JP3007198B2 - Method for producing composite powder comprising titanium powder and mother alloy powder - Google Patents
Method for producing composite powder comprising titanium powder and mother alloy powderInfo
- Publication number
- JP3007198B2 JP3007198B2 JP3249534A JP24953491A JP3007198B2 JP 3007198 B2 JP3007198 B2 JP 3007198B2 JP 3249534 A JP3249534 A JP 3249534A JP 24953491 A JP24953491 A JP 24953491A JP 3007198 B2 JP3007198 B2 JP 3007198B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- titanium
- mother alloy
- present
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims description 126
- 229910045601 alloy Inorganic materials 0.000 title claims description 60
- 239000000956 alloy Substances 0.000 title claims description 60
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims description 42
- 239000002131 composite material Substances 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- -1 titanium hydride Chemical compound 0.000 claims description 27
- 229910000048 titanium hydride Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 description 16
- 238000005245 sintering Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- 238000000465 moulding Methods 0.000 description 13
- 238000005275 alloying Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 7
- 238000006356 dehydrogenation reaction Methods 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000001771 impaired effect Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000004663 powder metallurgy Methods 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001010081 Metallus Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、粉末冶金法によるチタ
ン合金の製造方法に関する。さらに詳しくは、素粉末混
合法に使用する原料粉末として、チタン粉末と母合金粉
末からなる複合粉末を製造する方法に係るものである。The present invention relates to a method for producing a titanium alloy by a powder metallurgy method. More specifically, the present invention relates to a method for producing a composite powder composed of a titanium powder and a mother alloy powder as a raw material powder used in the elementary powder mixing method.
【0002】[0002]
【従来の技術】チタン合金は軽量高強度の特性を生かす
べく、航空機などへの適用が盛んに進められてきたが、
熱間および冷間での加工性・成形性あるいは切削性が劣
るため、製造コストが著しく高くなるという欠点があっ
た。この欠点を補うべく、いわゆるニアーネットシェイ
プ加工手段により、最終形状にきわめて近い状態の製品
を直接製造する方法が種々検討されてきた。粉末冶金法
はその代表的方法のひとつである。2. Description of the Related Art Titanium alloys have been actively applied to aircraft, etc. in order to make use of the characteristics of light weight and high strength.
Since the workability, formability and machinability in hot and cold are inferior, the production cost is disadvantageously increased. In order to compensate for this drawback, various methods have been studied for directly manufacturing a product very close to the final shape by a so-called near-net shape processing means. Powder metallurgy is one of the representative methods.
【0003】さて、チタン合金の粉末冶金法には、あら
かじめ合金化された粉末を容器に充填し、成形・焼結す
る合金粉末法と、チタン粉末と母合金元素粉末を混合
し、容器に充填することにより混合粉末体を製造し、そ
れを成形し、その後、焼結と合金化を同時に行う素粉末
法がある。特に素粉末法では、成形時には軟質のチタン
粉末が大部分を占めるため、成形性が良いという利点
と、合金化熱処理と焼結を同時に行うため、製造コスト
が比較的安価となる利点がある。ところが、チタン粉末
と母合金粉末は、重さ、寸法、表面状態が異なってお
り、容器に混合粉末を充填する際、振動や重力の影響
で、チタン粉末と母合金粉末が部分的に分離し、焼結・
合金化熱処理の過程で、偏析による不均一組織が形成さ
れ、材質特性を劣化させるという問題点があった。[0003] The powder metallurgy method for titanium alloys includes an alloy powder method in which a pre-alloyed powder is filled in a container, and molding and sintering, or a method in which titanium powder and a master alloy element powder are mixed and filled in a container. There is an elementary powder method in which a mixed powder body is manufactured by performing the method, the molded body is molded, and then sintering and alloying are simultaneously performed. In particular, in the elemental powder method, soft titanium powder occupies a large part during molding, so that there is an advantage that moldability is good, and there is an advantage that manufacturing cost is relatively low because alloying heat treatment and sintering are performed simultaneously. However, the titanium powder and the master alloy powder have different weights, dimensions, and surface conditions.When filling the container with the mixed powder, the titanium powder and the master alloy powder are partially separated by the influence of vibration or gravity. , Sintering
In the course of the alloying heat treatment, there is a problem that a non-uniform structure is formed due to segregation and material properties are deteriorated.
【0004】このような問題点を解決するための手段と
して、1974年発行のPowder Metallu
rgy誌vol.17の271ページ〜287ページ記
載の複合粉末を利用する方法がある。すなわち、主要金
属粉末と相対的に微細な母合金粉末を混合し、成形用の
容器に充填する前に予備焼結を行うことにより、主要金
属粉末の周囲に母合金粉末が、本格的な合金化が起きな
い程度の軽度に緩やかに結合した複合粉末を製造すると
いう方法である。この複合粉末を充填すると、主要金属
粉末と母合金粉末の分離が起きないため、その後の焼結
・合金化熱処理過程で偏析による不均一組織は形成され
ない。しかも、予備焼結では、本格的な合金化は起こっ
ていないので、主要金属粉末の優れた成形性は損なわれ
ることがない。[0004] As a means for solving such a problem, Powder Metallu published in 1974 has been proposed.
rgy magazine vol. 17, page 271 to page 287. In other words, the main metal powder and the relatively fine master alloy powder are mixed and pre-sintered before filling in a molding container, so that the master alloy powder surrounds the main metal powder, and This is a method of producing a composite powder that is slightly loosely bound to such an extent that no cracking occurs. When the composite powder is filled, the main metal powder and the mother alloy powder do not separate, so that a non-uniform structure due to segregation is not formed in the subsequent sintering / alloying heat treatment process. Moreover, since the full-scale alloying does not occur in the preliminary sintering, the excellent formability of the main metal powder is not impaired.
【0005】このように複合粉末を利用すると、均質な
充填および成形が可能で、偏析の無い均質な材質特性を
得ることができるが、チタンはきわめて活性な金属であ
るため、チタン粉末と母合金粉末を混合し予備焼結を行
うと、図1(a),(b)に示すように、チタン粉末と
母合金粉末の緩やかな結合を達成することが難しく、き
わめて短時間で合金化が進行し成形性が低下したり、合
金化した粉末どうしの焼結の進行により粗大な粉末とな
るという問題点があった。さらに、熱処理工程が1つ増
えるため、酸素の侵入量が多くなり、成形性や材質特性
に悪影響をおよぼすという欠点があった。[0005] When the composite powder is used as described above, uniform filling and molding can be performed, and uniform material characteristics without segregation can be obtained. However, since titanium is a very active metal, titanium powder and a master alloy are used. When the powders are mixed and pre-sintered, it is difficult to achieve a loose bond between the titanium powder and the master alloy powder as shown in FIGS. 1 (a) and 1 (b), and the alloying proceeds in a very short time. However, there has been a problem that the formability is reduced and that the alloyed powder becomes coarse due to the progress of sintering. Furthermore, since one heat treatment step is added, the amount of infiltration of oxygen is increased, which has a disadvantage that moldability and material properties are adversely affected.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記問題点
を解消しようとするものであり、チタン粉末と母合金粉
末からなり、優れた成形性を有する複合粉末を製造する
ための方法を提供することを目的とするものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a method for producing a composite powder comprising titanium powder and a master alloy powder and having excellent moldability. It is intended to do so.
【0007】[0007]
【課題を解決するための手段】本発明者らは、粉末冶金
製チタン合金の材質特性改善のためには、偏析の無い均
質な素材を製造することがきわめて重要であるとの観点
から、チタン粉末と母合金粉末からなる複合粉末の製造
方法開発に日々努力を重ねた結果、優れた成形性を保持
した複合粉末を、容易に製造するための方法を見いだし
た。すなわち、本発明は、 (1)水素化チタン粉末と相対的に微細な母合金粉末を
混合し、1×10-3Torr以下の圧力の真空雰囲気で45
0℃以上800℃以下の温度に、10分以上10時間以
下の時間加熱保持することを特徴とするものであり、 (2)前項(1)の工程を実施後、さらに機械的粉砕を
行うことを特徴とするものである。DISCLOSURE OF THE INVENTION The present inventors have considered that it is extremely important to manufacture a homogeneous material without segregation in order to improve the material properties of a powder metallurgy titanium alloy. As a result of daily efforts to develop a method for producing a composite powder composed of a powder and a mother alloy powder, a method for easily producing a composite powder having excellent formability was found. That is, the present invention provides: (1) mixing titanium hydride powder and a relatively fine mother alloy powder, and mixing them in a vacuum atmosphere at a pressure of 1 × 10 −3 Torr or less.
It is characterized by heating and holding at a temperature of 0 ° C or more and 800 ° C or less for 10 minutes or more and 10 hours or less. It is characterized by the following.
【0008】なお、本発明における母合金粉末として
は、相対的に微細である2種類以上の粉末を混合して用
いても良いし、母合金粉末には合金元素だけでなくTi
が含まれていても良い。例えば、Ti−6Al−4V合
金を製造する場合、(60Al−40V)母合金粉末を
用いても良いし、(50Al−50Ti)母合金粉末と
(50Al−50V)母合金粉末を混合して使用しても
良い。さらに、(85V−15Al)母合金などと上記
の母合金を様々に組み合わせて混合して使用することも
可能である。また、水素化チタン粉末には、Tiの他、
通常のチタン粉末に含まれているのと同程度のFe,
O,C,Nが不純物として含まれていてもかまわない。As the mother alloy powder in the present invention , two or more kinds of relatively fine powders may be mixed and used.
May be included. For example, when manufacturing a Ti-6Al-4V alloy, a (60Al-40V) master alloy powder may be used, or a (50Al-50Ti) master alloy powder and a (50Al-50V) master alloy powder may be mixed and used. You may. Furthermore, (85V-15Al) master alloy and the like and the above-mentioned master alloy can be mixed and used in various combinations. The titanium hydride powder contains, in addition to Ti,
Fe, about the same as that contained in normal titanium powder,
O, C, and N may be contained as impurities.
【0009】[0009]
【作用】以下、本発明について詳細に説明する。本発明
(1)では、水素化チタン粉末と相対的に微細な母合金
粉末を混合し、1×10-3Torr以下の圧力の真空雰囲気
で450℃以上800℃以下の温度に、10分以上10
時間以下の時間加熱保持する。これは、きわめて活性で
あるチタン粉末の代わりに、チタン粉末に比べると活性
度の劣る水素化チタン粉末を相対的に微細な母合金粉末
と混合し、予備焼結を行うことにより、チタンと母合金
粉末の行き過ぎた反応を抑制し、両者が緩やかに結合す
る程度の適度な反応にとどめることを第1の目的として
いる。さらに、予備焼結を1×10-3Torr以下の圧力の
真空で行うことにより、脱水素処理を同時に行い、水素
化チタン粉末をチタン粉末に変換することを第2の目的
としている。この工程により、図2に示すように、混合
状態(a)から予備焼結でチタン粉末の周囲に母合金粉
末が緩やかに結合した複合粉末(b)を製造することが
できる。このとき、チタン粉末と母合金粉末は緩やかな
結合をしているに過ぎず、合金化はわずかしか進行して
いないため、チタン粉末の持つ良好な成形性は損なわれ
ない。また、水素化チタン粉末を脱水素しチタン粉末を
得るという方法は、チタン粉末を得るための最も一般的
な方法の一つであり、本発明(1)の工程は、この脱水
素処理を予備焼結と兼ねて行うので、熱処理工程数の増
加は無い。したがって、余分な酸素吸収も無く、また、
製造コストの増加も無い。Hereinafter, the present invention will be described in detail. In the present invention (1), titanium hydride powder and a relatively fine mother alloy powder are mixed, and the mixture is heated to a temperature of 450 to 800 ° C. in a vacuum atmosphere of 1 × 10 −3 Torr or less for 10 minutes or more. 10
Hold for less than or equal to time. This is because instead of titanium powder, which is extremely active, titanium hydride powder, which has lower activity than titanium powder, is mixed with a relatively fine mother alloy powder, and pre-sintering is performed, so that titanium and mother powder are mixed. It is a first object of the present invention to suppress an excessive reaction of the alloy powder and to keep the reaction at an appropriate level such that both are loosely bonded. It is a second object of the present invention to simultaneously perform dehydrogenation treatment by performing pre-sintering in a vacuum at a pressure of 1 × 10 −3 Torr or less to convert titanium hydride powder to titanium powder. By this step, as shown in FIG. 2, the composite powder (b) in which the mother alloy powder is loosely bonded around the titanium powder by the preliminary sintering from the mixed state (a) can be produced. At this time, the titanium powder and the mother alloy powder are only loosely bonded, and alloying has progressed only slightly, so that good formability of the titanium powder is not impaired. The method of obtaining titanium powder by dehydrogenating titanium hydride powder is one of the most common methods for obtaining titanium powder. Since the sintering is also performed, there is no increase in the number of heat treatment steps. Therefore, there is no extra oxygen absorption,
There is no increase in manufacturing cost.
【0010】ここで、本発明(1)の加熱保持温度を4
50℃以上としたのは、450℃未満の温度では、水素
化チタン粉末と母合金粉末の反応が過度に抑制され、水
素化チタン粉末の周囲に母合金粉末が十分に付着せず、
良好な複合粉末が得られないからである。また、脱水素
反応も著しく遅延し、効果的でない。一方、加熱保持温
度を800℃以下としたのは、これを越える温度では、
水素化チタン粉末と母合金粉末の反応が活発になり過
ぎ、合金化が進行し、成形性が低下するとともに、合金
化した粉末どうしが粗大な焼結体を生じ、良好な複合粉
末を得ることができないという理由による。また加熱保
持時間を10分以上10時間以下としたのは、次の理由
による。すなわち、10分未満の時間では、水素化チタ
ン粉末と母合金粉末の反応が不十分で、水素化チタン粉
末の周囲に母合金粉末が緩やかに結合した、良好な複合
粉末が得られない。また、脱水素反応も不十分である。
また、10時間以上の時間では、脱水素はほとんど完了
しており、水素化チタンはすでに活性なチタンとなって
いて、母合金との反応がきわめて活発となり、合金化が
進行するために、成形性が損なわれ、さらに粉末も粗大
となる。また、本発明(1)では、1×10-3Torr以下
の圧力の真空で熱処理を行うこととしたのは、これを越
える圧力の真空度では、脱水素が十分達成できない理由
と、酸素などの不純物がチタン中に侵入し、成形性や材
質特性を劣化させるという理由による。Here, the heating and holding temperature of the present invention (1) is set to 4
The reason that the temperature is set to 50 ° C. or higher is that at a temperature lower than 450 ° C., the reaction between the titanium hydride powder and the mother alloy powder is excessively suppressed, and the mother alloy powder does not sufficiently adhere around the titanium hydride powder.
This is because good composite powder cannot be obtained. In addition, the dehydrogenation reaction is significantly delayed and is not effective. On the other hand, the reason why the heating holding temperature is set to 800 ° C. or less is that at a temperature exceeding this,
The reaction between the titanium hydride powder and the mother alloy powder becomes too active, the alloying proceeds, the formability decreases, and the alloyed powder forms a coarse sintered body to obtain a good composite powder. Is not possible. The reason why the heating holding time is set to 10 minutes or more and 10 hours or less is as follows. That is, if the time is less than 10 minutes, the reaction between the titanium hydride powder and the mother alloy powder is insufficient, and a good composite powder in which the mother alloy powder is loosely bonded around the titanium hydride powder cannot be obtained. Also, the dehydrogenation reaction is insufficient.
In the period of 10 hours or more, dehydrogenation was almost completed, titanium hydride had already become active titanium, the reaction with the master alloy became extremely active, and alloying proceeded. The properties are impaired and the powder becomes coarse. Further, in the present invention (1), the heat treatment is performed in a vacuum at a pressure of 1 × 10 −3 Torr or less. Is invaded into titanium and deteriorates formability and material properties.
【0011】本発明(2)では、本発明(1)の工程を
実施後、さらに機械的粉砕を行う。これは、本発明
(1)の効果をさらに高めるための工程である。すなわ
ち、本発明(1)の工程を実施することにより得られた
複合粉末のうち、若干の量の複合粉末は、図3に示すよ
うに複合粉末どうしが結合し、粗大な粉末となってい
る。これらを粉砕し、微細な複合粉末にすることが本工
程の目的である。さて、このような複合粉末どうしが結
合した粗大粉末は、図3に示すように、チタン粉末どう
しではなく、母合金粉末の部分で結合しているのが特徴
である。そして母合金粉末は、一般にきわめて脆い金属
間化合物であるので、機械的粉砕を行うと、この母合金
部分で破砕し、きわめて容易に微細な複合粉末を得るこ
とができる。しかも、チタン粉末はほとんど塑性変形し
ないのでチタンは硬化せず、したがって成形性も損なわ
れない。In the present invention (2), after the step of the present invention (1) is performed, mechanical pulverization is further performed. This is a step for further enhancing the effect of the present invention (1). That is, among the composite powders obtained by performing the process of the present invention (1), a small amount of the composite powders is a coarse powder as shown in FIG. . The purpose of this step is to grind these into a fine composite powder. By the way, as shown in FIG. 3, the coarse powder in which such composite powders are bonded is characterized in that it is bonded not in the titanium powder but in the part of the mother alloy powder. Since the master alloy powder is generally an extremely brittle intermetallic compound, when mechanical pulverization is performed, the mother alloy portion is crushed and a fine composite powder can be obtained very easily. In addition, since titanium powder hardly undergoes plastic deformation, the titanium does not harden, and thus the formability is not impaired.
【0012】[0012]
【実施例】Ti−6Al−4VおよびTi−5Al−
2.5Feを製造するために、本発明を適用して複合粉
末を製造した場合を例に、本発明についてさらに詳しく
説明する。水素化チタン粉末は、平均篩寸法120μ
m、最大篩寸法150μmの粉末を使用した。この水素
化チタン粉末には3.9重量%の水素が含まれている。
またTi−6Al−4Vを製造するために使用した母合
金粉末は、(60Al−40V)母合金粉末で、平均篩
寸法40μm、最大篩寸法70μmである。また、Ti
−5Al−2.5Feを製造するための合金元素添加
は、(28.6Ti−71.4Al)母合金粉末と(5
0Ti−50Al)母合金粉末を混合して用いることに
より行った。この2種類の母合金の平均篩寸法はいずれ
も30μmで、最大篩寸法はいずれも60μmである。
なお、一部の比較材を製造するために、水素化チタン粉
末を脱水素することにより製造したチタン粉末を用いた
が、このチタン粉末の篩寸法は水素化チタンとまったく
同じである。EXAMPLES Ti-6Al-4V and Ti-5Al-
The present invention will be described in more detail by taking as an example a case where a composite powder is manufactured by applying the present invention to manufacture 2.5Fe. Titanium hydride powder has an average sieve size of 120μ
m, a powder having a maximum sieve size of 150 μm was used. This titanium hydride powder contains 3.9% by weight of hydrogen.
The mother alloy powder used for producing Ti-6Al-4V is a (60Al-40V) mother alloy powder having an average sieve size of 40 μm and a maximum sieve size of 70 μm. Also, Ti
-5Al-2.5Fe is produced by adding (28.6Ti-71.4Al) master alloy powder and (5
0Ti-50Al) master alloy powder. The average sieve size of each of the two types of mother alloys is 30 μm, and the maximum sieve size is 60 μm.
In addition, in order to manufacture some comparative materials, titanium powder produced by dehydrogenating titanium hydride powder was used, and the sieve size of this titanium powder is exactly the same as titanium hydride.
【0013】表1および表2に示すような工程を行った
粉末試料は、平均篩寸法および最大篩寸法を測定すると
ともに、プレス成形試験機を用いて成形性を評価した。
成形性は、同じ成分の溶解材合金の密度を100%とし
た場合、成形後の密度が80%以上となるのに必要な成
形圧で評価した。これらの試験結果を表3および表4に
示す。The powder samples subjected to the steps shown in Tables 1 and 2 were measured for average sieve size and maximum sieve size, and evaluated for formability using a press molding tester.
The moldability was evaluated by the molding pressure necessary for the density after molding to be 80% or more, assuming that the density of the molten alloy of the same component was 100%. Tables 3 and 4 show the test results.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【表2】 [Table 2]
【0016】[0016]
【表3】 [Table 3]
【0017】[0017]
【表4】 [Table 4]
【0018】表1および表3において、試験番号1は比
較例としてチタン粉末の成形性を調べた結果である。8
0%相対密度に要す成形圧は465MPa であった。表2
にて、試験番号2は、(60Al−40V)母合金粉末
とチタン粉末を混合し予備焼結した場合で、試験番号3
は(71.4Al−28.6Ti)母合金と(50Ti
−50Fe)母合金とチタン粉末と混合し予備焼結した
場合であり、それぞれ、Ti−6Al−4VおよびTi
−5Al−2.5Feの複合粉末を製造するための従来
法に相当する。表3に示すように、試験番号2,3とも
に、篩寸法が著しく粗大化しており、平均篩寸法は25
0μm、最大篩寸法は500μm以上となっている。ま
た、成形性も著しく損なわれており、80%相対密度に
要する成形圧は600MPa 以上となっている。これは、
チタンがきわめて活性な金属であるため、予備焼結中
に、焼結や合金化が進行し、さらに、酸素量も増加し、
粉末が著しく粗大化するとともに、成形性が低下したも
のである。In Tables 1 and 3, Test No. 1 is the result of examining the moldability of titanium powder as a comparative example. 8
The molding pressure required for 0% relative density was 465 MPa. Table 2
In Test No. 2, the (60Al-40V) master alloy powder and the titanium powder were mixed and pre-sintered.
Are (71.4Al-28.6Ti) master alloy and (50Ti
-50Fe) master alloy and titanium powder mixed and pre-sintered, Ti-6Al-4V and Ti-6Al-4V, respectively.
This corresponds to a conventional method for producing a composite powder of -5Al-2.5Fe. As shown in Table 3, the sieve size was remarkably coarse in both of test numbers 2 and 3, and the average sieve size was 25.
0 μm, and the maximum sieve size is 500 μm or more. Further, the moldability is significantly impaired, and the molding pressure required for 80% relative density is 600 MPa or more. this is,
Since titanium is a very active metal, sintering and alloying progress during pre-sintering, and the amount of oxygen increases,
The powder was remarkably coarsened and the moldability was reduced.
【0019】一方、Ti−6Al−4Vに対して行った
本発明(1)の実施例である試験番号4、およびTi−
5Al−2.5Feに対して行った本発明(1)の実施
例である試験番号5では、表3に示すように、平均篩寸
法は、チタン粉末の場合よりもやや大きいものの150
μm〜160μmと微細で、最大篩寸法も300μm以
下と比較的微細である。また、80%相対密度に要する
成形圧も500MPa 以下で、良好な値である。これは、
チタン粉末に比べると不活性な水素化チタン粉末の周囲
に、母合金粉末が緩やかに結合し、同時に水素化チタン
が脱水素されチタン粉末に変換されたためである。On the other hand, Test No. 4, which is an embodiment of the present invention (1), and Ti-6
In Test No. 5, which is an example of the present invention (1) performed on 5Al-2.5Fe, as shown in Table 3, the average sieve size was slightly larger than that of titanium powder, but was 150 mm.
It is as fine as [mu] m to 160 [mu] m, and the maximum sieve size is relatively fine as 300 [mu] m or less. Also, the molding pressure required for 80% relative density is a good value of 500 MPa or less. this is,
This is because the mother alloy powder is loosely bound around the titanium hydride powder which is inactive as compared with the titanium powder, and at the same time, the titanium hydride is dehydrogenated and converted to titanium powder.
【0020】さて、表2において、試験番号7,9,1
1はTi−6Al−4Vに対して本発明(1)を適用し
た場合の実施例であり、試験番号6,8,10,12,
13は比較例である。表4に示すように、本発明(1)
の実施例である試験番号7,9,11は、いずれも平均
篩寸法が170μm以下で、最大篩寸法が300μm以
下で、比較的微細な粉末であり、かつ、80%相対密度
に要す成形圧が500MPa 以下で、良好な成形性が維持
されている。これに対し、試験番号6,8,10,1
2,13は、表4に示すように、いずれも80%相対密
度に要す成形圧も500MPa を越えており、チタン粉末
の優れた成形性が失われている。また、試験番号8およ
び13では、最大篩寸法が300μmを越えて粗大化し
ている。さらに、試験番号10,12では、平均篩寸法
および最大篩寸法が、予備焼結前の水素化チタン粉末の
それらと同じ程度あるいはそれ以下となっており、母合
金粉末が十分にチタン粉末の周りに付着していないこと
を示している。In Table 2, test numbers 7, 9, 1
No. 1 is an example in which the present invention (1) was applied to Ti-6Al-4V, and test numbers 6, 8, 10, 12,
13 is a comparative example. As shown in Table 4, the present invention (1)
Test Nos. 7, 9 and 11, which are examples of the present invention, are relatively fine powder having an average sieve size of 170 μm or less, a maximum sieve size of 300 μm or less, and a molding required for 80% relative density. At a pressure of 500 MPa or less, good moldability is maintained. In contrast, test numbers 6, 8, 10, 1
In Tables 2 and 13, as shown in Table 4, the molding pressure required for the 80% relative density exceeded 500 MPa, and the excellent moldability of titanium powder was lost. In Test Nos. 8 and 13, the maximum sieve size was larger than 300 μm. Further, in Test Nos. 10 and 12, the average sieve size and the maximum sieve size were equal to or less than those of the titanium hydride powder before pre-sintering, and the master alloy powder was sufficiently surrounded by the titanium powder. Is not attached.
