JP3000491B2 - Cantilever unit, information processing apparatus using the same, atomic force microscope, magnetic force microscope - Google Patents
Cantilever unit, information processing apparatus using the same, atomic force microscope, magnetic force microscopeInfo
- Publication number
- JP3000491B2 JP3000491B2 JP3103634A JP10363491A JP3000491B2 JP 3000491 B2 JP3000491 B2 JP 3000491B2 JP 3103634 A JP3103634 A JP 3103634A JP 10363491 A JP10363491 A JP 10363491A JP 3000491 B2 JP3000491 B2 JP 3000491B2
- Authority
- JP
- Japan
- Prior art keywords
- cantilever
- optical waveguide
- light
- force microscope
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 7
- 239000000523 sample Substances 0.000 claims abstract description 53
- 238000006073 displacement reaction Methods 0.000 claims abstract description 27
- 230000003287 optical effect Effects 0.000 claims description 72
- 239000000758 substrate Substances 0.000 claims description 16
- 239000010409 thin film Substances 0.000 claims description 8
- 230000004907 flux Effects 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02049—Interferometers characterised by particular mechanical design details
- G01B9/02051—Integrated design, e.g. on-chip or monolithic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
- G01B9/02022—Interferometers characterised by the beam path configuration contacting one object by grazing incidence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
- G01B9/02023—Indirect probing of object, e.g. via influence on cavity or fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/0894—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by non-contact electron transfer, i.e. electron tunneling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q20/00—Monitoring the movement or position of the probe
- G01Q20/02—Monitoring the movement or position of the probe by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/02—Multiple-type SPM, i.e. involving more than one SPM techniques
- G01Q60/08—MFM [Magnetic Force Microscopy] combined with AFM [Atomic Force Microscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/38—Probes, their manufacture, or their related instrumentation, e.g. holders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/50—MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
- G01Q60/54—Probes, their manufacture, or their related instrumentation, e.g. holders
- G01Q60/56—Probes with magnetic coating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/038—Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices
- G01R33/0385—Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices in relation with magnetic force measurements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B9/00—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
- G11B9/12—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
- G11B9/14—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B9/00—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
- G11B9/12—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
- G11B9/14—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
- G11B9/1409—Heads
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B9/00—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
- G11B9/12—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
- G11B9/14—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
- G11B9/1418—Disposition or mounting of heads or record carriers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/30—Grating as beam-splitter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q80/00—Applications, other than SPM, of scanning-probe techniques
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/849—Manufacture, treatment, or detection of nanostructure with scanning probe
- Y10S977/86—Scanning probe structure
- Y10S977/868—Scanning probe structure with optical means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/849—Manufacture, treatment, or detection of nanostructure with scanning probe
- Y10S977/86—Scanning probe structure
- Y10S977/873—Tip holder
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Magnetic Record Carriers (AREA)
- Recording Or Reproducing By Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、カンチレバーとその変
位量の検出手段を一体集積化して小型化を図ったカンチ
レバーユニット、及びこのカンチレバーユニットを用
い、試料表面の三次元形状をナノメートルスケールで測
定する原子間力顕微鏡(AtomicForce Mi
croscope,以下「AFM」と記す)、及び磁力
顕微鏡に関するものである。さらに本発明は上記AFM
を利用した情報処理装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a miniaturized cantilever unit in which a cantilever and a means for detecting the displacement thereof are integrated, and a three-dimensional shape of a sample surface on a nanometer scale using the cantilever unit. Atomic Force Microscopy (AtomicForce Mi)
(hereinafter referred to as “AFM”) and magnetic force
It relates to a microscope . Further, the present invention relates to the above AFM.
The present invention relates to an information processing apparatus using a computer .
【0002】[0002]
【従来の技術】AFMは、試料表面に対して1nm以下
の距離にまで探針を接近させた時に試料と探針間に働く
原子間力を探針を支持しているカンチレバー(弾性体)
の撓む量(変位量)から検出し、この原子間力を一定に
保つように試料と探針との距離を制御しながら試料表面
を走査することにより試料表面の三次元形状を1nm以
下の分解能で観察するものである(Binnig e
t.al,Phys.Rev.Lett.56,930
(1986))。AFMによると、走査型トンネル顕微
鏡(Scanning Tunneling Micr
oscope,以下「STM」と記す)のように、試料
が導電性である必要がなく、絶縁性試料、特に半導体レ
ジスト面や生体高分子などの表面を原子、分子のオーダ
ーで観察できるため、広い応用が期待されている。2. Description of the Related Art AFM is a cantilever (elastic body) that supports an atomic force acting between a sample and a probe when the probe is brought close to a sample surface to a distance of 1 nm or less.
The three-dimensional shape of the sample surface is reduced to 1 nm or less by scanning the sample surface while controlling the distance between the sample and the probe so as to keep this atomic force constant by detecting the amount of deflection (displacement amount) of Observation at resolution (Binnig e
t. al, Phys. Rev .. Lett. 56, 930
(1986)). According to the AFM, a scanning tunneling microscope (Scanning Tunneling Micror)
Oscope (hereinafter referred to as “STM”), it is not necessary for the sample to be conductive, and the surface of an insulating sample, especially a semiconductor resist surface or a biopolymer can be observed in the order of atoms and molecules. Application is expected.
【0003】図5、図6に従来のAFMを示す。AFM
は基本的には試料表面に対向させる探針111、及びこ
れを支持するカンチレバー107、試料と探針間に働く
原子間力によるカンチレバーの変位量検出手段、探針に
対する試料の相対的な位置を三次元で制御する手段から
構成される。FIGS. 5 and 6 show a conventional AFM. AFM
Basically, the probe 111 facing the sample surface, the cantilever 107 supporting the same, the means for detecting the displacement of the cantilever due to the atomic force acting between the sample and the probe, and the relative position of the sample with respect to the probe are determined. It consists of means for controlling in three dimensions.
【0004】従来のカンチレバーの変位量検出手段とし
ては、図5に示すようにカンチレバー107背後から光
を照射し、その反射光スポットの位置のずれ量から求め
る光てこ法や、図6に示すような、カンチレバー107
の背後に導電性探針602を接近して配置し、カンチレ
バー107と導電性探針602の間に流れるトンネル電
流を一定に保てるように導電性探針の位置を制御し、そ
の制御量から求めるトンネル電流法がある。As a conventional cantilever displacement amount detecting means, as shown in FIG. 5, light is irradiated from behind the cantilever 107, and a light leverage method obtained from a displacement amount of the position of the reflected light spot, or as shown in FIG. Na, cantilever 107
The conductive probe 602 is arranged close to the back, and the position of the conductive probe is controlled so that the tunnel current flowing between the cantilever 107 and the conductive probe 602 is kept constant, and the position is obtained from the control amount. There is a tunnel current method.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記光
てこ法では、光線をカンチレバー裏面に当てるための調
整治具、レンズ502やミラーなどの光学部品、2分割
フォトダイオード504の位置調整治具、トンネル電流
法ではカンチレバー裏面に対する導電性探針602の位
置調整治具等カンチレバー変位量検出手段の機械的構成
が複雑で大きくなってしまう。そのため、床振動や音響
振動、温度ドリフトなどの外乱の影響でその機械的構成
に位置ずれが生じたり、剛性の低下による共振が起こっ
たりして、カンチレバー変位量検出分解能に限界を生じ
ていた。However, in the above described optical lever method, an adjusting jig for applying a light beam to the back surface of the cantilever, an optical component such as a lens 502 and a mirror, a position adjusting jig for the two-division photodiode 504, a tunnel, and the like. In the current method, the mechanical configuration of the cantilever displacement amount detecting means such as a jig for adjusting the position of the conductive probe 602 with respect to the back surface of the cantilever is complicated and large. As a result, the mechanical configuration is displaced by the influence of disturbances such as floor vibration, acoustic vibration, and temperature drift, and resonance occurs due to a decrease in rigidity, thereby limiting the resolution of the cantilever displacement detection.
【0006】[0006]
【課題を解決するための手段及び作用】本発明は、カン
チレバー変位量検出手段を集積化し、カンチレバーと一
体化し、外乱の影響を受けにくいカンチレバーユニット
を提供するものである。SUMMARY OF THE INVENTION The present invention provides a cantilever unit which is integrated with a cantilever displacement amount detecting means and is integrated with the cantilever, and which is hardly affected by disturbance.
【0007】 さらに、本発明はこの新規なカンチレバ
ーユニットを用い、相対的位置合わせが不要で外乱の影
響を受けにくい、情報処理装置、AFM、磁力顕微鏡を
提供するものである。Further, the present invention provides an information processing apparatus, an AFM, and a magnetic force microscope using the novel cantilever unit, which does not require relative positioning and is not easily affected by disturbance.
【0008】 すなわち、本発明の第1は、探針を支持
するカンチレバーと、該カンチレバーを支持する基板
と、該カンチレバー及び基板上に形成され、互いに直交
する第1の光導波経路と第2の光導波経路を有する薄膜
光導波路と、該第1の光導波経路の一端に設けられ、該
第1の光導波経路に光束を導入する光源と、該第1の光
導波経路と上記第2の光導波経路の交点に位置し且つ上
記基板上に設けられたビームスプリッタと、上記第1の
光導波経路の他端であって上記カンチレバーの自由端面
に設けられた第1の反射ミラーと、上記第2の光導波経
路の一端に設けられた光センサーと、該第2の光導波経
路の他端に設けられた第2の反射ミラーとを備え、上記
第1の光導波経路を通り第1の反射ミラーで反射された
光束と、上記ビームスプリッタで分離され、上記第2の
光導波経路を通り第2の反射ミラーで反射された光束と
を、上記ビームスプリッタにより再び合成し、上記光セ
ンサーに導き、該光センサーが受光する光束の強度変化
により上記カンチレバーの変位を検知することを特徴と
するカンチレバーユニットである。また、本発明の第2
は第1のカンチレバーユニットを用いた情報処理装置で
あり、第3は第1のカンチレバーユニットを用いた原子
間力顕微鏡であり、第4は第1のカンチレバーユニット
を用いた磁力顕微鏡である。That is, a first aspect of the present invention is to support a probe.
And a substrate supporting the cantilever
And formed on the cantilever and the substrate and orthogonal to each other
Film having a first optical waveguide path and a second optical waveguide path
An optical waveguide, provided at one end of the first optical waveguide,
A light source for introducing a light beam into the first optical waveguide, and the first light
Located at the intersection of the waveguide path and the second optical waveguide path and
A beam splitter provided on the substrate;
The other end of the optical waveguide path and the free end face of the cantilever
A first reflection mirror provided in the second optical waveguide
An optical sensor provided at one end of the path and the second optical waveguide
A second reflection mirror provided at the other end of the road,
Reflected by the first reflecting mirror through the first optical waveguide path
A light beam, separated by the beam splitter, and
The light flux passing through the optical waveguide path and reflected by the second reflecting mirror;
Are recombined by the beam splitter, and
Changes in the intensity of the luminous flux received by the optical sensor
The displacement of the cantilever is detected by
This is a cantilever unit. Further, the second aspect of the present invention
Is an information processing device using the first cantilever unit , third is an atomic force microscope using the first cantilever unit, and fourth is a magnetic force microscope using the first cantilever unit.
【0009】 本発明においては、光集積回路の技術を
応用し、変位量検出手段として、光源及び光導波路、導
波形光路変換素子、光検出器を光集積化し、カンチレバ
ーと一体化することにより、従来のAFMで使用されて
いた変位量検出手段に比べてその大きさが50分の1以
下と小型化できる。従って、該手段の共振周波数を数1
0倍以上に上げることができるため、外乱の影響を受け
にくいものとなる。In the present invention, by applying the technology of an optical integrated circuit, a light source and an optical waveguide, a waveguide-type optical path conversion element, and a photodetector are optically integrated as a displacement amount detecting means and integrated with a cantilever . The size can be reduced to 1/50 or less of the displacement amount detection means used in the conventional AFM. Therefore , the resonance frequency of the means is given by
Since it can be increased to 0 times or more, it is hardly affected by disturbance.
【0010】具体的には光源、光導波路、光導波中の光
を集光するためのレンズ、光分割又は合成のためのビー
ムスプリッタ、進行方向を変更するためのミラー、導波
路外に光を取り出すためのカップラー等の光部品、光量
検出のためのフォトダイオード、光電流の増幅回路や信
号処理回路を集積化し、カンチレバーと一体化する。[0010] Specifically, a light source, an optical waveguide, a lens for condensing light in the optical waveguide, a beam splitter for splitting or combining light, a mirror for changing the traveling direction, and light to the outside of the waveguide. Optical components such as a coupler for taking out light, a photodiode for detecting the amount of light, a photocurrent amplifier circuit and a signal processing circuit are integrated and integrated with the cantilever.
【0011】[0011]
【実施例】以下、実施例をもとに、本発明をさらに詳細
に説明する。The present invention will be described below in further detail with reference to examples.
【0012】実施例1図1に本発明のカンチレバーユニ
ットの一例の構成を示す。 Embodiment 1 FIG. 1 shows the structure of an example of the cantilever unit of the present invention.
【0013】図1において、101は薄膜光導波路、1
02はSiO2、103はSi基板、104は半導体レ
ーザ、105はフレネルレンズ、106はグレーティン
グビームスプリッタ、107はカンチレバー、108は
反射ミラーa、109は反射ミラーb、110はフォト
ダイオード、111は探針、112は半導体レーザ駆動
回路、113は増幅回路である。In FIG. 1, reference numeral 101 denotes a thin film optical waveguide,
02 is SiO 2 , 103 is a Si substrate, 104 is a semiconductor laser, 105 is a Fresnel lens, 106 is a grating beam splitter, 107 is a cantilever, 108 is a reflection mirror a, 109 is a reflection mirror b, 110 is a photodiode, and 111 is a probe. The needle, 112 is a semiconductor laser drive circuit, and 113 is an amplifier circuit.
