に
形成することができる。そのため、胴型の広い範囲にわ
たり均一に電流を流すことができ、大口径化やマルチキ
ャビティ化により胴型が大きくなっても、胴型をより均
一に加熱することができる。したがって、成形用金型及
びガラス材料をより均一に加熱することができ、成形さ
れたレンズに全くアスがなく、また形状精度を向上させ
ることができる。Further, since the metallizing process can be applied to the curved surface portion of the body, the shape and size of the electrode can be freely formed. Therefore, a current can be uniformly applied over a wide range of the die, and even if the die becomes large due to an increase in diameter or multi-cavity, the die can be more uniformly heated. Therefore, the molding die and the glass material can be heated more uniformly, the molded lens has no astigmatism, and the shape accuracy can be improved.
【図1】本発明の金型、胴型及び電極の概略構成図であ
る。FIG. 1 is a schematic configuration diagram of a mold, a body mold, and an electrode of the present invention.
【図2】従来の通電加熱方式の金型、胴型及び電極の概
略構成図である。FIG. 2 is a schematic configuration diagram of a conventional energization heating type mold, body mold, and electrodes.
1 金型 2 胴型 3 通電用電極 4 補助電極 5 電線 6 耐熱性バネ 7 ネジ 8 ガラス材料 9 バックアッププレート 10 下軸 11 熱電対 DESCRIPTION OF SYMBOLS 1 Die 2 Drum 3 Conducting electrode 4 Auxiliary electrode 5 Electric wire 6 Heat resistant spring 7 Screw 8 Glass material 9 Backup plate 10 Lower shaft 11 Thermocouple
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−80431(JP,A) 特開 平6−92659(JP,A) 特開 平5−294641(JP,A) 特開 昭61−266321(JP,A) 特開 昭62−292639(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 11/00 C03B 11/12 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-6-80431 (JP, A) JP-A-6-92659 (JP, A) JP-A-5-294641 (JP, A) JP-A-61- 266321 (JP, A) JP-A-62-292639 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 11/00 C03B 11/12
Claims (1)
備し、導電性材料で形成した該胴型自体を通電発熱させ
てガラス光学素子を加熱成形するプレス成形装置におい
て、該胴型の表面の一部又は全部に主としてAg−Cu
−TiまたはCu−Ti合金から成る該胴型と一体化し
た通電用電極を形成することを特徴とするガラス光学素
子成形装置。1. A press molding apparatus comprising: a molding die and a body die for holding the mold, wherein the body die itself made of a conductive material is energized and heated to heat and mold a glass optical element. Ag-Cu is mainly applied to part or all of the surface of the body mold.
A glass optical element forming apparatus, wherein a current-carrying electrode integrated with the body die made of Ti or Cu-Ti alloy is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4332815A JP3012101B2 (en) | 1992-12-14 | 1992-12-14 | Glass optical element molding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4332815A JP3012101B2 (en) | 1992-12-14 | 1992-12-14 | Glass optical element molding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06171961A JPH06171961A (en) | 1994-06-21 |
JP3012101B2 true JP3012101B2 (en) | 2000-02-21 |
Family
ID=18259115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4332815A Expired - Fee Related JP3012101B2 (en) | 1992-12-14 | 1992-12-14 | Glass optical element molding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3012101B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004038793A1 (en) * | 2004-08-09 | 2006-02-23 | Docter Optics Gmbh | Method and device for producing precision lenses |
-
1992
- 1992-12-14 JP JP4332815A patent/JP3012101B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06171961A (en) | 1994-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5280156A (en) | Wafer heating apparatus and with ceramic substrate and dielectric layer having electrostatic chucking means | |
KR100295145B1 (en) | Susceptors | |
EP0929204A2 (en) | Ceramic Heater | |
US4444352A (en) | Method of thermo-compression diffusion bonding together metal surfaces | |
JPH0631185B2 (en) | Method for manufacturing silicon carbide heating element | |
JP2002527331A (en) | Molding tools with structure-forming surfaces for making structures on glass and their use in structure-forming channel plates | |
JPH02129884A (en) | Infrared ray radiating body | |
JP3012101B2 (en) | Glass optical element molding equipment | |
JP3810216B2 (en) | Sample heating apparatus, processing apparatus, and sample processing method using the same | |
CA1070856A (en) | Method of making a transducer | |
JP2003221244A5 (en) | ||
JPH051304A (en) | Production of gradient function material | |
JPH0692659A (en) | Mold for molding glass optical element | |
JPS6136180A (en) | Treatment of ceramics | |
JPH06295779A (en) | Ceramic heater | |
US6727787B2 (en) | Method and device for achieving a high-Q microwave resonant cavity | |
JPH0680431A (en) | Glass optical element molding machine | |
JPH06239630A (en) | Apparatus for forming glass optical element | |
JPH05294643A (en) | Molding device for glass optical element | |
JP2998999B2 (en) | Ceramic heater | |
JPH1154245A (en) | Ceramic heater | |
JPH05294641A (en) | Device for molding optical element of glass | |
CN117821905A (en) | Tantalum carbide coated tantalum heating wire, evaporation source and preparation method thereof | |
JP3415414B2 (en) | Thermocompression tools | |
JPH0569157U (en) | Terminal for fixing heating resistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |