JP3009822B2 - Construction machine cylinder control circuit - Google Patents
Construction machine cylinder control circuitInfo
- Publication number
- JP3009822B2 JP3009822B2 JP6101198A JP10119894A JP3009822B2 JP 3009822 B2 JP3009822 B2 JP 3009822B2 JP 6101198 A JP6101198 A JP 6101198A JP 10119894 A JP10119894 A JP 10119894A JP 3009822 B2 JP3009822 B2 JP 3009822B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- valve
- line
- throttle
- arm cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010276 construction Methods 0.000 title claims description 15
- 239000003921 oil Substances 0.000 claims description 56
- 230000008929 regeneration Effects 0.000 claims description 55
- 238000011069 regeneration method Methods 0.000 claims description 55
- 238000004891 communication Methods 0.000 claims description 18
- 230000007246 mechanism Effects 0.000 claims description 13
- 239000010720 hydraulic oil Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000012935 Averaging Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000009412 basement excavation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2217—Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2203—Arrangements for controlling the attitude of actuators, e.g. speed, floating function
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2225—Control of flow rate; Load sensing arrangements using pressure-compensating valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/024—Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20576—Systems with pumps with multiple pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30525—Directional control valves, e.g. 4/3-directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/3056—Assemblies of multiple valves
- F15B2211/30565—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
- F15B2211/3058—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/31—Directional control characterised by the positions of the valve element
- F15B2211/3105—Neutral or centre positions
- F15B2211/3116—Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/315—Directional control characterised by the connections of the valve or valves in the circuit
- F15B2211/31523—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
- F15B2211/31529—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having a single pressure source and a single output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/315—Directional control characterised by the connections of the valve or valves in the circuit
- F15B2211/3157—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
- F15B2211/31576—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/329—Directional control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40515—Flow control characterised by the type of flow control means or valve with variable throttles or orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41527—Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
- F15B2211/41536—Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve being connected to multiple ports of an output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41581—Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/428—Flow control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/465—Flow control with pressure compensation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7053—Double-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7058—Rotary output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7135—Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7142—Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/75—Control of speed of the output member
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、バックホーショベルま
たは油圧ショベル(旋回型)等の建設機械のシリンダ制
御回路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder control circuit for a construction machine such as a backhoe shovel or a hydraulic shovel (rotating type).
【0002】[0002]
【従来の技術】図5は、油圧ショベル(旋回型)に使用
されている従来の油圧回路を示し、下部走行体(履帯)
を駆動するための左右のブレーキ付トラベルモータ11,
12、下部走行体に対し上部旋回体を旋回作動するための
スイングモータ13、上部旋回体に取付けられたフロント
作業機(以下、フロントリンケージという)を作動する
ための下記の各種油圧シリンダを制御対象とするもので
ある。2. Description of the Related Art FIG. 5 shows a conventional hydraulic circuit used in a hydraulic excavator (slewing type), and a lower traveling body (crawler).
Left and right travel motors with brakes 11 for driving
12, a swing motor 13 for turning the upper revolving unit relative to the lower traveling unit, and various hydraulic cylinders for operating a front work machine (hereinafter, referred to as a front linkage) mounted on the upper revolving unit to be controlled. It is assumed that.
【0003】図6に示されるように、フロントリンケー
ジ14は、ブーム15、アーム16およびバケット17がピン2
1,22,23により順次連結され、そして、ブーム15はブ
ームシリンダ24により、アーム16はアームシリンダ25に
より、バケット17はバケットシリンダ26によりそれぞれ
回動される。各部材の重心位置を黒点で示す。As shown in FIG. 6, a front linkage 14 includes a boom 15, an arm 16, and a
The boom 15 is rotated by a boom cylinder 24, the arm 16 is rotated by an arm cylinder 25, and the bucket 17 is rotated by a bucket cylinder 26, respectively. The position of the center of gravity of each member is indicated by a black dot.
【0004】図5に戻って、車載エンジン27により駆動
される油圧ポンプ28から吐出された作動油は、各油圧モ
ータ11,12,13および各油圧シリンダ24,25,26に対応
する各種の操作弁(コントロールバルブ)111 ,121 ,
131 ,241 ,242 ,251 ,252 ,261 を経て、これらの
各油圧アクチュエータに供給される。Psは作動油供給ラ
イン、Tはタンクに連通する作動油排出用のタンクライ
ンを示す。Returning to FIG. 5, hydraulic oil discharged from a hydraulic pump 28 driven by an on-board engine 27 is used for various operations corresponding to the hydraulic motors 11, 12, 13 and the hydraulic cylinders 24, 25, 26. Valves (control valves) 111, 121,
Via 131, 241, 242, 251, 252, 261, these are supplied to the respective hydraulic actuators. Ps indicates a hydraulic oil supply line, and T indicates a tank line for hydraulic oil discharge communicating with the tank.
【0005】前記アームシリンダ25のヘッド側25a およ
びロッド側25b には、左右の油圧ポンプ28からそれぞれ
吐出されてアーム用一次操作弁251 およびアーム用二次
操作弁252 を経た作動油が合流供給される。To the head side 25a and the rod side 25b of the arm cylinder 25, hydraulic oil discharged from the left and right hydraulic pumps 28 and passed through the arm primary operation valve 251 and the arm secondary operation valve 252 is combined and supplied. You.
【0006】アームシリンダ25のロッド側25b からタン
クへの戻りライン(アームシリンダ伸張操作時)は、ア
ーム用二次操作弁252 側に設けられたチェック弁31のた
め、アーム用一次操作弁251 を経由する。その戻り油は
アーム用一次操作弁251 内の戻り側絞り32を経由する。The return line from the rod side 25b of the arm cylinder 25 to the tank (when the arm cylinder is extended) is connected to the arm primary operation valve 251 by the check valve 31 provided on the arm secondary operation valve 252 side. Via The return oil passes through the return throttle 32 in the primary operation valve 251 for the arm.
【0007】この絞り32は、アーム用一次操作弁251 が
フルストロークしても、他の一般的開口面積をもつ弁開
口面積カーブに比してかなり絞り込まれており、アーム
用一次操作弁251 のロッド側25b からタンクへの戻り流
量を強く制限している。その理由は、アームシリンダ25
の伸張操作を空中で行う場合(水平均し作業等)の重力
によるヘッド側ボイディングを防止するためである。[0007] Even when the arm primary operation valve 251 has a full stroke, the throttle 32 is considerably narrower than a valve opening area curve having another general opening area. The return flow from the rod side 25b to the tank is strongly restricted. The reason is that arm cylinder 25
This is to prevent head-side voiding due to gravity when performing the stretching operation in the air (e.g., averaging with water).
【0008】上記のように、アーム用一次操作弁251 内
の戻り側絞り32により、フルストローク時および中間ス
トローク域での開口面積を小さく押え込んでいても、図
6(A)のようにショベルのフロントリンケージ14をフ
ルリーチの状態より軟弱地盤を手前へ水平に均そうとす
ると(アームシリンダヘッド側軽負荷作業時)、アーム
16およびバケット17の重心位置(黒点位置)が、ブーム
先端ピン22より水平距離で離れたところにあり、ブーム
先端ピン22回りの重力による回転モーメントが大きいた
め、アームシリンダ25のロッド側25b の保持圧が高く、
アーム用一次操作弁251 におけるロッド側25b からタン
クへの戻り側通路では、弁ストロークに対し高いゲイン
で通過流量が発生する。As described above, even if the opening area in the full stroke and in the intermediate stroke area is suppressed small by the return side throttle 32 in the arm primary operation valve 251, as shown in FIG. When trying to level the soft ground horizontally toward the front from the state of full reach of the front linkage 14 (when light load work is performed on the arm cylinder head side), the arm
The position of the center of gravity (black dot position) of the bucket 16 and the bucket 17 is located at a horizontal distance from the boom tip pin 22, and the rotation moment due to gravity around the boom tip pin 22 is large, so that the rod side 25b of the arm cylinder 25 is held. Pressure is high,
In the return side passage from the rod side 25b to the tank in the arm primary operation valve 251, a passing flow rate is generated with a high gain with respect to the valve stroke.