【0014】 本発明においては、薄膜光導波路101
は第1の光導波経路と、該第1の光導波経路に直交する
第2の光導波経路を有している。図1において、第1の
光導波経路は、半導体レーザ104からフレネルレンズ
105及びグレーティングビームスプリッタ106を経
てカンチレバー107の自由端面に設けられた第1の反
射ミラーa108に至る経路であり、第2の光導波経路
は、第2の反射ミラーb109からグレーティングビー
ムスプリッタ106を経てフォトダイオード110に至
る経路である。本実施例においては、表面に薄膜光導波
経路101を設けたSiO2 /Si基板103の一方の
端面には半導体レーザ104が接合されており、レーザ
光を光導波路101中の第1の光導波経路に導入する。
導入されたレーザ光はフレネルレンズ105によって平
行光に変換された後、グレーティングビームスプリッタ
106によって2方向に分けられる。第1の光導波経路
を直進する一方の光Aは、Si基板103の他端面に設
けられているカンチレバー107表面の光導波路中を通
り、カンチレバー107の自由端面に作られている反射
ミラーaによって反射し、再びカンチレバー107表面
の光導波路を通り、再びグレーティングビームスプリッ
タ106に入射する。In the present invention, the thin-film optical waveguide 101
Is orthogonal to the first optical waveguide path and the first optical waveguide path
It has a second optical waveguide path. In FIG. 1, the first
The optical waveguide path extends from the semiconductor laser 104 to the Fresnel lens.
105 and the grating beam splitter 106
The first counter provided on the free end face of the cantilever 107
A second optical waveguide path to the reflecting mirror a108
Is a grating beam from the second reflection mirror b109.
Through the splitter 106 to the photodiode 110
Route. In this embodiment, a semiconductor laser 104 is bonded to one end face of a SiO 2 / Si substrate 103 having a thin-film optical waveguide 101 provided on the surface, and the laser light is transmitted to the first optical waveguide 101 in the optical waveguide 101. Introduce to the route .
After the introduced laser light is converted into parallel light by the Fresnel lens 105, it is split into two directions by the grating beam splitter 106. First optical waveguide path
Light A traveling straight through the optical waveguide passes through the optical waveguide on the surface of the cantilever 107 provided on the other end surface of the Si substrate 103, is reflected by the reflecting mirror a formed on the free end surface of the cantilever 107, and is returned again. After passing through the optical waveguide on the front surface, the light enters the grating beam splitter 106 again.
【0015】 また、グレーティングビームスプリッタ
106で進路を90°曲げられ第2の光導波経路に導入
された他方の光Bは反射ミラーb109で反射した後、
同じ進路を逆方向に戻って再びグレーティングビームス
プリッタ106に入射する。2つの光はグレーティング
ビームスプリッタ106で合成され、その合成光Cがフ
ォトダイオード110で検知される。今カンチレバー1
07上に作成された探針111が原子間力を検出してカ
ンチレバー107先端が図中Z方向に撓むとその変位量
ΔZに応じてカンチレバー107表面の光導波路中に歪
みが生じ、光導波路の屈折率が変化する。この屈折率変
化をΔnとするとΔn=cΔn(ここでcは定数)であ
り、カンチレバー107表面上を通る光Aと反射ミラー
109によって反射される光Bとの間の光路差に変化2
LΔn(ここでLはカンチレバーの長さ)を生じ、合成
光Cの光強度が変化する。従って、この光強度の変化を
検知することにより、カンチレバー107先端のZ方向
の変位量ΔZが検知できる。この光強度変化信号を増幅
回路113によって増幅し、Z方向変位量信号とする。
ここでカンチレバー107のZ方向の弾性定数をkとす
ると、探針111が検知した原子間力の大きさfはf=
kΔZの式から求められる。The path is bent by 90 ° by the grating beam splitter 106 and introduced into the second optical waveguide.
The other light B is reflected by the reflection mirror b109,
After returning in the same direction in the reverse direction, the light enters the grating beam splitter 106 again. The two lights are combined by the grating beam splitter 106, and the combined light C is detected by the photodiode 110. Now cantilever 1
When the tip 111 of the cantilever 107 is bent in the Z direction in the figure by detecting the atomic force by the probe 111 formed on the substrate 07, a strain is generated in the optical waveguide on the surface of the cantilever 107 in accordance with the displacement ΔZ. The refractive index changes. If this refractive index change is Δn, then Δn = cΔn (where c is a constant), and the optical path difference between the light A passing on the surface of the cantilever 107 and the light B reflected by the reflection mirror 109 changes 2
LΔn (where L is the length of the cantilever) occurs, and the light intensity of the combined light C changes. Therefore, by detecting the change in the light intensity, the displacement ΔZ in the Z direction of the tip of the cantilever 107 can be detected. This light intensity change signal is amplified by the amplifier circuit 113 to obtain a Z direction displacement amount signal.
Here, assuming that the elastic constant in the Z direction of the cantilever 107 is k, the magnitude f of the atomic force detected by the probe 111 is f =
It is obtained from the equation of kΔZ.
【0016】さて、このような光集積化カンチレバーユ
ニットの作成法について説明する。Now, a method of manufacturing such an optical integrated cantilever unit will be described.
【0017】Si基板上に通常のシリコンプロセスによ
って、PiNフォトダイオードを構成した後、上部にL
PCVD法により厚さ0.1μmの保護用Si3N4膜を
形成する。次に他の開口部に熱酸化により厚さ0.5μ
mのSiO2膜を形成した後、プラズマエッチングによ
りSi3N4膜を取り除く。続いて真空蒸着法によりSi
O2膜上に厚さ1μmのAs2S3薄膜導波路を作成し、
電子ビーム照射による屈折率変化を利用して導波路中に
フレネルレンズ及びグレーティングビームスプリッタを
作成する。ここで、カンチレバー形状をパターニング
後、基板裏面からKOH液によって異方性エッチングを
行い、カンチレバーを形成、電子ビームデポジション法
によってカンチレバー先端に探針を設ける。チップにへ
き開後、端面及びカンチレバー先端の側面にAl等の金
属を蒸着して反射ミラーを形成し、他の端面に半導体レ
ーザを接合する。After a PiN photodiode is formed on a Si substrate by a normal silicon process, L
A protective Si 3 N 4 film having a thickness of 0.1 μm is formed by the PCVD method. Next, heat-oxidize the other openings to a thickness of 0.5μ.
After forming the m 2 SiO 2 film, the Si 3 N 4 film is removed by plasma etching. Subsequently, Si is formed by a vacuum deposition method.
A 1 μm thick As 2 S 3 thin film waveguide is formed on the O 2 film,
A Fresnel lens and a grating beam splitter are formed in a waveguide using a change in the refractive index due to electron beam irradiation. Here, after patterning the cantilever shape, anisotropic etching is performed from the back surface of the substrate with a KOH solution to form a cantilever, and a probe is provided at the tip of the cantilever by an electron beam deposition method. After cleaving the chip, a metal such as Al is deposited on the end face and the side face of the tip of the cantilever to form a reflection mirror, and a semiconductor laser is bonded to the other end face.
