[go: up one dir, main page]

JP2998870B2 - Thin film formation method and thin film growth apparatus - Google Patents

Thin film formation method and thin film growth apparatus

Info

Publication number
JP2998870B2
JP2998870B2 JP17804492A JP17804492A JP2998870B2 JP 2998870 B2 JP2998870 B2 JP 2998870B2 JP 17804492 A JP17804492 A JP 17804492A JP 17804492 A JP17804492 A JP 17804492A JP 2998870 B2 JP2998870 B2 JP 2998870B2
Authority
JP
Japan
Prior art keywords
thin film
fine particles
substrate
film growth
growth apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17804492A
Other languages
Japanese (ja)
Other versions
JPH0625869A (en
Inventor
達男 大槻
英治 藤井
徹 那須
康裕 上本
恭博 嶋田
明浩 松田
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP17804492A priority Critical patent/JP2998870B2/en
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to DE69317940T priority patent/DE69317940T2/en
Priority to DE69333864T priority patent/DE69333864T2/en
Priority to EP93304609A priority patent/EP0574275B1/en
Priority to EP97106056A priority patent/EP0789395B1/en
Publication of JPH0625869A publication Critical patent/JPH0625869A/en
Priority to US08/778,953 priority patent/US5717233A/en
Priority to US08/947,712 priority patent/US6126752A/en
Priority to US08/950,920 priority patent/US6080617A/en
Application granted granted Critical
Publication of JP2998870B2 publication Critical patent/JP2998870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、均一性と被覆率に優れ
た薄膜成長に有効な、吸引用ないしはフィルタ用電極を
備えたセラミックス等の薄膜成長方法および薄膜成長装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for growing a thin film of ceramics and the like having a suction or filter electrode and effective for growing a thin film having excellent uniformity and coverage.

【0002】[0002]

【従来の技術】近年、セラミック薄膜を成長させて、新
しい機能を実現しようとする研究開発が進められてきて
いる。この種の薄膜成長にはスパッタ法や、MOCVD
法,ゾンゲル法などが中心に用いられてきたが、膜の化
学量論的組成の制御性に優れているとの観点から薄膜の
組成をそのまま有する微粒子を基板に付着させ、熱処理
の後に薄膜化する試みが注目されている。従来この種の
成長装置は、図2に示すような構成が一般的であった。
図2において、1は微粒子化室、2は成長室、3は基
板、4は噴出口、5は粗大粒子、6は微粒子、7は排気
ポンプ、8はキャリアガスである。以下、その構成につ
いて図を参照しながら説明する。
2. Description of the Related Art In recent years, research and development for realizing new functions by growing a ceramic thin film has been advanced. For this type of thin film growth, sputtering, MOCVD
Method, the so-gel method, etc. have been mainly used, but from the viewpoint of excellent controllability of the stoichiometric composition of the film, fine particles having the composition of the thin film are adhered to the substrate and thinned after heat treatment. Attempts to do so have received attention. Conventionally, this type of growth apparatus generally has a configuration as shown in FIG.
In FIG. 2, reference numeral 1 denotes a atomization chamber, 2 denotes a growth chamber, 3 denotes a substrate, 4 denotes an ejection port, 5 denotes coarse particles, 6 denotes fine particles, 7 denotes an exhaust pump, and 8 denotes a carrier gas. Hereinafter, the configuration will be described with reference to the drawings.

【0003】図に示すように装置は、微粒子化室1と、
微粒子化した薄膜源を噴出口4から導入して基板3上に
薄膜を成長させる成長室2から構成されている。成長室
2に導入された微粒子6は成長室2中を浮遊した後、基
板3に付着して堆積する。所定の厚さに堆積後、基板3
を高温でアニール処理を施し、結晶化させてセラミック
薄膜とする。
[0003] As shown in the figure, the apparatus comprises a micronization chamber 1,
It comprises a growth chamber 2 for introducing a finely divided thin film source from a jet port 4 to grow a thin film on a substrate 3. The fine particles 6 introduced into the growth chamber 2 float in the growth chamber 2 and then adhere to and deposit on the substrate 3. After deposition to a predetermined thickness, the substrate 3
Is subjected to an annealing treatment at a high temperature and crystallized to form a ceramic thin film.

【0004】[0004]

【発明が解決しようとする課題】このような従来の薄膜
成長装置では、微粒子6を成長室2へ噴出する際の運動
エネルギーのみを利用して微粒子6を基板3まで到達せ
しめ、基板3表面に付着させるため、噴出口4を基板3
近傍に設置する必要があった。この結果、図3に示すよ
うに粒径が大きく膜形成時に欠陥となりうる粗大粒子5
をも基板3に付着させてしまう危険がある他、自由運動
をして基板3表面に付着するため、表面の凹凸部分9で
の被覆率の確保や基板3全面にわたる均一性の確保が難
しいといった課題があった。
In such a conventional thin film growth apparatus, the fine particles 6 reach the substrate 3 by utilizing only the kinetic energy when the fine particles 6 are jetted into the growth chamber 2, and the fine particles 6 reach the surface of the substrate 3. In order to adhere, the ejection port 4 is
It had to be installed nearby. As a result, as shown in FIG.
Is also likely to adhere to the substrate 3, and because it moves freely and adheres to the surface of the substrate 3, it is difficult to secure the coverage at the uneven portions 9 on the surface and to secure uniformity over the entire surface of the substrate 3. There were challenges.

【0005】本発明は上記課題を解決するもので、膜の
欠陥が少なく且つ凹凸部分の被覆率や均一性の優れたセ
ラミックス薄膜を得ることができる薄膜成長装置を提供
することを目的とするものである。
An object of the present invention is to provide a thin film growth apparatus capable of obtaining a ceramic thin film having few defects in a film and having excellent coverage and uniformity of an uneven portion. It is.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1記載の発明は、薄膜の原材料をそ
のまま微粒子化し、その微粒子を帯電させて薄膜成長室
内に噴出させ、前記薄膜成長室内の基板近傍に設けられ
たグリッド形状の電極に前記微粒子の帯電電荷とは逆の
極性の電圧を印加して前記微粒子を吸引し、前記グリッ
ド形状の電極を通過した微粒子を前記基板表面に付着さ
せ、その後熱処理することによって薄膜を形成すること
を特徴とするものである。また、本発明の請求項2記載
の薄膜形成方法は、請求項1記載の薄膜形成方法におい
て、前記熱処理により結晶化させてセラミック薄膜を形
成することを特徴とすることを特徴とするものである。
また、本発明の請求項3記載の薄膜成長装置は、薄膜の
原材料をそのまま微粒子化するとともに帯電させた帯電
微粒子の噴出口を有する微粒子化室と、薄膜成長室内の
基板設置部近傍に設けられたグリッド形状の電極とを少
なくとも有することを特徴とするものである。また、本
発明の請求項4記載の薄膜成長装置は、請求項3記載の
薄膜成長装置において、前記帯電微粒子の噴出口は、前
記薄膜成長室内に設置される基板表面からそらした方向
に向いていることを特徴とするものである。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
In addition, the invention according to claim 1 of the present invention uses the raw material of the thin film.
Fine particles as they are, and charge the fine particles to form a thin film growth chamber
And provided near the substrate in the thin film growth chamber.
The grid-shaped electrode has the opposite polarity to the charge of the fine particles.
A polarity voltage is applied to suck the fine particles, and the
Particles passing through the electrode in the form of
And then heat-treat to form a thin film
It is characterized by the following. Further, according to claim 2 of the present invention.
The thin film forming method according to claim 1, wherein
And crystallized by the heat treatment to form a ceramic thin film.
It is characterized in that it is realized.
Also, the thin film growth apparatus according to claim 3 of the present invention provides a thin film growth apparatus.
Raw material is charged into fine particles and charged
A fine-graining chamber having a fine-particle spout and a thin-film growth chamber.
Reduce the number of grid-shaped electrodes provided near the substrate
It is characterized by having at least. Also book
The thin film growth apparatus according to the fourth aspect of the present invention provides the thin film growth apparatus according to the third aspect.
In the thin film growth apparatus, the ejection port of the charged fine particles is located at the front.
Direction deviated from substrate surface installed in thin film growth chamber
It is characterized by being suitable for.

【0007】[0007]

【作用】本発明は上記した構成により、吸引電界によっ
て微粒子が加速され、運動エネルギーが増加することに
よって基板凹凸部分での被覆率が良くなる他、吸引電界
によって微粒子を基板近傍へ吸引するため、微粒子噴出
口を基板から離すことが出来、膜欠陥の原因となる粗大
粒子の付着を避けることが出来るものである。
According to the present invention, since the fine particles are accelerated by the suction electric field and the kinetic energy is increased by the above-mentioned structure, the coverage on the uneven portion of the substrate is improved, and the fine particles are attracted to the vicinity of the substrate by the suction electric field. The fine particle ejection port can be separated from the substrate, and the adhesion of coarse particles that cause film defects can be avoided.

【0008】[0008]

【実施例】以下、本発明の一実施例について図1を参照
しながら説明する。図1において従来例の図2と同一部
分には同一番号を付し説明を省略する。すなわち本発明
の特徴はグリッド形状の吸引電極10を基板3上近傍に
配し、噴出口4は基板3に対して90度の角度を持つよ
うに配したことである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the same parts as those in FIG. That is, the feature of the present invention is that the grid-shaped suction electrode 10 is arranged near the substrate 3, and the ejection port 4 is arranged so as to have an angle of 90 degrees with respect to the substrate 3.

【0009】成長にあたっては、微粒子化室1にて発生
させた微粒子6を、減圧した成長室2に噴出口4を通じ
て吸引噴出する。微粒子6は、微粒子化する際及び噴出
口4から出るときの衝突相互摩擦によってその多くが帯
電する。吸引電極10には微粒子6の電荷とは逆の極性
の電圧を印加し、噴出された微粒子6を基板3まで吸引
する。微粒子6の帯電極性は、吸引電極10に吸着する
か反発するかでその判定が可能である。このように、吸
引電極10を用い、基板3に直接電圧を印加しないの
は、半導体集積回路基板上に薄膜を成長させる場合、高
電圧印加によって集積回路が破損する危険性があるため
であるため、このような危険を回避する目的で吸引電極
10を用いているのである。
In the growth, the fine particles 6 generated in the atomization chamber 1 are sucked and ejected into the decompressed growth chamber 2 through the ejection port 4. Most of the fine particles 6 are charged by collision mutual friction when the fine particles 6 are atomized and when the fine particles 6 exit from the ejection port 4. A voltage having a polarity opposite to the charge of the fine particles 6 is applied to the suction electrode 10, and the ejected fine particles 6 are sucked to the substrate 3. The polarity of the charged particles 6 can be determined based on whether the particles 6 are attracted or repelled by the suction electrode 10. The reason why a voltage is not directly applied to the substrate 3 using the suction electrode 10 is that when a thin film is grown on a semiconductor integrated circuit substrate, there is a risk that the integrated circuit may be damaged by applying a high voltage. The suction electrode 10 is used for the purpose of avoiding such danger.

【0010】噴出口4から出る粗大粒子5は、噴出口4
が基板3の方を向いていない為、直接基板3上に飛び込
むことは無く、さらに吸引電界によって基板3近傍に接
近しても、その重量が大きいために落下してしまい、基
板3には到達しない。この結果、粗大粒子5による膜の
欠陥発生は極めて低く抑える事が出来る。
[0010] The coarse particles 5 emerging from the ejection port 4
Does not face the substrate 3, it does not jump directly onto the substrate 3, and even when approaching the vicinity of the substrate 3 due to the attractive electric field, it falls due to its large weight and reaches the substrate 3. do not do. As a result, the occurrence of defects in the film due to the coarse particles 5 can be extremely suppressed.

【0011】吸引された微粒子6は、その一部は吸引電
極10に吸着するが、その形状をグリッド状にすること
によって、大部分を基板3に到達させることが出来る。
微粒子6は、電界によって加速されているため運動エネ
ルギーが大きく、基板3に付着後もその表面を拡散し、
凹凸部分にも回り込んでその被覆率を改善する事が出来
る。さらに基板3への衝突エネルギーが大きいため、基
板3との密着性にも富むと言う長所を有するものであ
る。
Although a part of the sucked fine particles 6 is adsorbed to the suction electrode 10, most of the sucked fine particles 6 can reach the substrate 3 by making the shape of the grid 6.
The fine particles 6 have high kinetic energy because they are accelerated by the electric field, and diffuse on the surface even after adhering to the substrate 3,
It is possible to improve the coverage by wrapping around the uneven portion. Further, since the collision energy with the substrate 3 is large, there is an advantage that the adhesion to the substrate 3 is also rich.

【0012】このように本発明の実施例のセラミックス
薄膜成長装置によれば、吸引電界の作用によって欠陥が
少なく、また凹凸部分の被覆率も高いセラミックス薄膜
を成長させることが出来る。
As described above, according to the apparatus for growing a ceramic thin film of the embodiment of the present invention, it is possible to grow a ceramic thin film having a small number of defects and a high coverage of uneven portions by the action of an attractive electric field.