【0021】このように、試験番号6,8,10,1
2,13では良好な複合粉末が得られなかったが、この
理由は次のとおりである。試験番号6では、予備焼結の
雰囲気の圧力が本発明(1)の上限値よりも高かったた
め、脱水素が不十分で硬い水素化物が残存し、また酸素
の侵入により硬化し、成形性が低下した。試験番号8で
は、加熱温度が本発明(1)の上限値よりも高かったた
め、水素化チタン粉末と母合金粉末の反応が過度に活発
となり、生成した複合粉末が粗大化するとともに、合金
化の進行により成形性が低下した。試験番号10では、
加熱保持温度が本発明(1)の下限値未満であったた
め、脱水素が不十分で硬い水素化物が残存し、成形性が
低下した。また、この試料では、水素化チタン粉末と母
合金粉末の反応が過度に抑制されたため、水素化チタン
粉末の周りに母合金元素粉末が十分に付着しなかった。
試験番号12では、加熱保持時間が本発明(1)の下限
値未満であったため、脱水素が不十分で、硬い水素化物
が残存し、成形性が低下した。また、水素化チタン粉末
と母合金粉末の反応が不十分で、水素化チタン粉末の周
囲に母合金粉末が十分に付着しなかった。試験番号13
では、加熱保持時間が本発明(1)の上限値よりも長か
ったため、脱水素完了後のチタンと母合金の活発な反応
により、合金化が進行し、成形性が低下するとともに、
篩寸法も大きくなった。Thus, test numbers 6, 8, 10, 1
In Nos. 2 and 13, no good composite powder was obtained, for the following reasons. In Test No. 6, since the pressure of the atmosphere for pre-sintering was higher than the upper limit of the present invention (1), dehydration was insufficient and hard hydrides remained, and hardening was caused by intrusion of oxygen, and moldability was reduced. Dropped. In Test No. 8, since the heating temperature was higher than the upper limit of the present invention (1), the reaction between the titanium hydride powder and the mother alloy powder became excessively active, and the formed composite powder was coarsened and the Formability was reduced by progress. In test number 10,
Since the heating and holding temperature was lower than the lower limit of the present invention (1), dehydrogenation was insufficient and hard hydride remained, and moldability was reduced. Further, in this sample, the reaction between the titanium hydride powder and the mother alloy powder was excessively suppressed, so that the mother alloy element powder did not sufficiently adhere around the titanium hydride powder.
In Test No. 12, since the heating holding time was less than the lower limit of the present invention (1), dehydrogenation was insufficient, hard hydride remained, and moldability was reduced. Further, the reaction between the titanium hydride powder and the mother alloy powder was insufficient, and the mother alloy powder did not sufficiently adhere around the titanium hydride powder. Test number 13
Then, since the heating holding time was longer than the upper limit value of the present invention (1), the active reaction between titanium and the master alloy after the completion of dehydrogenation caused alloying to proceed, and formability decreased,
The sieve size has also increased.
【0022】表2において、試験番号14および15は
それぞれ、Ti−6Al−4VおよびTi−5Al−
2.5Feを製造するための複合粉末製造に本発明
(2)を適用した実施例である。すなわち、本発明
(1)を適用した、試験番号4および5をさらに、振動
ボールミルで15分間機械的粉砕を行ったものである。
表4に示すように、試験番号14および15は、それぞ
れ試験番号4および5よりも微細な粉末となっており、
いずれも最大篩寸法は200μm以下である。また80
%相対密度に要す成形圧も、470MPa で、チタン粉末
の場合とほとんど同じであり、きわめて良好な複合粉末
が得られている。これは、試験番号4あるいは5におい
て、若干量含まれていた篩寸法190μm〜280μm
の複合粉末が、機械的粉砕により、脆い母合金部分で粉
砕し、微細化したためである。In Table 2, Test Nos. 14 and 15 correspond to Ti-6Al-4V and Ti-5Al-
This is an example in which the present invention (2) is applied to the production of a composite powder for producing 2.5Fe. That is, the test Nos. 4 and 5 to which the present invention (1) was applied were further subjected to mechanical pulverization for 15 minutes by a vibration ball mill.
As shown in Table 4, Test Nos. 14 and 15 are finer powders than Test Nos. 4 and 5, respectively.
In each case, the maximum sieve size is 200 μm or less. Also 80
The molding pressure required for the% relative density is 470 MPa, which is almost the same as that of the titanium powder, and a very good composite powder is obtained. This means that in test numbers 4 and 5, the sieve size contained in a small amount was 190 μm to 280 μm.
This is because the composite powder was pulverized at the brittle master alloy portion by mechanical pulverization and refined.
【0023】[0023]
【発明の効果】以上説明したように、本発明を適用する
ことにより、偏析の無い均質な素材を製造するための素
材として、チタン粉末と母合金粉末からなる複合粉末
を、チタン粉末の優れた成形性を損なうことなく、容易
に製造することができる。As described above, by applying the present invention, a composite powder composed of a titanium powder and a master alloy powder is used as a material for producing a homogeneous material without segregation. It can be easily manufactured without impairing the moldability.
【図1】(a)はチタン粉末と母合金粉末を混合した状
態を示し、(b)はこれを従来の予備焼結した場合の変
化を示す模式図である。FIG. 1 (a) shows a state in which a titanium powder and a master alloy powder are mixed, and FIG. 1 (b) is a schematic view showing a change in a case where the powder is preliminarily sintered.