【0018】次に図2を用いて図1に示した光集積化カ
ンチレバーユニットを用いて構成される本発明のAFM
を説明する。図1に示したカンチレバーユニット201
に対向して置かれた試料202をXYZ駆動素子203
によってZ方向にカンチレバー上の探針111に対して
1nm以下の距離まで近接させる。ここで探針111と
試料202表面との間に働く原子間力によってカンチレ
バーに撓みが生じるが、この撓み量を一定にするように
(即ち原子間力を一定にするように)Z方向フィードバ
ック信号をXYZ駆動素子203に加え、探針111と
試料202との間隔を制御する。さらにコンピュータ2
05からの走査信号を元にX方向走査信号回路206、
Y方向走査信号回路207によってそれぞれX方向走査
信号、Y方向走査信号をXYZ駆動素子203に加え、
探針204に対して相対的に試料202をXYZ次元方
向に走査する。この時、試料表面の凹凸に応じてカンチ
レバーの撓み量を一定にするためのZ方向フィードバッ
ク信号から凹凸の深さ、高さを検知することができる。
コンピュータ205において、試料表面の凹凸の2次元
分布データを取得し、これを表示装置209に表示す
る。尚、探針材料としてFe,Co,Niなどの磁性体
材料を用いると、磁力顕微鏡として磁性試料表面磁区構
造を観察することができる。Next, an AFM of the present invention constituted by using the optically integrated cantilever unit shown in FIG. 1 with reference to FIG.
Will be described. The cantilever unit 201 shown in FIG.
The sample 202 placed opposite to the XYZ drive element 203
In the Z direction to approach the probe 111 on the cantilever to a distance of 1 nm or less. Here, the cantilever bends due to the atomic force acting between the probe 111 and the surface of the sample 202, and the Z-direction feedback signal is used to make the amount of this bending constant (that is, to make the atomic force constant). To the XYZ drive element 203 to control the distance between the probe 111 and the sample 202. Computer 2
X-direction scanning signal circuit 206 based on the scanning signal from
The X-direction scanning signal and the Y-direction scanning signal are applied to the XYZ driving element 203 by the Y-direction scanning signal circuit 207, respectively.
The sample 202 is scanned relative to the probe 204 in the XYZ dimensional directions. At this time, the depth and height of the unevenness can be detected from the Z-direction feedback signal for keeping the amount of bending of the cantilever constant according to the unevenness of the sample surface.
The computer 205 acquires two-dimensional distribution data of the unevenness of the sample surface, and displays the data on the display device 209. When a magnetic material such as Fe, Co, and Ni is used as the probe material, the magnetic domain structure on the surface of the magnetic sample can be observed with a magnetic force microscope.
【0019】 参考例 図3は、本発明の参考例の光集積化カンチレバーユニッ
トの構成を示す図である。図3において、表面に薄膜光
導波路101を設けたSiO2 /Si基板(102’/
103’)の一方の端面に接合された半導体レーザ11
2からレーザ光を光導波路101中に導入する。導入さ
れたレーザ光はフレネルレンズ105によって平行光に
変換された後、反射ミラーc306によって反射し、3
07のグレーティングカップラーaに入射する。グレー
ティングカップラーa307において、一部の光はAで
示すように光導波路外に取り出され、カンチレバー10
7裏面に反射後、グレーティングカップラーb309で
再び光導波路中に戻り、光導波路中をそのまま伝播して
きた光Bと合成される。その合成光Cが反射ミラーd3
10で反射後、フォトダイオード110で検知される。
今、カンチレバー107上に作成された探針111が原
子間力を検出してカンチレバー107先端が図中Z方向
に撓むとその変位量ΔZに応じて、グレーティングカッ
プラーa307から外に取り出された光Aがグレーティ
ングカップラーb309によって再び光導波路中に戻る
までの光路長が変化する。この変化をΔEとすると、光
導波路から外に取り出された光Aと光導波路中をそのま
ま伝播してきた光Bとの間の光路差に変化ΔE=2(1
−n・sinθ)ΔZ/cosθ(ここでθは光導波路
面法線と出射光Aとのなす角、nは光導波路の屈折率)
が生じ、合成光Cの光強度が変化する。従って、この光
強度の変化を検知することにより、カンチレバー107
先端のZ方向の変位量ΔZが検知できる。この光強度変
化信号を増幅回路113によって増幅し、Z方向変位量
信号とする。ここでカンチレバー107のZ方向の弾性
定数をkとすると探針111が検知した原子間力の大き
さfはf=kΔZから求められる。[0019] Reference Example Figure 3 is a diagram showing the configuration of an optical integrated cantilever unit of the reference example of the present invention. In FIG. 3, an SiO 2 / Si substrate (102 ′ /
103 '), the semiconductor laser 11 bonded to one end face
Laser light is introduced into the optical waveguide 101 from 2. The introduced laser light is converted into parallel light by the Fresnel lens 105 , and then reflected by the reflection mirror c306.
07 grating coupler a. In the grating coupler a307, a part of the light is taken out of the optical waveguide as shown by A, and
After being reflected on the back surface, the light returns to the optical waveguide again by the grating coupler b309, and is combined with the light B that has propagated through the optical waveguide as it is. The combined light C is reflected by the reflection mirror d3.
After being reflected at 10, it is detected by the photodiode 110.
Now, when the probe 111 formed on the cantilever 107 detects an atomic force and the tip of the cantilever 107 bends in the Z direction in the drawing, the light A extracted out of the grating coupler a 307 according to the displacement ΔZ thereof. The optical path length before returning to the inside of the optical waveguide by the grating coupler b309 changes. Assuming that this change is ΔE, the change ΔE = 2 (1) in the optical path difference between the light A extracted outside from the optical waveguide and the light B propagated through the optical waveguide as it is.
−n · sin θ) ΔZ / cos θ (where θ is the angle between the optical waveguide surface normal and the outgoing light A, and n is the refractive index of the optical waveguide)
Occurs, and the light intensity of the combined light C changes. Therefore, by detecting the change in the light intensity, the cantilever 107 is detected.
The amount of displacement ΔZ of the tip in the Z direction can be detected. This light intensity change signal is amplified by the amplifier circuit 113 to obtain a Z direction displacement amount signal. Here, assuming that the elastic constant of the cantilever 107 in the Z direction is k, the magnitude f of the atomic force detected by the probe 111 can be obtained from f = kΔZ.
【0020】 次に上記参考例の光集積化カンチレバー
ユニットの作成法について説明する。Next, a method of making the optical integrated cantilever unit of the above reference example will be described.
【0021】Si基板上に通常のシリコンプロセスによ
ってPiNフォトダイオードを構成した後、上部にLP
CVD法により厚さ0.1μmの保護用Si3N4膜を形
成する。次に他の開口部に熱酸化により厚さ2.5μm
のSiO2膜を形成した後プラズマエッチングによりS
iO2膜を取り除く。続いて、高周波スパッタ法によ
り、SiO2膜上にコーニング社7059ガラスを材料
とした厚さ2μmのガラス薄膜導波路を作成し、イオン
交換やイオン注入による屈折率変化を利用して、導波路
中にフレネルレンズ及びグレーティングカップラーを作
成する。ここで別のSi基板をパターニング、異方性エ
ッチングにより形成したカンチレバーを有するチップを
陽極接合により、ガラス薄膜導波路上に接合する。チッ
プにへき開研磨後、端面にAl等の金属を蒸着して反射
ミラーを形成し、他の端面に半導体レーザを接合する。After a PiN photodiode is formed on a Si substrate by a normal silicon process, an LP
A protective Si 3 N 4 film having a thickness of 0.1 μm is formed by a CVD method. Next, the thickness of the other opening is 2.5 μm by thermal oxidation.
After forming a SiO 2 film of
Remove the iO 2 film. Subsequently, a 2 μm-thick glass thin-film waveguide made of Corning 7059 glass was formed on the SiO 2 film by a high frequency sputtering method, and a refractive index change caused by ion exchange or ion implantation was used. First, a Fresnel lens and a grating coupler are created. Here, another Si substrate is patterned and a chip having a cantilever formed by anisotropic etching is bonded to the glass thin film waveguide by anodic bonding. After cleaving and polishing the chip, a metal such as Al is deposited on the end face to form a reflection mirror, and a semiconductor laser is bonded to the other end face.
【0022】 さらに、図4を参照しつつ、本発明の情
報処理(記録/再生)装置の実施例について説明する。
本実施例においても、先の図2と同様の装置構成(不図
示)を採用している。図4において、探針111を導電
性材料で形成し、その先端が図2の試料202に相当す
る情報記録媒体(不図示)表面の所定位置に近接するよ
うにカンチレバーユニットを配置する。 記録用電圧印加
回路401によって、探針111と上記媒体との間に記
録用電圧を印加し、上記媒体の所定位置にビットを形成
する。 尚、本発明では、上記媒体として、その局所に流
れるトンネル電流により表面形状変化を起こすものを採
用した。 さて、このようにして上記媒体に記録されたビ
ット(情報)を再生するには、次の操作を行なう。探針
111先端を上記媒体表面に近接・配置し、図中xy方
向に探針111を走査させる。しかして、探針111先
端が上記ビットに対向すると、そのビット形状に応じて
探針先端が力を受け、カンチレバー107に撓みが生ず
る。この撓みを、前述した本発明のカンチレバーユニッ
トにおける変位量検出手段を以て検出し、再生信号を得
ることができる。 上述のとうり、本実施例では、STM
の原理を応用して情報の記録を行ない、更には、AFM
の原理を応用して前記情報の再生を行なう装置について
説明した。 Further, with reference to FIG.
An embodiment of the report processing (recording / reproducing) device will be described.
Also in this embodiment, the same device configuration (not shown in FIG. 2) as in FIG.
Shown). In FIG. 4, the probe 111 is made conductive.
The tip is equivalent to the sample 202 in FIG.
Close to a predetermined position on the surface of an information recording medium (not shown)
Arrange the cantilever unit. Recording voltage application
The circuit 401 records a signal between the probe 111 and the medium.
Apply recording voltage to form a bit at a predetermined position on the medium
I do. In the present invention, as the medium, the medium is allowed to flow locally.
That cause a change in surface shape due to the tunnel current
Used. Now, the video recorded on the medium in this way is
In order to reproduce the data (information), the following operation is performed. Probe
Place the 111 tip near and above the medium surface, and
The probe 111 is caused to scan in the direction. Then, the tip of the probe 111
When the end faces the above bit, according to the bit shape
The tip of the probe receives force, and the cantilever 107 does not bend.
You. This bending is caused by the above-described cantilever unit of the present invention.
The displacement signal is detected by the displacement
Can be As described above, in this embodiment, the STM
Information is recorded by applying the principle of
Device that reproduces the information by applying the principle of
explained.
【0023】[0023]
【発明の効果】以上説明したように、カンチレバー変位
量検出系を集積化し、カンチレバーと一体化することに
より、カンチレバーと変位量検出系との相対位置合わ
せが不要になり、操作性が向上し、装置全体が小型化
でき、外乱の影響を受けにくくなるので、検出分解能が
向上し、より高精度、高分解能のAFMによる試料表面
の三次元形状の測定が可能になった。As described above, by integrating the cantilever displacement detection system and integrating it with the cantilever, the relative positioning between the cantilever and the displacement detection system becomes unnecessary, and the operability is improved. Since the entire apparatus can be miniaturized and hardly affected by disturbance, the detection resolution is improved, and the three-dimensional shape of the sample surface can be measured with higher precision and higher resolution AFM.
【図1】本発明の第1の実施例である光集積化カンチレ
バーユニットの構成図である。FIG. 1 is a configuration diagram of an optical integrated cantilever unit according to a first embodiment of the present invention.
【図2】本発明の第1の実施例である光集積化カンチレ
バーユニットを用いた原子間力顕微鏡の構成図である。FIG. 2 is a configuration diagram of an atomic force microscope using an optical integrated cantilever unit according to a first embodiment of the present invention.
【図3】 本発明の参考例である光集積化カンチレバー
ユニットの構成図である。FIG. 3 is a configuration diagram of an optical integrated cantilever unit that is a reference example of the present invention.
【図4】 本発明の参考例である光集積化カンチレバー
ユニットを用いた情報処理装置の構成図である。FIG. 4 is a configuration diagram of an information processing apparatus using an optical integrated cantilever unit according to a reference example of the present invention.
【図5】原子間力顕微鏡におけるカンチレバー変位量検
出系の従来例を示す図である。FIG. 5 is a diagram showing a conventional example of a cantilever displacement amount detection system in an atomic force microscope.
【図6】原理間力顕微鏡におけるカンチレバー変位量検
出系の従来例を示す図である。FIG. 6 is a diagram showing a conventional example of a cantilever displacement amount detection system in the principle force microscope.
101 薄膜光導波路 102、102’ SiO2 103、103’ Si基板 104 半導体レーザ 105 フレネルレンズ 106 グレーティングビームスプリッタ 107 カンチレバー 108 反射ミラーa 109 反射ミラーb 110 フォトダイオード 111 探針 112 半導体レーザ駆動回路 113 増幅回路 201 カンチレバーユニット 202 試料 203 XYZ駆動素子 205 コンピュータ 206 X方向走査信号回路 207 Y方向走査信号回路 208 Z方向フィードバック信号回路 209 表示装置 306 反射ミラーc 307 グレーティングカップラーa 309 グレーティングカップラーb 310 反射ミラーd 310 反射ミラーd 317 Al配線 401 記録用電圧印加回路 501 レバーホルダー 502 レンズ 503 XYZ駆動素子 504 2分割フォトダイオード 601 ピエゾ素子 602 導電性探針REFERENCE SIGNS LIST 101 thin film optical waveguide 102, 102 ′ SiO 2 103, 103 ′ Si substrate 104 semiconductor laser 105 Fresnel lens 106 grating beam splitter 107 cantilever 108 reflection mirror a 109 reflection mirror b 110 photodiode 111 probe 112 semiconductor laser drive circuit 113 amplifier circuit 201 Cantilever unit 202 Sample 203 XYZ drive element 205 Computer 206 X direction scanning signal circuit 207 Y direction scanning signal circuit 208 Z direction feedback signal circuit 209 Display device 306 Reflecting mirror c 307 Grating coupler a 309 Grating coupler b 310 Reflecting mirror d 310 Reflection Mirror d 317 Al wiring 401 Recording voltage application circuit 501 Lever holder 502 Lens 503 XYZ drive element 504 2-division photodiode 601 Piezo element 602 Conductive probe
フロントページの続き (72)発明者 宮▲崎▼ 俊彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 八木 隆行 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 畑中 勝則 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平4−83137(JP,A) 特開 平4−162340(JP,A) 特開 平3−90853(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 9/00 G01B 21/30 G01N 27/72 G01N 37/00 Continued on the front page (72) Inventor Miya ▲ saki ▼ Toshihiko 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Takayuki Yagi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inside (72) Inventor Katsunori Hatanaka 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-4-83137 (JP, A) JP-A-4-162340 (JP) , A) JP-A-3-90853 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 9/00 G01B 21/30 G01N 27/72 G01N 37/00
Claims (4)
チレバーを支持する基板と、該カンチレバー及び基板上
に形成され、互いに直交する第1の光導波経路と第2の
光導波経路を有する薄膜光導波路と、該第1の光導波経
路の一端に設けられ、該第1の光導波経路に光束を導入
する光源と、該第1の光導波経路と上記第2の光導波経
路の交点に位置し且つ上記基板上に設けられたビームス
プリッタと、上記第1の光導波経路の他端であって上記
カンチレバーの自由端面に設けられた第1の反射ミラー
と、上記第2の光導波経路の一端に設けられた光センサ
ーと、該第2の光導波経路の他端に設けられた第2の反
射ミラーとを備え、上記第1の光導波経路を通り第1の
反射ミラーで反射された光束と、上記ビームスプリッタ
で分離され、上記第2の光導波経路を通り第2の反射ミ
ラーで反射された光束とを、上記ビームスプリッタによ
り再び合成し、上記光センサーに導き、該光センサーが
受光する光束の強度変化により上記カンチレバーの変位
を検知することを特徴とするカンチレバーユニット。1. A cantilever for supporting a probe, and the can
A substrate for supporting the chiller, and the cantilever and the substrate
And a first optical waveguide path and a second
A thin film optical waveguide having an optical waveguide, and the first optical waveguide
A light flux is introduced into one end of a path to introduce a light beam into the first optical waveguide path.
Light source, the first optical waveguide path and the second optical waveguide path.
Beam beams located at the intersection of the roads and provided on the substrate
A splitter and the other end of the first optical waveguide path,
First reflection mirror provided on the free end face of the cantilever
And an optical sensor provided at one end of the second optical waveguide path
And a second counter provided at the other end of the second optical waveguide path.
And a first mirror through the first optical waveguide path.
The light beam reflected by the reflecting mirror and the beam splitter
And passes through the second optical waveguide path to form a second reflection mirror.
The light reflected by the mirror is reflected by the beam splitter.
And re-synthesizes, leads to the optical sensor, and the optical sensor
The displacement of the cantilever due to the change in the intensity of the received light beam
A cantilever unit that detects
を備えたことを特徴とする情報処理装置。 2. The cantilever unit according to claim 1, wherein :
An information processing apparatus comprising:
を備えたことを特徴とする原子間力顕微鏡。 3. The cantilever unit according to claim 1, wherein :
An atomic force microscope comprising:
を備えたことを特徴とする磁力顕微鏡。 4. The cantilever unit according to claim 1,
A magnetic force microscope comprising:
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3103634A JP3000491B2 (en) | 1991-04-10 | 1991-04-10 | Cantilever unit, information processing apparatus using the same, atomic force microscope, magnetic force microscope |
US07/865,227 US5260567A (en) | 1991-04-10 | 1992-04-08 | Cantilever unit and atomic force microscope, magnetic force microscope, reproducing apparatus and information processing apparatus using the cantilever unit |
CA002065593A CA2065593C (en) | 1991-04-10 | 1992-04-08 | Cantilever unit and atomic force microscope, magnetic force microscope, reproducing apparatus and information processing apparatus using the cantilever unit |
EP97200263A EP0791803B1 (en) | 1991-04-10 | 1992-04-09 | Cantilever unit and atomic force microscope, magnetic force microscope, reproducing apparatus and information processing apparatus using the cantilever unit |
AT97200263T ATE211814T1 (en) | 1991-04-10 | 1992-04-09 | CANTILEVER UNIT AND NUCLEAR POWER MICROSCOPE, MAGNETIC FORCE MICROSCOPE, AND PLAYBACK AND INFORMATION PROCESSING APPARATUS THEREOF |
DE69232339T DE69232339T2 (en) | 1991-04-10 | 1992-04-09 | Cantilever unit and atomic force microscope, magnetic force microscope, as well as reproduction and information processing apparatus with it |
EP92303177A EP0509716A1 (en) | 1991-04-10 | 1992-04-09 | Cantilever unit and atomic force microscope, magnetic force microscope, reproducing apparatus and information processing apparatus using the cantilever unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3103634A JP3000491B2 (en) | 1991-04-10 | 1991-04-10 | Cantilever unit, information processing apparatus using the same, atomic force microscope, magnetic force microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04311839A JPH04311839A (en) | 1992-11-04 |
JP3000491B2 true JP3000491B2 (en) | 2000-01-17 |
Family
ID=14359206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3103634A Expired - Fee Related JP3000491B2 (en) | 1991-04-10 | 1991-04-10 | Cantilever unit, information processing apparatus using the same, atomic force microscope, magnetic force microscope |
Country Status (6)
Country | Link |
---|---|
US (1) | US5260567A (en) |
EP (2) | EP0791803B1 (en) |
JP (1) | JP3000491B2 (en) |
AT (1) | ATE211814T1 (en) |
CA (1) | CA2065593C (en) |
DE (1) | DE69232339T2 (en) |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155361A (en) * | 1991-07-26 | 1992-10-13 | The Arizona Board Of Regents, A Body Corporate Acting For And On Behalf Of Arizona State University | Potentiostatic preparation of molecular adsorbates for scanning probe microscopy |
JPH05282717A (en) * | 1992-03-31 | 1993-10-29 | Canon Inc | Manufacture of recording medium, and recording medium and information processor |