【0009】故に、このような図6(A)ポジションで
のアームシリンダ25の伸張スピードの微少コントロール
が難しく、ブーム上げインチング操作とのマッチングが
うまくいかず、バケット先端チップ17a の軌跡が波打っ
てしまい、オペレータの苦情につながることが多い。Therefore, it is difficult to finely control the extension speed of the arm cylinder 25 at the position shown in FIG. 6 (A), the matching with the boom raising inching operation does not work well, and the trajectory of the tip 17a of the bucket becomes wavy. This often leads to operator complaints.
【0010】また、図6(B)のようなポジションで
は、逆にアームシリンダ25のロッド側25b の保持圧が低
く、アーム用一次操作弁251 におけるロッド側25b から
タンクへの戻り側通路での弁ストロークに対する通過流
量は低ゲインとなり、アームシリンダ25の伸張スピード
が低下し、図6(A)ポジションでの水平均し感覚と全
くマッチングせず、滑らかなスピードの連絡性が得られ
ないため、この水平均し作業行程全般が非常にやりづら
いものとなっている。In the position shown in FIG. 6B, on the other hand, the holding pressure on the rod side 25b of the arm cylinder 25 is low, so that the arm primary operating valve 251 returns from the rod side 25b to the tank on the return side passage. The passing flow rate with respect to the valve stroke becomes a low gain, the extension speed of the arm cylinder 25 decreases, and the water averaging at the position shown in FIG. 6 (A) does not match at all, and smooth speed communication cannot be obtained. This water averaging makes the whole work process very difficult.
【0011】一方、前記の如きアーム用一次操作弁251
のフルストローク時でも開口面積を小さく設定された絞
り32のため、重掘削でアームシリンダ25のヘッド側25a
を高圧として高スピードで掘削したいとき(重負荷作業
時)は、この絞り32がアームシリンダ25のロッド側25b
に不要な高圧を発生させて、スピードを損うとともにシ
リンダの有効仕事量を低下させるデメリットがある。On the other hand, the primary operation valve 251 for the arm as described above
Due to the aperture 32 set to a small opening area even at full stroke, the head side 25a of the arm cylinder 25 in heavy excavation
When drilling at high speed with high pressure (during heavy load work), this throttle 32 is
However, there is a disadvantage in that an unnecessary high pressure is generated to reduce the speed and the effective work of the cylinder.
【0012】[0012]
【発明が解決しようとする課題】以上のように、従来、
アーム・バケット形状等、同一機種であっても種々のバ
ージョン毎に重量が異なり、これがためにアームシリン
ダのロッド側保持圧に差がある。また、アームの初期姿
勢の差でも、同様保持圧に差が発生し、手前側へのイン
チング水平均し作業のスタート時点で、自重落下負荷制
御を行うアームシリンダの伸張スピードにムラが生じや
すい。As described above, conventionally,
Even for the same model, such as the shape of the arm and bucket, the weight is different for each version, which causes a difference in the rod side holding pressure of the arm cylinder. In addition, the difference in the initial posture of the arm also causes a difference in the holding pressure, and at the time of the start of the work by averaging the inching water to the near side, the extension speed of the arm cylinder for controlling the self-weight drop load is likely to be uneven.
【0013】このために、ブーム上げとのバランスがく
ずれ、水平均し作業のスタート時に、フルリーチ付近よ
り水平均し動作を始めると、アームシリンダの伸張スピ
ードが速すぎ、ブームシリンダとの同調をとりにくいた
めバケット先端が波打って、土の水平仕上げ面が滑らか
に仕上らないという問題があった。For this reason, the balance with the raising of the boom is lost, and when the operation of averaging water is started, the operation of averaging the water from near the full reach is started, and the extension speed of the arm cylinder is too fast to synchronize with the boom cylinder. There was a problem that the tip of the bucket was wavy due to the difficulty, and the horizontal finishing surface of the soil was not finished smoothly.
【0014】また、アームシリンダのロッド側戻り流量
の制御にて負荷圧補償機能を加えることで上記水平均し
作業時のバケット先端波打ちを防止することも可能であ
るが、エンジン回転数が一定値以下となり、ポンプ吐出
流量が低減してくると、軽負荷空中水平均し動作時にお
いても、アームシリンダのヘッド側の油が不足気味とな
り、ボイディングを発生させて、制御性が悪化してく
る。It is also possible to prevent the bucket tip from waving during the water averaging operation by adding a load pressure compensation function by controlling the return flow rate of the arm cylinder on the rod side. If the pump discharge flow rate is reduced, the oil on the head side of the arm cylinder tends to be insufficient even during the light load airborne water averaging operation, causing voiding and deteriorating controllability.
【0015】本発明は、このような点に鑑みなされたも
ので、軽負荷作業時の操作性の向上と、ポンプ吐出流量
の低下によるボイディング発生の防止とを共に達成でき
る建設機械のシリンダ制御回路を提供することを目的と
するものである。The present invention has been made in view of the above points, and a cylinder control circuit for a construction machine which can achieve both improvement in operability during light load work and prevention of voiding due to a decrease in pump discharge flow rate. The purpose is to provide.
【0016】[0016]
【課題を解決するための手段】請求項1に記載の発明
は、油圧ポンプおよびタンクと、ショベルのアームを作
動するアームシリンダとの間に設けられたアーム用操作
弁によって、アームシリンダのヘッド側およびロッド側
に作動油を給排制御する建設機械のシリンダ制御回路に
おいて、アームシリンダのロッド側に逆止弁を介し作動
油を供給するロッド側供給ラインより分岐され、アーム
シリンダのロッド側からタンクラインへ戻り油を導くロ
ッド側排油ラインと、このロッド側排油ラインに設けら
れ、アームシリンダのロッド側からタンクラインへの戻
り流量を絞りにより規制するとともに、ロッド側からタ
ンクラインへの戻り油の一部または全部をヘッド側給排
ラインに再生供給する再生機能付流量制御弁と、ロッド
側排油ラインにて再生機能付流量制御弁よりアームシリ
ンダ側に設けられ、再生機能付流量制御弁の絞りの前後
の差圧をスプリングにより制御する差圧制御用の圧力補
償弁と、この圧力補償弁のスプリングに対し設けられ、
アームシリンダのヘッド側負荷圧により直接または間接
的にスプリングのセット荷重を調整するスプリング調整
機構とを具備した構成の建設機械のシリンダ制御回路で
ある。According to the first aspect of the present invention, an arm operating valve provided between a hydraulic pump and a tank and an arm cylinder for operating an arm of a shovel has a head side of an arm cylinder. In a cylinder control circuit of a construction machine that controls supply and discharge of hydraulic oil to a rod side, the rod side of the arm cylinder is branched from a rod side supply line that supplies hydraulic oil through a check valve, and a tank is provided from the rod side of the arm cylinder. A rod-side oil drain line that guides oil back to the line, and a rod-side oil drain line that is provided in this rod-side oil drain line, regulates the return flow from the rod side of the arm cylinder to the tank line by restricting, and returns the rod side to the tank line. A flow control valve with a regeneration function that regenerates part or all of the oil to the head side supply / drain line, and a rod side oil drain line A pressure compensating valve for differential pressure control, which is provided on the arm cylinder side from the flow control valve with function and controls the differential pressure before and after the throttle of the flow control valve with regeneration function, and is provided for the spring of this pressure compensating valve And
A cylinder control circuit for a construction machine comprising a spring adjusting mechanism for directly or indirectly adjusting a set load of a spring by a head side load pressure of an arm cylinder.
【0017】請求項2に記載の発明は、請求項1記載の
再生機能付流量制御弁として、アーム用操作弁をアーム
シリンダ伸張側へ作動するパイロット圧により移動して
圧力補償弁の出力ラインとタンクラインとを連通する内
部通路に、流量制御用の第1絞りと、アームシリンダの
ロッド側からタンクラインへの戻り油に背圧を与える第
2絞りとが直列に設けられ、この第1絞りと第2絞りと
の間から中間圧力通路が引出され、この中間圧力通路に
再生チェック弁および第3絞りが設けられ、この再生チ
ェック弁および第3絞りの設けられた内部通路が、前記
アームシリンダ伸張側パイロット圧により移動して、ヘ
ッド側給排ラインに接続されたヘッド側連通ラインと連
通される構成の建設機械のシリンダ制御回路である。According to a second aspect of the present invention, there is provided a flow control valve with a regeneration function according to the first aspect, wherein the arm operation valve is moved by a pilot pressure operating to the arm cylinder extension side to connect with an output line of the pressure compensating valve. In an internal passage communicating with the tank line, a first throttle for flow control and a second throttle for applying back pressure to the return oil from the rod side of the arm cylinder to the tank line are provided in series. An intermediate pressure passage is drawn from between the first and second throttles, and a regeneration check valve and a third throttle are provided in the intermediate pressure passage. The internal passage provided with the regeneration check valve and the third throttle is connected to the arm cylinder. This is a cylinder control circuit for a construction machine configured to move by the extension-side pilot pressure and communicate with a head-side communication line connected to a head-side supply / discharge line.
【0018】請求項3に記載の発明は、請求項1記載の
再生機能付流量制御弁として、アーム用操作弁をアーム
シリンダ伸張側へ作動するパイロット圧により移動して
圧力補償弁の出力ラインとタンクラインとを連通する内
部通路に流量制御用の第1絞りが設けられ、この第1絞
りよりタンクライン側の内部通路から中間圧力通路が引
出され、この中間圧力通路に再生チェック弁および第3
絞りが設けられ、この再生チェック弁および第3絞りの
設けられた内部通路が、前記アームシリンダ伸張側パイ
ロット圧により移動して、ヘッド側給排ラインに接続さ
れたヘッド側連通ラインと連通され、また、前記タンク
ラインに、アームシリンダのロッド側からの戻り油に背
圧を与える背圧チェック弁が設けられた構成の建設機械
のシリンダ制御回路である。According to a third aspect of the present invention, there is provided a flow control valve with a regeneration function according to the first aspect, wherein the arm operation valve is moved by a pilot pressure operating toward the arm cylinder extension side to connect with an output line of the pressure compensating valve. A first throttle for flow control is provided in an internal passage communicating with the tank line, and an intermediate pressure passage is drawn from the internal passage on the tank line side from the first throttle, and a regeneration check valve and a third valve are connected to the intermediate pressure passage.
A throttle is provided, and an internal passage provided with the regeneration check valve and the third throttle is moved by the arm cylinder extension-side pilot pressure and communicates with a head-side communication line connected to a head-side supply / discharge line. Further, a cylinder control circuit for a construction machine having a configuration in which a back pressure check valve for applying a back pressure to the return oil from the rod side of the arm cylinder in the tank line is provided.
【0019】請求項4に記載の発明は、請求項1記載の
建設機械のシリンダ制御回路において、スプリング調整
機構に対し、アームシリンダのヘッド側負荷圧等に基づ
くパイロットシグナルを間接的に供給する外部コントロ
ーラが設けられた構成のシリンダ制御回路である。According to a fourth aspect of the present invention, there is provided the cylinder control circuit for a construction machine according to the first aspect, wherein a pilot signal based on a head-side load pressure of the arm cylinder or the like is indirectly supplied to the spring adjusting mechanism. 4 is a cylinder control circuit having a configuration provided with a controller.
【0020】請求項5に記載の発明は、請求項2記載の
再生チェック弁が外部のヘッド側連通ラインに設けられ
た構成の建設機械のシリンダ制御回路である。According to a fifth aspect of the present invention, there is provided a cylinder control circuit for a construction machine, wherein the regeneration check valve according to the second aspect is provided in an external head-side communication line.
【0021】[0021]
【作用】請求項1に記載の発明は、再生機能付流量制御
弁の絞りおよびこの絞りの前後差圧を制御する圧力補償
弁により、油圧ショベル等のアームシリンダのロッド側
からタンクへの戻りラインに負荷圧補償流量制御機能を
設けたから、シリンダロッド側の保持圧が変化してもア
ームシリンダを一定速度で伸張させて、水平均し作業の
作業性を改善する。また、シリンダのヘッド側負荷圧が
一定値以下、特にボイディングに近い状態になると、ア
ームシリンダのロッド側からタンクへの戻り油の一部ま
たは全部を、再生機能付流量制御弁によりヘッド側へ再
生供給して、前記ボイディングを防止する。さらに、ア
ームシリンダのヘッド側負荷圧が一定値以上の高圧掘削
状態では、この高圧のヘッド側負荷圧を感知して作動す
るスプリング調整機構によりスプリングのセット荷重を
増大する側へ調整して、圧力補償弁により決定される第
1絞り前後差圧を大巾に大きくし、実質的に大流量が流
れうるようにして、上記負荷圧補償機能を実質的に解除
し、戻りラインの抵抗を少なくする。According to a first aspect of the present invention, a return line from the rod side of an arm cylinder of a hydraulic shovel or the like to a tank is provided by a throttle of a flow control valve with a regeneration function and a pressure compensating valve for controlling a differential pressure across the throttle. The arm cylinder is extended at a constant speed even if the holding pressure on the cylinder rod side changes to improve the workability of water averaging work because the load pressure compensation flow rate control function is provided in the apparatus. Also, when the load pressure on the head side of the cylinder is less than a certain value, especially when it is close to voiding, part or all of the return oil from the rod side of the arm cylinder to the tank is regenerated to the head side by the flow control valve with regeneration function. To prevent said voiding. Further, in a high-pressure excavation state in which the head-side load pressure of the arm cylinder is equal to or higher than a certain value, the spring set mechanism is operated by sensing the high-pressure head-side load pressure to adjust the spring set load to the side that increases the pressure. The differential pressure across the first throttle determined by the compensating valve is greatly increased to allow a substantially large flow rate to flow, thereby substantially canceling the load pressure compensating function and reducing the resistance of the return line. .
【0022】請求項2に記載の発明は、再生機能付流量
制御弁の第1絞りと圧力補償弁とにより、アームシリン
ダのロッド側からタンクへの戻りラインに負荷圧補償流
量制御機能を持たせ、安定したアームシリンダ伸張動作
により水平均し作業を行なう。また、第2絞りは、アー
ムシリンダのロッド側からタンクラインへの戻り油に背
圧を与え、アームシリンダのヘッド側負荷圧がボイディ
ングに近い状態に低下すると、アームシリンダのロッド
側からタンクへの戻り油の一部または全部を、再生機能
付流量制御弁の中間圧力通路、再生チェック弁、第3絞
りおよびヘッド側連通ラインを経てヘッド側へ再生供給
し、前記ボイディングを防止する。その際、第3絞りに
よりロッド側からヘッド側への再生流量を制御する。According to a second aspect of the present invention, the return line from the rod side of the arm cylinder to the tank has a load pressure compensating flow rate control function by the first throttle of the flow rate control valve with the regeneration function and the pressure compensating valve. Water averaging is performed by stable arm cylinder extension operation. The second throttle applies a back pressure to the return oil from the rod side of the arm cylinder to the tank line, and when the load pressure on the head side of the arm cylinder decreases to a state close to voiding, the pressure from the rod side of the arm cylinder to the tank is reduced. A part or all of the return oil is regenerated and supplied to the head through the intermediate pressure passage of the flow control valve with the regeneration function, the regeneration check valve, the third throttle, and the head-side communication line, thereby preventing the voiding. At this time, the regeneration flow from the rod side to the head side is controlled by the third throttle.
【0023】請求項3に記載の発明は、請求項2におけ
る第2絞りと同様の機能を持つ背圧チェック弁により戻
り油に一定の抵抗圧力(背圧)を発生させ、再生機能付
流量制御弁内の中間圧力通路等を経てロッド側からの戻
り油をヘッド側へ再生供給する。According to a third aspect of the present invention, a constant pressure (back pressure) is generated in the return oil by a back pressure check valve having the same function as the second throttle in the second aspect, and the flow rate control with the regeneration function is performed. The return oil from the rod side is regenerated and supplied to the head side through an intermediate pressure passage in the valve.
【0024】請求項4に記載の発明は、アームシリンダ
のヘッド側負荷圧、または油圧ポンプを駆動するエンジ
ンの回転数等に基づいて、外部コントローラからスプリ
ング調整機構に出力された信号により、アームシリンダ
のロッド側戻り油の負荷圧補償される油量をコントロー
ルする。According to a fourth aspect of the present invention, there is provided an arm cylinder based on a signal output from an external controller to a spring adjusting mechanism based on a load pressure on the head side of the arm cylinder or the number of revolutions of an engine for driving the hydraulic pump. To control the amount of oil that is compensated for the load pressure of the return oil on the rod side.
【0025】請求項5に記載の発明は、シリンダヘッド
側の圧力が低すぎる場合、ロッド側からの戻り油が、再
生機能付流量制御弁内の通路およびヘッド側連通ライン
の再生チェック弁を経てシリンダヘッド側へ再生供給さ
れる。According to a fifth aspect of the present invention, when the pressure on the cylinder head side is too low, the return oil from the rod side passes through the passage in the flow control valve with the regeneration function and the regeneration check valve in the head side communication line. It is regenerated and supplied to the cylinder head side.
【0026】[0026]
【実施例】以下、本発明を図1乃至図4の各図にそれぞ
れ示される各実施例を参照して詳細に説明する。なお、
基本油圧回路は、図5に示された従来の回路と同様であ
るから、同一符号を付して、その基本構成および作用の
説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments shown in FIGS. In addition,
Since the basic hydraulic circuit is the same as the conventional circuit shown in FIG. 5, the same reference numerals are given and the description of the basic configuration and operation is omitted.
【0027】また、アーム用合流操作弁252 は、アーム
シリンダの伸張操作中、パイロット圧ライン252aにパイ
ロット圧が加わって作動油供給ラインPsより給排ライン
41へ圧油を合流供給するが(アームシリンダヘッド
へ)、この時の戻り油は逆止弁31のため、操作弁252 へ
は戻らず、実質的に図1の後述する差圧制御用の圧力補
償弁45および再生機能付流量制御弁46等のデイバイスで
処理されるので、以降の説明は省略する。During the operation of extending the arm cylinder, a pilot pressure is applied to the pilot pressure line 252a to supply / discharge the oil from the hydraulic oil supply line Ps.
Although the pressure oil is merged and supplied to 41 (to the arm cylinder head), the return oil at this time does not return to the operation valve 252 because of the check valve 31, and substantially does not return to the operation valve 252 of FIG. Since the processing is performed by devices such as the pressure compensating valve 45 and the flow control valve 46 with the regeneration function, the following description is omitted.
【0028】先ず、図1に本発明に係る第1実施例の構
造を示す。アーム用操作弁251 の一方の出力ポートとア
ームシリンダ25のヘッド側25a とがヘッド側給排ライン
41により接続され、また、アーム用操作弁251 の他方の
出力ポートとアームシリンダ25のロッド側25b とがロッ
ド側給油ライン42により接続されている。このロッド側
給油ライン42には、ロッド側25b への給油流れを許容す
る逆止弁43が設けられている。First, FIG. 1 shows a structure of a first embodiment according to the present invention. One output port of the arm operation valve 251 and the head side 25a of the arm cylinder 25 are connected to the head side supply / discharge line.
The other output port of the arm operation valve 251 and the rod side 25b of the arm cylinder 25 are connected by a rod side oil supply line. The rod-side oil supply line 42 is provided with a check valve 43 that allows oil to flow to the rod side 25b.
【0029】この逆止弁43よりアームシリンダ25のロッ
ド側25b に至るラインの途中からロッド側排油ライン44
が分岐され、このロッド側排油ライン44とタンクライン
Tとの間に、差圧制御用の圧力補償弁45および再生機能
付流量制御弁46が順次設けられている。From the middle of the line from the check valve 43 to the rod side 25b of the arm cylinder 25, the rod side oil drain line 44
A pressure compensating valve 45 for differential pressure control and a flow control valve 46 with a regeneration function are sequentially provided between the rod side oil drain line 44 and the tank line T.
【0030】再生機能付流量制御弁46を制御する手段
は、一側に設けられたリターンスプリング47と、他側に
設けられたパイロット圧ライン48とからなる。このパイ
ロット圧ライン48は、アーム用操作弁251 のアームシリ
ンダ伸張側パイロット圧ライン251aから分岐されてい
る。なお、アーム用操作弁251 の反対側には、アームシ
リンダ収縮側パイロット圧ライン251bが導かれている。The means for controlling the flow control valve 46 with the regeneration function comprises a return spring 47 provided on one side and a pilot pressure line 48 provided on the other side. The pilot pressure line 48 is branched from the arm cylinder extension side pilot pressure line 251a of the arm operation valve 251. An arm cylinder contraction side pilot pressure line 251b is guided to the opposite side of the arm operation valve 251.
【0031】再生機能付流量制御弁46の内部構造は、圧
力補償弁45の出力ラインとタンクラインTとを連通する
内部通路に、流量制御用の主弁オリフィスとして機能す
る第1絞り51と、アームシリンダ25のロッド側25b から
タンクへの戻り油に背圧を与える第2絞り52とが直列に
設けられ、この第1絞り51と第2絞り52との間から、ロ
ッド側排油ライン44をヘッド側給排ライン41に連通する
ための中間圧力通路53が引出され、この中間圧力通路53
に再生チェック弁54とロッド側からヘッド側への再生流
量を制御する第3絞り55とが設けられている。The internal structure of the flow control valve 46 with the regeneration function includes a first throttle 51 functioning as a main valve orifice for flow control in an internal passage communicating the output line of the pressure compensating valve 45 and the tank line T; A second throttle 52 for applying back pressure to the return oil to the tank from the rod side 25b of the arm cylinder 25 is provided in series, and a rod-side oil drain line 44 is provided between the first throttle 51 and the second throttle 52. To the head side supply / discharge line 41, an intermediate pressure passage 53 is drawn out.
A regeneration check valve 54 and a third throttle 55 for controlling the regeneration flow from the rod side to the head side are provided.
【0032】第1絞り51、第2絞り52および第3絞り55
は、図1に示されたノーマル位置では各々全閉である
が、本制御弁46のストロークに応じてモジュレーション
される可変絞りである。The first diaphragm 51, the second diaphragm 52 and the third diaphragm 55
Are variable throttles which are fully closed in the normal position shown in FIG. 1 but are modulated in accordance with the stroke of the control valve 46.
【0033】第3絞り55の設けられた内部通路は、再生
機能付流量制御弁46の移動によりヘッド側給排ライン41
に接続されたヘッド側連通ライン56と連通し、ヘッド側
給排ライン41の圧力が第1絞り51と第2絞り52との中間
圧力通路53の圧力より低圧の時に、この中間圧力通路53
より、再生チェック弁54、第3絞り55およびヘッド側連
通ライン56を経由して、アームシリンダ25のロッド側25
b からの戻り油の一部がヘッド側25a へ再生給油され
る。The internal passage provided with the third throttle 55 is connected to the head side supply / discharge line 41 by the movement of the flow control valve 46 with the regeneration function.
When the pressure in the head-side supply / discharge line 41 is lower than the pressure in the intermediate pressure passage 53 between the first throttle 51 and the second throttle 52, the intermediate pressure passage 53
Accordingly, the rod side 25 of the arm cylinder 25 passes through the regeneration check valve 54, the third throttle 55, and the head side communication line 56.
Part of the return oil from b is regenerated and supplied to the head side 25a.
【0034】次に、圧力補償付き流量制御機構を説明す
ると、流量制御弁46の移動により、第1絞り51の上流側
の圧力Pa を一方の差圧検出ライン58a を経て圧力補償
弁45の可動弁体の一側に連通し、また、第1絞り51の下
流側の圧力Pb を、前記中間圧力通路53、この中間圧力
通路53から分岐された差圧検出通路57、流量制御弁46の
移動によりこの差圧検出通路57と連通する他方の差圧検
出ライン58b を経て、圧力補償弁45の可動弁体の他側に
連通する。この可動弁体の他側には、スプリング59のセ
ット荷重Kx が印加されている。Next, the flow control mechanism with pressure compensation will be described. By moving the flow control valve 46, the pressure Pa on the upstream side of the first throttle 51 is moved through one differential pressure detecting line 58a to move the pressure compensating valve 45. The intermediate pressure passage 53, the differential pressure detection passage 57 branched from the intermediate pressure passage 53, and the movement of the flow control valve 46 are communicated with one side of the valve body and reduce the pressure Pb downstream of the first throttle 51. Thus, the pressure compensating valve 45 communicates with the other side of the movable valve via the other differential pressure detecting line 58b communicating with the differential pressure detecting passage 57. A set load Kx of a spring 59 is applied to the other side of the movable valve body.
【0035】そして、前記圧力補償弁45は、前記差圧検
出ライン58a ,58b を経て検出された第1絞り51の前後
の有効差圧(Pa −Pb )が一定(=Kx /A)となる
ように可動弁体を制御する。Aは可動弁体の一方側及び
他方側の共通の受圧面積である。In the pressure compensating valve 45, the effective differential pressure (Pa-Pb) before and after the first throttle 51 detected through the differential pressure detection lines 58a and 58b becomes constant (= Kx / A). The movable valve body is controlled as follows. A is a common pressure receiving area on one side and the other side of the movable valve body.
【0036】この圧力補償弁45のスプリング59に対し、
スプリング59のセット荷重Kx を変更することにより、
第1絞り51の前後の有効差圧(Pa −Pb )を調整する
ためのスプリング調整機構61が設けられている。With respect to the spring 59 of the pressure compensating valve 45,
By changing the set load Kx of the spring 59,
A spring adjusting mechanism 61 for adjusting the effective differential pressure (Pa-Pb) before and after the first throttle 51 is provided.
【0037】このスプリング調整機構61は、前記ヘッド
側連通ライン56から分岐されたヘッド圧検出ライン62を
スプリング調整シリンダ63の一端に導き、このシリンダ
63内にスプリング調整ピストン64を摺動自在に液密嵌合
し、このピストン64を前記スプリング59に当接する。The spring adjusting mechanism 61 guides a head pressure detecting line 62 branched from the head side communication line 56 to one end of a spring adjusting cylinder 63,
A spring adjustment piston 64 is slidably and liquid-tightly fitted in the cylinder 63, and the piston 64 abuts on the spring 59.
【0038】そして、前記ピストン64により、前記ヘッ
ド側連通ライン56およびヘッド圧検出ライン62からシリ
ンダ63内に導かれたアームシリンダ25のヘッド側25a の
負荷圧を受けて、スプリング59のセット荷重Kx をコン
トロールする。Then, the piston 64 receives the load pressure on the head side 25a of the arm cylinder 25 guided into the cylinder 63 from the head side communication line 56 and the head pressure detection line 62, and the set load Kx of the spring 59 is received. Control.
【0039】前記スプリング調整シリンダ63には、ピス
トン64を作動するシリンダヘッド側負荷圧の導入ポート
65と、この導入ポート側にてピストン64を係止する位置
決め用第1ストッパ66と、反対側にてピストン64を係止
する位置決め用第2ストッパ67とが設けられている。The spring adjustment cylinder 63 has a cylinder head side load pressure introduction port for operating the piston 64.
65, a first positioning stopper 66 for locking the piston 64 on the introduction port side, and a second positioning stopper 67 for locking the piston 64 on the opposite side.
【0040】そして、前記第1絞り51の前後差圧は左の
圧力補償弁45で一定にコントロールされ、その差圧の値
は、スプリング59のセット荷重をコントロールするピス
トン64、第1ストッパ66、第2ストッパ67等で決定され
る。ヘッド側25a の負荷圧が低圧であると、ピストン64
は、スプリング59で押されて第1ストッパ66に当接し、
差圧は第1ストッパ66で決る低差圧となり、ヘッド側25
a の負荷圧が一定以上の高圧であると、ピストン64は、
スプリング59に抗して第2ストッパ67に当接し、差圧は
第2ストッパ67で決る高差圧となる。The differential pressure across the first throttle 51 is controlled to be constant by the left pressure compensating valve 45. The value of the differential pressure is controlled by the piston 64 for controlling the set load of the spring 59, the first stopper 66, It is determined by the second stopper 67 and the like. If the load pressure on the head side 25a is low, the piston 64
Is pressed by the spring 59 and contacts the first stopper 66,
The differential pressure becomes a low differential pressure determined by the first stopper 66, and the head side 25
If the load pressure of a is higher than a certain level, the piston 64
The second stopper 67 abuts against the spring 59, and the differential pressure becomes a high differential pressure determined by the second stopper 67.
【0041】次に、図1に示された第1実施例の作用を
説明する。Next, the operation of the first embodiment shown in FIG. 1 will be described.
【0042】(1) パイロット圧ライン251a,48にアーム
シリンダ伸張側パイロット圧が供給されると、アーム用
操作弁251 および再生機能付流量制御弁46が上室位置に
切換わるので、アームシリンダ25は伸張操作される。(1) When the arm cylinder extension side pilot pressure is supplied to the pilot pressure lines 251a and 251 and 48, the arm operation valve 251 and the flow control valve with regeneration function 46 are switched to the upper chamber position. Is extended.
【0043】このアームシリンダ25の伸張操作中、ヘッ
ド側給排ライン41の圧力が中間圧力通路53の圧力より高
い場合は、ロッド側25b の作動油は、ロッド側25b の保
持圧に関係なく、逆止弁43のために全量が差圧制御用圧
力補償弁45を経由して、再生機能付流量制御弁46の第1
絞り51および第2絞り52を経てタンクラインTへ流出
し、安定した水平均し動作が得られる。During the extension operation of the arm cylinder 25, if the pressure in the head side supply / discharge line 41 is higher than the pressure in the intermediate pressure passage 53, the operating oil on the rod side 25b is applied regardless of the holding pressure on the rod side 25b. For the check valve 43, the entire amount is passed through the differential pressure control pressure compensating valve 45, and the first flow control valve 46 with the regeneration function is operated.
The water flows out to the tank line T via the throttle 51 and the second throttle 52, and a stable water averaging operation is obtained.
【0044】(2) 同上操作中、油圧ポンプ28より吐出供
給される作動油量が不足し、ヘッド側25a にボイディン
グが発生しかかると、アームシリンダ25のロッド側25b
からタンクへの戻り油の一部が第2絞り52の抵抗作用に
より背圧を持つこともあって、第1絞り51と第2絞り52
との中間部よりヘッド側給排ライン41が低圧となるの
で、ロッド側25b からタンクへの戻り油の一部が、中間
圧力通路53より再生チェック弁54、第3絞り55およびヘ
ッド側連通ライン56を経由してヘッド側給排ライン41へ
再生給油され、ボイディングの発生が防止されると共に
低圧に維持できる。この時、ヘッド圧検出ライン62によ
り取出されたシリンダヘッド側負荷圧はボイディングが
発生しない程度に低圧であるから、スプリング調整機構
61のピストン64は第1ストッパ66のポジションにあり第
1絞り51の前後の差圧(Pa −Pb)も比較的小さく制
御される。(2) During the same operation, when the amount of hydraulic oil discharged and supplied from the hydraulic pump 28 becomes insufficient and voiding starts to occur on the head side 25a, the rod side 25b of the arm cylinder 25
Because part of the return oil from the tank to the tank has a back pressure due to the resistance action of the second throttle 52, the first throttle 51 and the second throttle 52
The pressure in the head-side supply / discharge line 41 is lower than that in the intermediate portion, so that part of the return oil from the rod side 25b to the tank flows through the intermediate pressure passage 53 to the regeneration check valve 54, the third throttle 55, and the head-side communication line. The oil is regenerated and supplied to the head side supply / discharge line 41 via 56, thereby preventing the occurrence of voiding and maintaining the pressure at a low level. At this time, since the cylinder head side load pressure taken out by the head pressure detection line 62 is low enough to prevent voiding, the spring adjustment mechanism is used.
The piston 64 of 61 is at the position of the first stopper 66, and the differential pressure (Pa-Pb) before and after the first throttle 51 is controlled to be relatively small.
【0045】(3) 掘削等の重負荷状態では、アームシリ
ンダ25のヘッド側25a の負荷圧が高圧となるが(もちろ
んボイディングでない状態)、この高負荷圧がヘッド圧
検出ライン62によりピストン64に導かれ、ピストン64は
第1ストッパ66から第2ストッパ67へ移動してスプリン
グ59を押え付け、そのセット荷重Kx を大とするので、
第1絞り51の前後差圧(Pa −Pb )は高差圧となる。
このとき、圧力補償弁45における開度は大となって、ア
ームシリンダ25のロッド側25b からタンクラインTへ排
出される戻り油の流動抵抗が実質的に小となるので、戻
りラインのヒートロスが軽減され、実質的なシリンダ仕
事量を向上できるとともに、油圧源を駆動するエンジン
の燃費も改善できる。(3) In a heavy load state such as excavation, the load pressure on the head side 25a of the arm cylinder 25 becomes high (of course, not in a voiding state), but this high load pressure is applied to the piston 64 by the head pressure detection line 62. Guided, the piston 64 moves from the first stopper 66 to the second stopper 67 and presses the spring 59 to increase the set load Kx.