【図2】本発明(1)の処理を適用した場合であって、
(a)は水素化チタン粉末と母合金粉末を混合した状態
を示し、(b)は本発明の予備焼結した場合の変化を示
す模式図である。FIG. 2 shows a case where the processing of the present invention (1) is applied,
(A) shows a state in which a titanium hydride powder and a mother alloy powder are mixed, and (b) is a schematic view showing a change when pre-sintering according to the present invention.
【図3】本発明(2)を適用した場合の変化を示す模式
図である。FIG. 3 is a schematic diagram showing a change when the present invention (2) is applied.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−303017(JP,A) 特開 昭61−87802(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 9/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-303017 (JP, A) JP-A-61-87802 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 1/00-9/02
Claims (2)
金粉末を混合し、1×10-3Torr以下の真空雰囲気中、
450〜800℃の温度域に10分以上10時間以内加
熱、保持することを特徴とするチタン粉末と母合金粉末
からなる複合粉末の製造方法。A titanium hydride powder and a relatively fine mother alloy powder are mixed and mixed in a vacuum atmosphere of 1 × 10 −3 Torr or less.
A method for producing a composite powder comprising a titanium powder and a mother alloy powder, wherein the composite powder is heated and maintained in a temperature range of 450 to 800 ° C. for 10 minutes to 10 hours.
金粉末を混合し、1×10-3Torr以下の真空雰囲気中、
450〜800℃の温度域に10分以上10時間以内加
熱、保持した後、機械的粉砕を行うことを特徴とするチ
タン粉末と母合金粉末からなる複合粉末の製造方法。2. Titanium hydride powder and a relatively fine mother alloy powder are mixed and mixed in a vacuum atmosphere of 1 × 10 −3 Torr or less.
A method for producing a composite powder comprising a titanium powder and a master alloy powder, wherein the powder is heated and held in a temperature range of 450 to 800 ° C. for 10 minutes to 10 hours and then mechanically pulverized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3249534A JP3007198B2 (en) | 1991-09-27 | 1991-09-27 | Method for producing composite powder comprising titanium powder and mother alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3249534A JP3007198B2 (en) | 1991-09-27 | 1991-09-27 | Method for producing composite powder comprising titanium powder and mother alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05140602A JPH05140602A (en) | 1993-06-08 |
JP3007198B2 true JP3007198B2 (en) | 2000-02-07 |
Family
ID=17194419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3249534A Expired - Lifetime JP3007198B2 (en) | 1991-09-27 | 1991-09-27 | Method for producing composite powder comprising titanium powder and mother alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3007198B2 (en) |
-
1991
- 1991-09-27 JP JP3249534A patent/JP3007198B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05140602A (en) | 1993-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1184107B1 (en) | Alloyed steel powder for powder metallurgy | |
US6126894A (en) | Method of producing high density sintered articles from iron-silicon alloys | |
JPS6366362B2 (en) | ||
JPH0130898B2 (en) | ||
JP3113144B2 (en) | Method for producing high density sintered titanium alloy | |
JP3007198B2 (en) | Method for producing composite powder comprising titanium powder and mother alloy powder | |
JP2898475B2 (en) | Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body | |
JP2730284B2 (en) | Manufacturing method of Al-Si alloy sintered forged parts | |
US3158472A (en) | Process for producing sintered articles | |
JPH05345937A (en) | Method for producing Ti-Fe-Al sintered titanium alloy | |
JPH06279801A (en) | Method for producing composite powder composed of titanium powder and master alloy powder | |
CN113798488A (en) | Aluminum-based powder metallurgy material and preparation method thereof | |
JP2012511629A (en) | Semi-finished product for producing a sintered metal member, semi-finished product production method and member production | |
US4892582A (en) | Dental filling-material and method for its preparation | |
JPH0688104A (en) | Method for producing titanium powder | |
JPH0688153A (en) | Production of sintered titanium alloy | |
JPS5891140A (en) | High tensile metal alloy material and production thereof | |
JPH05148568A (en) | High density powder titanium alloy for sintering | |
JPH0633165A (en) | Manufacturing method of sintered titanium alloy | |
JPH04202736A (en) | Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging | |
JPH06306513A (en) | Production of high fatigue strength sintered titanium alloy | |
JPS62199703A (en) | Hot hydrostatic compression molding method for al-si powder alloy | |
JP2971720B2 (en) | Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy | |
JP3392228B2 (en) | Alloy steel powder for powder metallurgy | |
JPH075921B2 (en) | Method for producing composite alloy steel powder with excellent compressibility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991019 |