DE4310349C2 (en) * | 1993-03-30 | 2000-11-16 | Inst Mikrotechnik Mainz Gmbh | Sensor head and method for its production |
DE69434641T2 (en) * | 1993-04-13 | 2006-12-14 | Agilent Technologies, Inc., Palo Alto | Electro-optical measuring instrument |
EP0625690B1 (en) * | 1993-05-21 | 1996-04-03 | Dr. Johannes Heidenhain GmbH | Optoelectric position measuring device |
US5504338A (en) * | 1993-06-30 | 1996-04-02 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus and method using low-voltage and/or low-current scanning probe lithography |
JP3390173B2 (en) * | 1993-07-22 | 2003-03-24 | ビーティージー・インターナショナル・リミテッド | Intelligent sensors for near-field optical devices |
US5440920A (en) * | 1994-02-03 | 1995-08-15 | Molecular Imaging Systems | Scanning force microscope with beam tracking lens |
US5866805A (en) * | 1994-05-19 | 1999-02-02 | Molecular Imaging Corporation Arizona Board Of Regents | Cantilevers for a magnetically driven atomic force microscope |
US5515719A (en) * | 1994-05-19 | 1996-05-14 | Molecular Imaging Corporation | Controlled force microscope for operation in liquids |
US5513518A (en) * | 1994-05-19 | 1996-05-07 | Molecular Imaging Corporation | Magnetic modulation of force sensor for AC detection in an atomic force microscope |
US5753814A (en) * | 1994-05-19 | 1998-05-19 | Molecular Imaging Corporation | Magnetically-oscillated probe microscope for operation in liquids |
US5621210A (en) * | 1995-02-10 | 1997-04-15 | Molecular Imaging Corporation | Microscope for force and tunneling microscopy in liquids |
JPH0981977A (en) * | 1995-07-10 | 1997-03-28 | Canon Inc | Recording and reproducing device |
JP3679519B2 (en) * | 1995-09-14 | 2005-08-03 | キヤノン株式会社 | Manufacturing method of micro tip for detecting tunnel current or micro force or magnetic force, manufacturing method of probe having the micro tip, probe thereof, probe unit having the probe, scanning probe microscope, and information recording / reproducing apparatus |
US5874668A (en) * | 1995-10-24 | 1999-02-23 | Arch Development Corporation | Atomic force microscope for biological specimens |
JP3260619B2 (en) * | 1996-03-19 | 2002-02-25 | セイコーインスツルメンツ株式会社 | Optical waveguide probe and optical system |
JPH10293134A (en) * | 1997-02-19 | 1998-11-04 | Canon Inc | Optical detection or irradiation probe, near field optical microscope, recorder/placer and aligner employing it, and manufacture of probe |
US5982009A (en) * | 1997-03-01 | 1999-11-09 | Korea Advanced Institute Of Science & Technology | Integrated device of cantilever and light source |
JPH10312592A (en) * | 1997-05-13 | 1998-11-24 | Canon Inc | Information processor and processing method |
JP2000035396A (en) | 1998-07-16 | 2000-02-02 | Canon Inc | Probe with minute protrusion and its manufacturing method |
US7260051B1 (en) | 1998-12-18 | 2007-08-21 | Nanochip, Inc. | Molecular memory medium and molecular memory integrated circuit |
US20030160170A1 (en) * | 2000-03-30 | 2003-08-28 | Mcmaster Terence J. | Methods and apparatus for atomic force microscopy |
JP2003077154A (en) * | 2001-04-25 | 2003-03-14 | Olympus Optical Co Ltd | Mirror angle detector, optical signal switching system and method |
JP2003202284A (en) * | 2002-01-09 | 2003-07-18 | Hitachi Ltd | Scanning probe microscope, sample observation method and device manufacturing method using the same |
US20040150472A1 (en) * | 2002-10-15 | 2004-08-05 | Rust Thomas F. | Fault tolerant micro-electro mechanical actuators |
US6982898B2 (en) * | 2002-10-15 | 2006-01-03 | Nanochip, Inc. | Molecular memory integrated circuit utilizing non-vibrating cantilevers |
US6985377B2 (en) | 2002-10-15 | 2006-01-10 | Nanochip, Inc. | Phase change media for high density data storage |
US7233517B2 (en) | 2002-10-15 | 2007-06-19 | Nanochip, Inc. | Atomic probes and media for high density data storage |
US6821941B2 (en) * | 2002-10-23 | 2004-11-23 | Isp Investments Inc. | Tablet of compacted particulated cleaning composition |
JP2004301554A (en) * | 2003-03-28 | 2004-10-28 | Canon Inc | Electric potential measuring device and image forming device |
AU2003243125A1 (en) * | 2003-06-18 | 2005-01-04 | Atilla Aydinli | Integrated optical displacement sensors for scanning probe microscopy |
US7379412B2 (en) | 2004-04-16 | 2008-05-27 | Nanochip, Inc. | Methods for writing and reading highly resolved domains for high density data storage |
US20050232061A1 (en) | 2004-04-16 | 2005-10-20 | Rust Thomas F | Systems for writing and reading highly resolved domains for high density data storage |
US7301887B2 (en) | 2004-04-16 | 2007-11-27 | Nanochip, Inc. | Methods for erasing bit cells in a high density data storage device |
JP5172331B2 (en) * | 2005-03-31 | 2013-03-27 | 独立行政法人科学技術振興機構 | Cantilever for scanning probe microscope and scanning probe microscope having the same |
US20070103697A1 (en) * | 2005-06-17 | 2007-05-10 | Degertekin Fahrettin L | Integrated displacement sensors for probe microscopy and force spectroscopy |
US7552625B2 (en) * | 2005-06-17 | 2009-06-30 | Georgia Tech Research Corporation | Force sensing integrated readout and active tip based probe microscope systems |
US7463573B2 (en) | 2005-06-24 | 2008-12-09 | Nanochip, Inc. | Patterned media for a high density data storage device |
US7367119B2 (en) | 2005-06-24 | 2008-05-06 | Nanochip, Inc. | Method for forming a reinforced tip for a probe storage device |
US7309630B2 (en) | 2005-07-08 | 2007-12-18 | Nanochip, Inc. | Method for forming patterned media for a high density data storage device |
US7441447B2 (en) * | 2005-10-07 | 2008-10-28 | Georgia Tech Research Corporation | Methods of imaging in probe microscopy |
US7752898B2 (en) * | 2005-10-28 | 2010-07-13 | Georgia Tech Research Corporation | Devices for probe microscopy |
US7797757B2 (en) * | 2006-08-15 | 2010-09-14 | Georgia Tech Research Corporation | Cantilevers with integrated actuators for probe microscopy |
KR100889976B1 (en) * | 2006-10-24 | 2009-03-24 | 이형종 | Optical module and optical sensor using the same and method for manufacturing thereof |
US9391216B2 (en) * | 2008-06-06 | 2016-07-12 | Orbital Atk, Inc. | Optical coupled sensors for harsh environments |
US9217831B1 (en) * | 2009-12-15 | 2015-12-22 | Kotura, Inc. | Optical system having dynamic waveguide alignment |
CN101876667A (en) * | 2010-06-30 | 2010-11-03 | 北京大学 | Atomic Force Microscopy Probe Based on Carbon Nanotube and Planar Waveguide Structure |
US9835591B2 (en) | 2011-02-25 | 2017-12-05 | Panorama Synergy Ltd | Optical cantilever based analysis |
US9057706B2 (en) | 2011-02-25 | 2015-06-16 | University Of Western Australia | Optical cantilever based analyte detection |
US20130205455A1 (en) * | 2012-02-07 | 2013-08-08 | University Of Western Australia | System and method of performing atomic force measurements |
GB2493585B (en) | 2011-08-11 | 2013-08-14 | Ibm | Scanning probe microscopy cantilever comprising an electromagnetic sensor |
US9977188B2 (en) | 2011-08-30 | 2018-05-22 | Skorpios Technologies, Inc. | Integrated photonics mode expander |