The differential pressure (Pa-Pb) across the first throttle 51 becomes a high differential pressure.
At this time, the opening degree of the pressure compensating valve 45 becomes large, and the flow resistance of the return oil discharged from the rod side 25b of the arm cylinder 25 to the tank line T becomes substantially small. As a result, the cylinder work can be substantially improved, and the fuel efficiency of the engine that drives the hydraulic power source can be improved.
【0046】次に、図2は本発明に係る第2実施例を示
し、再生機能付流量制御弁46には、図1の第1実施例で
設けられていた第2絞り52がない替りに、一定の背圧を
発生させるための背圧チェック弁(一種のリリーフ弁)
71がタンクラインTに設置されている。Next, FIG. 2 shows a second embodiment according to the present invention. In the flow control valve 46 with the regeneration function, the second throttle 52 provided in the first embodiment of FIG. Back pressure check valve to generate a constant back pressure (a kind of relief valve)
71 is installed in the tank line T.
【0047】すなわち、再生機能付流量制御弁46は、ア
ーム用操作弁251 をアームシリンダ伸張側へ作動するパ
イロット圧により移動して圧力補償弁45の出力ラインと
タンクラインTとを連通する内部通路に流量制御用の第
1絞り51が設けられ、この第1絞り51よりタンクライン
側の内部通路から中間圧力通路53が引出され、この中間
圧力通路53に再生チェック弁54および第3絞り55が設け
られ、この再生チェック弁54および第3絞り55の設けら
れた内部通路が、前記アームシリンダ伸張側パイロット
圧により移動して、ヘッド側給排ライン41に接続された
ヘッド側連通ライン56と連通される。That is, the flow control valve 46 with the regenerating function moves the arm operating valve 251 to the arm cylinder extension side by the pilot pressure to communicate the output line of the pressure compensating valve 45 with the tank line T. Is provided with a first throttle 51 for controlling the flow rate. An intermediate pressure passage 53 is drawn out of the first throttle 51 through an internal passage on the tank line side. A regeneration check valve 54 and a third throttle 55 are inserted into the intermediate pressure passage 53. An internal passage provided with the regeneration check valve 54 and the third throttle 55 is moved by the arm cylinder extension-side pilot pressure to communicate with a head-side communication line 56 connected to the head-side supply / discharge line 41. Is done.
【0048】さらに、前記タンクラインTに、アームシ
リンダ25のロッド側25b からの戻り油に背圧を与える背
圧チェック弁71が設けられている。この背圧チェック弁
71は、逆止弁体を弁座に押付けるスプリングのセット荷
重により戻り油の背圧を設定する。なお、他の構造は図
1の第1実施例と同様であるから同一符号を付してその
説明を省略する。Further, the tank line T is provided with a back pressure check valve 71 for applying a back pressure to the return oil from the rod side 25b of the arm cylinder 25. This back pressure check valve
71 sets the back pressure of the return oil by the set load of the spring that presses the check valve against the valve seat. The other structure is the same as that of the first embodiment shown in FIG.
【0049】この第2実施例の作用を説明すると、代替
の背圧チェック弁71により戻り油に一定の抵抗圧力(背
圧)を発生させる。これにより、中間圧力通路53の圧力
が、背圧チェック弁71の開口圧より高く、かつヘッド側
給排ライン41の圧力より高ければ、ロッド側25b からの
戻り油の一部が、中間圧力通路53から再生チェック弁5
4、第3絞り55およびヘッド側連通ライン56を経てヘッ
ド側25a へ再生供給される。The operation of the second embodiment will be described. An alternative back pressure check valve 71 generates a constant resistance pressure (back pressure) in the return oil. Thus, if the pressure in the intermediate pressure passage 53 is higher than the opening pressure of the back pressure check valve 71 and higher than the pressure in the head side supply / discharge line 41, a part of the return oil from the rod side 25b Regeneration check valve 5 from 53
4. Reproduced and supplied to the head side 25a via the third diaphragm 55 and the head side communication line 56.
【0050】また、中間圧力通路53の圧力が背圧チェッ
ク弁71の開口圧より低く、かつヘッド側給排ライン41の
圧力より高ければ、ロッド側25b からの戻り油の全て
が、上記のようにヘッド側25a へ再生供給され、効率が
よい。If the pressure in the intermediate pressure passage 53 is lower than the opening pressure of the back pressure check valve 71 and higher than the pressure in the head side supply / discharge line 41, all of the return oil from the rod side 25b will be as described above. Is regenerated and supplied to the head side 25a, which is efficient.
【0051】次に、図3は本発明に係る第3実施例を示
し、第1実施例および第2実施例のヘッド圧検出ライン
62に替えて、第1絞り51の前後差圧を制御する圧力補償
弁45のスプリング調整シリンダ63にスプリング調整シグ
ナル圧を導入する手段として、シリンダヘッド側負荷圧
またはエンジン回転数等を入力信号とする外部コントロ
ーラ81にてパイロットシグナル圧を生成し、このシグナ
ル圧を導入ライン82によりスプリング調整シリンダ63の
導入ポート65へ導くようにした例である。なお、他の構
造は図1の第1実施例と同様であるから同一符号を付し
てその説明を省略する。FIG. 3 shows a third embodiment according to the present invention. The head pressure detection lines of the first and second embodiments are shown in FIG.
As a means for introducing a spring adjustment signal pressure to the spring adjustment cylinder 63 of the pressure compensating valve 45 for controlling the differential pressure across the first throttle 51 instead of the cylinder throttle 62, a cylinder head side load pressure or an engine speed is used as an input signal. In this example, a pilot signal pressure is generated by an external controller 81, and the signal pressure is guided to an introduction port 65 of a spring adjusting cylinder 63 by an introduction line 82. The other structure is the same as that of the first embodiment shown in FIG.
【0052】この第3実施例の外部コントローラ81は、
アームシリンダ25のロッド側25b からの戻り油の負荷圧
補償される油量を、アームシリンダ25のヘッド側25a の
圧力、または油圧ポンプ28を駆動するエンジン27(図
5)の回転数等に応じてフレキシブルにコントロールす
ることが可能である。The external controller 81 of the third embodiment comprises:
The amount of oil to be compensated for the load pressure of the return oil from the rod side 25b of the arm cylinder 25 depends on the pressure on the head side 25a of the arm cylinder 25 or the rotation speed of the engine 27 (FIG. 5) that drives the hydraulic pump 28. And can be flexibly controlled.
【0053】最後に、図4は本発明に係る第4実施例を
示し、第1実施例乃至第3実施例では再生機能付流量制
御弁46に内蔵されていた再生チェック弁54を、この実施
例では再生機能付流量制御弁46の外部に取出して、ヘッ
ド側連通ライン56中であってヘッド圧検出ライン62の分
岐点より流量制御弁46側に設ける。この場合、弁46はコ
ンパクトとなって、機能上は同様の作用が得られる。な
お、他の構造は図1の第1実施例と同様であるから同一
符号を付してその説明を省略する。Finally, FIG. 4 shows a fourth embodiment according to the present invention. In the first to third embodiments, the regeneration check valve 54 incorporated in the flow control valve 46 with a regeneration function is replaced with a regeneration check valve 54 according to this embodiment. In the example, it is taken out of the flow control valve with regeneration function 46 and provided in the head side communication line 56 and on the flow control valve 46 side from the branch point of the head pressure detection line 62. In this case, the valve 46 becomes compact, and a similar function can be obtained functionally. The other structure is the same as that of the first embodiment shown in FIG.
【0054】[0054]
【発明の効果】請求項1に記載の発明によれば、油圧シ
ョベル等のアームシリンダのロッド側からタンクへの戻
りラインに、再生機能付流量制御弁の絞りおよび圧力補
償弁によって負荷圧補償流量制御機能を設けたから、ロ
ッド側保持圧の変動に影響されない一定の戻り流量を確
保でき、アームシリンダのロッド伸張動作による水平均
し作業の作業性を改善できる。また、シリンダヘッド側
負荷圧が一定値以下、特にボイディングに近い状態とな
ると、再生機能付流量制御弁の内部通路によりアームシ
リンダのロッド側からタンクへの戻り油の一部または全
部をヘッド側へ再生供給して、前記ボイディングを防止
することができる。さらに、シリンダヘッド側負荷圧が
一定値以上の高圧掘削状態では、その状態をスプリング
調整機構により検出して圧力補償弁のスプリングセット
荷重を変化させることにより、圧力補償弁における戻り
ラインの高抵抗を解除して、重負荷作業時のシリンダ仕
事量を向上できるとともに、この油圧駆動源の燃費を改
善できる。According to the first aspect of the present invention, the throttle pressure of the flow control valve with the regeneration function and the pressure compensating valve provide the load pressure compensating flow in the return line from the rod side of the arm cylinder of the hydraulic excavator or the like to the tank. Since the control function is provided, a constant return flow which is not affected by the fluctuation of the rod-side holding pressure can be secured, and the workability of the water averaging operation by the rod extension operation of the arm cylinder can be improved. When the load pressure on the cylinder head side is less than a certain value, especially when it is close to voiding, part or all of the return oil from the rod side of the arm cylinder to the tank is transferred to the head side by the internal passage of the flow control valve with regeneration function. The voiding can be prevented by re-supply. Furthermore, in the high pressure excavation state where the cylinder head side load pressure is a certain value or more, the state is detected by the spring adjustment mechanism, and the spring resistance of the pressure compensating valve is changed by changing the spring set load of the pressure compensating valve to release the high resistance of the return line in the pressure compensating valve. As a result, it is possible to improve the cylinder work amount at the time of heavy load work, and to improve the fuel efficiency of the hydraulic drive source.
【0055】請求項2に記載の発明によれば、再生機能
付流量制御弁の第1絞りと圧力補償弁とにより、アーム
シリンダのロッド側からタンクへの戻り油流量を負荷圧
補償でき、ロッド側保持圧の変化に影響されない安定し
たアームシリンダ伸張動作により水平均し作業の作業性
を改善できる。また、シリンダヘッド側負荷圧がボイデ
ィングに近い状態に低下すると、第2絞りにてタンクへ
の戻り油に与えられた背圧により、タンクへの戻り油を
ヘッド側へ再生供給して、シリンダヘッド側のボイディ
ングを防止できる。According to the second aspect of the present invention, the return flow of oil from the rod side of the arm cylinder to the tank can be load-pressure compensated by the first throttle of the flow control valve with the regeneration function and the pressure compensating valve. The workability of the water averaging operation can be improved by the stable arm cylinder extension operation which is not affected by the change of the side holding pressure. When the load pressure on the cylinder head side decreases to a state close to voiding, the back pressure applied to the return oil to the tank by the second throttle regenerates and supplies the return oil to the tank to the head side. Side voiding can be prevented.
【0056】請求項3に記載の発明によれば、タンクラ
インに背圧チェック弁を設けたから、その分、再生機能
付流量制御弁の構造を簡単にすることができる。According to the third aspect of the present invention, since the back pressure check valve is provided in the tank line, the structure of the flow control valve with the regeneration function can be simplified accordingly.
【0057】請求項4に記載の発明によれば、外部コン
トローラによりアームシリンダのヘッド側負荷圧等を処
理した上で、スプリング調整機構を介しアームシリンダ
のロッド側戻り油の負荷圧補償油量をフレキシブルにコ
ントロールすることが可能である。According to the fourth aspect of the invention, after the external controller processes the load pressure on the head side of the arm cylinder and the like, the load pressure compensating oil amount of the return oil on the rod side of the arm cylinder is adjusted via the spring adjusting mechanism. It is possible to control flexibly.
【0058】請求項5に記載の発明によれば、再生チェ
ック弁をヘッド側連通ラインに設けたから、その分、再
生機能付流量制御弁内の構造を簡単にすることができ
る。According to the fifth aspect of the present invention, since the regeneration check valve is provided in the head side communication line, the structure in the flow control valve with the regeneration function can be simplified accordingly.
【図1】本発明に係るシリンダ制御回路の第1実施例を
示す油圧回路図である。FIG. 1 is a hydraulic circuit diagram showing a first embodiment of a cylinder control circuit according to the present invention.
【図2】同上シリンダ制御回路の第2実施例を示す油圧
回路図である。FIG. 2 is a hydraulic circuit diagram showing a second embodiment of the cylinder control circuit.
【図3】同上シリンダ制御回路の第3実施例を示す油圧
回路図である。FIG. 3 is a hydraulic circuit diagram showing a third embodiment of the cylinder control circuit.
【図4】同上シリンダ制御回路の第4実施例を示す油圧
回路図である。FIG. 4 is a hydraulic circuit diagram showing a fourth embodiment of the cylinder control circuit.
【図5】従来の建設機械のシリンダ制御回路を示す油圧
回路図である。FIG. 5 is a hydraulic circuit diagram illustrating a cylinder control circuit of a conventional construction machine.
【図6】(A)は油圧ショベルのフロントリンケージを
フルリーチ状態とした場合の説明図、(B)はそのリン
ケージを水平均し動作した場合の説明図である。FIG. 6A is an explanatory diagram when the front linkage of the hydraulic excavator is in a full reach state, and FIG. 6B is an explanatory diagram when the linkage is operated with water averaging.
【符号の説明】 16 アーム 25 アームシリンダ 25a ヘッド側 25b ロッド側 251 アーム用操作弁 28 油圧ポンプ 41 ヘッド側給排ライン 42 ロッド側給油ライン 43 逆止弁 44 ロッド側排油ライン 45 圧力補償弁 46 再生機能付流量制御弁 51 第1絞り 52 第2絞り 53 中間圧力通路 54 再生チェック弁 55 第3絞り 56 ヘッド側連通ライン 59 スプリング 61 スプリング調整機構 71 背圧チェック弁 81 外部コントローラ T タンクライン[Description of Signs] 16 Arm 25 Arm Cylinder 25a Head Side 25b Rod Side 251 Arm Operating Valve 28 Hydraulic Pump 41 Head Side Supply / Drain Line 42 Rod Side Oil Supply Line 43 Check Valve 44 Rod Side Oil Discharge Line 45 Pressure Compensation Valve 46 Flow control valve with regeneration function 51 First throttle 52 Second throttle 53 Intermediate pressure passage 54 Regeneration check valve 55 Third throttle 56 Head side communication line 59 Spring 61 Spring adjustment mechanism 71 Back pressure check valve 81 External controller T Tank line
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) E02F 9/22 F15B 11/024 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) E02F 9/22 F15B 11/024
Claims (5)
アームを作動するアームシリンダとの間に設けられたア
ーム用操作弁によって、アームシリンダのヘッド側およ
びロッド側に作動油を給排制御する建設機械のシリンダ
制御回路において、 アームシリンダのロッド側に逆止弁を介し作動油を供給
するロッド側供給ラインより分岐され、アームシリンダ
のロッド側からタンクラインへ戻り油を導くロッド側排
油ラインと、 このロッド側排油ラインに設けられ、アームシリンダの
ロッド側からタンクラインへの戻り流量を絞りにより規
制するとともに、ロッド側からタンクラインへの戻り油
の一部または全部をヘッド側給排ラインに再生供給する
再生機能付流量制御弁と、 ロッド側排油ラインにて再生機能付流量制御弁よりアー
ムシリンダ側に設けられ、再生機能付流量制御弁の絞り
の前後の差圧をスプリングにより制御する差圧制御用の
圧力補償弁と、 この圧力補償弁のスプリングに対し設けられ、アームシ
リンダのヘッド側負荷圧により直接または間接的にスプ
リングのセット荷重を調整するスプリング調整機構とを
具備したことを特徴とする建設機械のシリンダ制御回
路。A construction machine that controls supply and discharge of hydraulic oil to a head side and a rod side of an arm cylinder by an arm operation valve provided between a hydraulic pump and a tank and an arm cylinder that operates an arm of the shovel. In the cylinder control circuit, a rod-side oil drain line that branches from a rod-side supply line that supplies hydraulic oil to the rod side of the arm cylinder via a check valve and guides the return oil from the rod side of the arm cylinder to the tank line, This rod-side oil drain line is provided to restrict the return flow from the rod side of the arm cylinder to the tank line by restricting, and a part or all of the return oil from the rod side to the tank line is sent to the head side supply / drain line. A flow control valve with a regeneration function to supply and regenerate, and an arm cylinder side from a flow control valve with a regeneration function in the rod side oil drain A pressure compensating valve for differential pressure control provided by a spring for controlling a differential pressure before and after the throttle of a flow control valve with a regeneration function; and a head side load pressure of an arm cylinder provided for the spring of the pressure compensating valve. And a spring adjusting mechanism for directly or indirectly adjusting the set load of the spring.