FR3007589B1 (en) * | 2013-06-24 | 2015-07-24 | St Microelectronics Crolles 2 | PHOTONIC INTEGRATED CIRCUIT AND METHOD OF MANUFACTURE |
WO2015183992A1 (en) | 2014-05-27 | 2015-12-03 | Skorpios Technologies, Inc. | Waveguide mode expander using amorphous silicon |
JP6766351B2 (en) * | 2014-12-26 | 2020-10-14 | 株式会社リコー | Micro object characteristic measuring device |
US9857216B2 (en) * | 2014-12-26 | 2018-01-02 | Ricoh Company, Ltd. | Minute object characteristics measuring apparatus |
US10261107B2 (en) * | 2015-03-31 | 2019-04-16 | University Of Kansas | Scanning resonator microscopy |
CN109884561B (en) * | 2019-03-29 | 2021-04-20 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Magnetic field detection module and magnetic field probe |
CN109884562B (en) * | 2019-03-29 | 2021-04-16 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Differential magnetic field detection module and magnetic field probe |
EP3722741A1 (en) * | 2019-04-08 | 2020-10-14 | Nokia Technologies Oy | An apparatus comprising a cantilever |
CN110095656B (en) * | 2019-05-27 | 2021-03-09 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Probing Modules and Probes |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3837728A (en) * | 1973-09-26 | 1974-09-24 | Bell Telephone Labor Inc | Injected carrier guided wave deflector |
US4724318A (en) * | 1985-11-26 | 1988-02-09 | International Business Machines Corporation | Atomic force microscope and method for imaging surfaces with atomic resolution |
DE3630887A1 (en) * | 1986-03-26 | 1987-10-08 | Hommelwerke Gmbh | DEVICE FOR MEASURING SMALL LENGTHS |
EP0242407A2 (en) * | 1986-03-26 | 1987-10-28 | Hommelwerke GmbH | Device for measuring small lengths |
EP0262253A1 (en) * | 1986-10-03 | 1988-04-06 | International Business Machines Corporation | Micromechanical atomic force sensor head |
FR2613826B1 (en) * | 1987-04-07 | 1990-10-26 | Commissariat Energie Atomique | MOTION SENSOR IN INTEGRATED OPTICS |
EP0440268B1 (en) * | 1987-05-12 | 1994-08-17 | International Business Machines Corporation | Atomic force sensor head with interferometric measurement of the properties of a data store |
DE3718192A1 (en) * | 1987-05-29 | 1988-12-08 | Hommelwerke Gmbh | DEVICE FOR MEASURING THE DISTANCE BETWEEN THE DEVICE AND A MEASURING AREA |
US5091983A (en) * | 1987-06-04 | 1992-02-25 | Walter Lukosz | Optical modulation apparatus and measurement method |
US4906840A (en) * | 1988-01-27 | 1990-03-06 | The Board Of Trustees Of Leland Stanford Jr., University | Integrated scanning tunneling microscope |
JP2547869B2 (en) * | 1988-11-09 | 1996-10-23 | キヤノン株式会社 | PROBE UNIT, METHOD FOR DRIVING THE PROBE, AND SCANNING TUNNEL CURRENT DETECTION DEVICE HAVING THE PROBE UNIT |
JPH02187944A (en) * | 1989-01-13 | 1990-07-24 | Sharp Corp | Reproducing device |
US5017010A (en) * | 1989-05-16 | 1991-05-21 | International Business Machines Corporation | High sensitivity position sensor and method |
JPH04188022A (en) * | 1990-11-22 | 1992-07-06 | Olympus Optical Co Ltd | Displacement detecting apparatus |
DE4107605C1 (en) * | 1991-03-09 | 1992-04-02 | Hommelwerke Gmbh, 7730 Villingen-Schwenningen, De | Sensor for atomic force raster microscope - has opto-electronic distance measurer for ascertaining movement of probe tip at distal end of extendable arm |
-
1991
- 1991-04-10 JP JP3103634A patent/JP3000491B2/en not_active Expired - Fee Related
-
1992
- 1992-04-08 CA CA002065593A patent/CA2065593C/en not_active Expired - Fee Related
- 1992-04-08 US US07/865,227 patent/US5260567A/en not_active Expired - Fee Related
- 1992-04-09 EP EP97200263A patent/EP0791803B1/en not_active Expired - Lifetime
- 1992-04-09 DE DE69232339T patent/DE69232339T2/en not_active Expired - Fee Related
- 1992-04-09 AT AT97200263T patent/ATE211814T1/en not_active IP Right Cessation
- 1992-04-09 EP EP92303177A patent/EP0509716A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
US5260567A (en) | 1993-11-09 |
DE69232339T2 (en) | 2002-08-08 |
CA2065593A1 (en) | 1992-10-11 |
JPH04311839A (en) | 1992-11-04 |
DE69232339D1 (en) | 2002-02-14 |
EP0791803A3 (en) | 1997-10-22 |
CA2065593C (en) | 1999-01-19 |
ATE211814T1 (en) | 2002-01-15 |
EP0791803B1 (en) | 2002-01-09 |
EP0791803A2 (en) | 1997-08-27 |
EP0509716A1 (en) | 1992-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3000491B2 (en) | Cantilever unit, information processing apparatus using the same, atomic force microscope, magnetic force microscope | |
JP3000492B2 (en) | Information processing device | |
US5231286A (en) | Scanning probe microscope utilizing an optical element in a waveguide for dividing the center part of the laser beam perpendicular to the waveguide | |
US6785445B2 (en) | Near field light probe, near field optical microscope, near field light lithography apparatus, and near field light storage apparatus that have the near field light probe | |
JP4024570B2 (en) | Near-field light generating element, near-field light recording device, and near-field light microscope | |
JP3069923B2 (en) | Cantilever probe, atomic force microscope, information recording / reproducing device | |
JP4601867B2 (en) | Near-field optical head | |
JP4020225B2 (en) | Near-field optical probe | |
US8023366B2 (en) | Near-field optical head and information recording apparatus | |
Holz et al. | High throughput AFM inspection system with parallel active cantilevers | |
JPH07225975A (en) | Information recording / reproducing device, probe scanning microscope, microfabrication device | |
JPH05187866A (en) | Interatomic force microscope, record reproducing device and reproducing device | |
Baida et al. | Combination of a fiber and a silicon nitride tip as a bifunctional detector; first results and perspectives | |
Egawa et al. | High‐speed scanning by dual feedback control in SNOM/AFM | |
US6689545B2 (en) | Method of fabricating near-field light-generating element | |
JP4137718B2 (en) | Near-field optical head and manufacturing method thereof | |
Minh et al. | Near-field recording with high optical throughput aperture array | |
Holz et al. | Parallel active cantilever AFM tool for high-throughput inspection and metrology | |
JP2004191277A (en) | Scanning probe microscope and its measuring method | |
KR100526217B1 (en) | Processing apparatus using a scanning probe microscope, and recording and reproducing apparatus using a scanning probe microscope | |
JP4162317B2 (en) | Near-field optical memory head | |
JPH05231861A (en) | Scanning probe microscope | |
JPH08146015A (en) | Cantilever of scanning type probe microscope | |
Tokizaki et al. | Optical‐fibre scanning near‐field optical microscope for cryogenic operation | |
JPH07110969A (en) | Face alignment method, position control mechanism and information processor with the mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990928 |
|
LAPS | Cancellation because of no payment of annual fees |