弁をアームシリンダ伸張側へ作動するパイロット圧によ
り移動して圧力補償弁の出力ラインとタンクラインとを
連通する内部通路に、流量制御用の第1絞りと、アーム
シリンダのロッド側からタンクラインへの戻り油に背圧
を与える第2絞りとが直列に設けられ、この第1絞りと
第2絞りとの間から中間圧力通路が引出され、この中間
圧力通路に再生チェック弁および第3絞りが設けられ、
この再生チェック弁および第3絞りの設けられた内部通
路が、前記アームシリンダ伸張側パイロット圧により移
動して、ヘッド側給排ラインに接続されたヘッド側連通
ラインと連通されることを特徴とする請求項1記載の建
設機械のシリンダ制御回路。2. A flow control valve having a regeneration function, wherein an operation valve for an arm is moved by a pilot pressure operating to an arm cylinder extension side to control a flow rate in an internal passage connecting an output line of the pressure compensation valve and a tank line. First throttle and a second throttle for applying back pressure to the return oil from the rod side of the arm cylinder to the tank line are provided in series, and an intermediate pressure passage is provided between the first throttle and the second throttle. The intermediate pressure passage is provided with a regeneration check valve and a third throttle,
The internal passage provided with the regeneration check valve and the third throttle is moved by the arm cylinder extension-side pilot pressure and communicates with a head-side communication line connected to a head-side supply / discharge line. The construction machine cylinder control circuit according to claim 1.
弁をアームシリンダ伸張側へ作動するパイロット圧によ
り移動して圧力補償弁の出力ラインとタンクラインとを
連通する内部通路に流量制御用の第1絞りが設けられ、
この第1絞りよりタンクライン側の内部通路から中間圧
力通路が引出され、この中間圧力通路に再生チェック弁
および第3絞りが設けられ、この再生チェック弁および
第3絞りの設けられた内部通路が、前記アームシリンダ
伸張側パイロット圧により移動して、ヘッド側給排ライ
ンに接続されたヘッド側連通ラインと連通され、前記タ
ンクラインに、アームシリンダのロッド側からの戻り油
に背圧を与える背圧チェック弁が設けられたことを特徴
とする請求項1記載の建設機械のシリンダ制御回路。3. A flow control valve having a regeneration function for controlling a flow rate of an arm operation valve to an internal passage connecting an output line of a pressure compensating valve and a tank line by moving a pilot pressure operating an arm cylinder extension side. A first aperture is provided,
An intermediate pressure passage is drawn from the internal passage on the tank line side from the first throttle, and a regeneration check valve and a third throttle are provided in the intermediate pressure passage, and an internal passage provided with the regeneration check valve and the third throttle is provided. The arm is moved by the arm cylinder extension side pilot pressure, communicates with a head side communication line connected to a head side supply / discharge line, and applies a back pressure to the tank line to the return oil from the rod side of the arm cylinder to the tank line. The cylinder control circuit for a construction machine according to claim 1, further comprising a pressure check valve.
ンダのヘッド側負荷圧等に基づくパイロットシグナルを
間接的に供給する外部コントローラが設けられたことを
特徴とする請求項1記載の建設機械のシリンダ制御回
路。4. The cylinder control of a construction machine according to claim 1, wherein an external controller for indirectly supplying a pilot signal based on a head side load pressure of the arm cylinder or the like is provided to the spring adjustment mechanism. circuit.
インに設けられたことを特徴とする請求項2記載の建設
機械のシリンダ制御回路。5. The cylinder control circuit for a construction machine according to claim 2, wherein the regeneration check valve is provided in an external head-side communication line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6101198A JP3009822B2 (en) | 1994-05-16 | 1994-05-16 | Construction machine cylinder control circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6101198A JP3009822B2 (en) | 1994-05-16 | 1994-05-16 | Construction machine cylinder control circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07305379A JPH07305379A (en) | 1995-11-21 |
JP3009822B2 true JP3009822B2 (en) | 2000-02-14 |
Family
ID=14294246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6101198A Expired - Fee Related JP3009822B2 (en) | 1994-05-16 | 1994-05-16 | Construction machine cylinder control circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3009822B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6092454A (en) * | 1998-07-23 | 2000-07-25 | Caterpillar Inc. | Controlled float circuit for an actuator |
JP4454131B2 (en) * | 2000-09-26 | 2010-04-21 | 日立建機株式会社 | Construction machine hydraulic regeneration device and construction machine |
US7562615B2 (en) | 2003-01-14 | 2009-07-21 | Hitachi Construction Machinery Co., Ltd. | Hydraulic working machine |
CN100392257C (en) * | 2003-01-14 | 2008-06-04 | 日立建机株式会社 | Hydraulic working machine |
JP4121466B2 (en) * | 2004-02-06 | 2008-07-23 | 日立建機株式会社 | Hydraulic circuit of hydraulic working machine |
JP2006183413A (en) * | 2004-12-28 | 2006-07-13 | Shin Caterpillar Mitsubishi Ltd | Control circuit of construction machine |
DE102005059238B4 (en) * | 2005-12-12 | 2016-03-31 | Linde Hydraulics Gmbh & Co. Kg | Control valve device for controlling a consumer |
JP4859783B2 (en) * | 2007-08-07 | 2012-01-25 | カヤバ工業株式会社 | Control device using neutral cut valve |
JP6220131B2 (en) * | 2013-02-01 | 2017-10-25 | ナブテスコ株式会社 | Hydraulic control system and construction machinery equipped with the hydraulic control system |
KR20200037480A (en) | 2018-10-01 | 2020-04-09 | 두산인프라코어 주식회사 | Contorl system for construction machinery |
CN113819105B (en) * | 2021-11-25 | 2022-02-25 | 江苏汇智高端工程机械创新中心有限公司 | Hydraulic system for electrically proportional controlling multi-working-position valve and control method thereof |
KR102746904B1 (en) * | 2022-11-07 | 2024-12-27 | 울산대학교 산학협력단 | Individual flow control hydraulic system for excavators |
-
1994
- 1994-05-16 JP JP6101198A patent/JP3009822B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07305379A (en) | 1995-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3741502B2 (en) | Control valve for heavy equipment with variable regeneration | |
US7162869B2 (en) | Hydraulic system for a work machine | |
EP0656481B1 (en) | Hydraulic control system for construction machines | |
JP3009822B2 (en) | Construction machine cylinder control circuit | |
JPWO2014192458A1 (en) | Hydraulic drive unit for construction machinery | |
JPH07116721B2 (en) | Hydraulic circuit of hydraulic excavator | |
GB2072260A (en) | Fuel control system for an earth-moving vehicle | |
JP4240075B2 (en) | Hydraulic control circuit of excavator | |
JP2003004003A (en) | Hydraulic control circuit of hydraulic shovel | |
JPH0941428A (en) | Vibration damping device for hydraulic working machine | |
US5609088A (en) | Hydraulic control system for excavations with an improved flow control valve | |
US20170108015A1 (en) | Independent Metering Valves with Flow Sharing | |
JP2018145984A (en) | Hydraulic transmission for construction machine | |
JP3056220B2 (en) | Hydraulic drive | |
JP3901058B2 (en) | Hydraulic cylinder controller for construction machinery | |
JPH08219107A (en) | Hydraulic regeneration device for hydraulic machinery | |
JP3666830B2 (en) | Hydraulic regeneration circuit for hydraulic machine | |
JP2945829B2 (en) | Construction machine cylinder control circuit | |
JP2015031377A (en) | Hydraulic driving device | |
JP2758335B2 (en) | Hydraulic circuit structure of construction machinery | |
US11053958B2 (en) | Regeneration valve for a hydraulic circuit | |
JPH0776862A (en) | Hydraulic drive for construction machinery | |
JP3350914B2 (en) | Hydraulic circuit of excavator | |
JP3286149B2 (en) | Construction machine hydraulic circuit | |
JP2002021809A (en) | Hydraulic circuit for construction machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991102 |
|
LAPS | Cancellation because of no payment of annual fees |