【0013】[0013]

【発明の効果】以上の実施例から明らかなように本発明
によれば、吸引電極を配し、そこに微粒子吸引電圧を印
加することにより、微粒子に大きな運動エネルギーを与
えることが出来、その結果、被覆率の良いまた基板との
密着性にも優れた均一性の良い膜の成長が可能となり、
さらに、粗大粒子の付着を抑制出来るため、膜の欠陥を
大きく低減することが可能な薄膜成長方法および薄膜成
長装置を提供できる。
As is apparent from the above embodiments, according to the present invention, a large kinetic energy can be given to fine particles by disposing a suction electrode and applying a fine particle suction voltage thereto. , It is possible to grow a film with good coverage and good uniformity with excellent adhesion to the substrate,
Further, since the attachment of coarse particles can be suppressed, a thin film growth method and a thin film growth apparatus capable of greatly reducing defects in a film can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の薄膜成長装置の概略構成図FIG. 1 is a schematic configuration diagram of a thin film growth apparatus according to one embodiment of the present invention.

【図2】従来の薄膜成長装置の概略構成図FIG. 2 is a schematic configuration diagram of a conventional thin film growth apparatus.

【図3】図2における基板に微粒子が付着する過程を示
す模式図
FIG. 3 is a schematic view showing a process in which fine particles adhere to a substrate in FIG. 2;

【符号の説明】[Explanation of symbols]

1 微粒子化室 2 成長室(薄膜成長室) 3 基板 4 噴出口 5 粗大粒子 6 微粒子 7 排気ポンプ 8 キャリアガス 10 吸引電極(グリッド形状の電極) DESCRIPTION OF SYMBOLS 1 Micronization chamber 2 Growth chamber (thin film growth chamber) 3 Substrate 4 Spout 5 Coarse particles 6 Fine particles 7 Exhaust pump 8 Carrier gas 10 Suction electrode (grid-shaped electrode)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上本 康裕 大阪府門真市大字門真1006番地 松下電 子工業株式会社内 (72)発明者 嶋田 恭博 大阪府門真市大字門真1006番地 松下電 子工業株式会社内 (72)発明者 松田 明浩 大阪府門真市大字門真1006番地 松下電 子工業株式会社内 (56)参考文献 特開 平2−22465(JP,A) 特開 平3−75360(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 24/00 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yasuhiro Uemoto 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Denshi Kogyo Co., Ltd. In-company (72) Inventor Akihiro Matsuda 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electronics Corporation (56) References JP-A-2-22465 (JP, A) JP-A-3-75360 (JP, A (58) Field surveyed (Int. Cl. 7 , DB name) C23C 24/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 薄膜の原材料をそのまま微粒子化し、そ
の微粒子を帯電させて薄膜成長室内に噴出させ、前記薄
膜成長室内の基板近傍に設けられたグリッド形状の電極
に前記微粒子の帯電電荷とは逆の極性の電圧を印加して
前記微粒子を吸引し、前記グリッド形状の電極を通過し
た微粒子を前記基板表面に付着させ、その後熱処理す
ことによって薄膜を形成することを特徴とする薄膜形成
方法。
1. A directly atomized raw material of the thin film, the fine particles are charged by injected into the thin film growth chamber, contrary to the fine particles of the charge on the electrodes of the grid shape provided near the substrate of the thin film growth chamber of the polarity of the voltage applied to attract the fine particles, the fine particles that have passed through the electrodes of the grid shape is deposited on the substrate surface, a thin film forming method comprising forming a thin film by the subsequent heat treatment to Rukoto.
【請求項2】 前記熱処理により結晶化させてセラミッ
ク薄膜を形成することを特徴とする請求項1記載の薄膜
形成方法。
2. The method according to claim 1, wherein
2. The thin film according to claim 1, wherein a thin film is formed.
Forming method.
【請求項3】 薄膜の原材料をそのまま微粒子化すると
ともに帯電させた帯電微粒子の噴出口を有する微粒子化
室と、薄膜成長室内の基板設置部近傍に設けられたグリ
ッド形状の電極とを少なくとも有する薄膜成長装置。
3. When the raw material of the thin film is finely divided as it is
A thin film growth apparatus having at least a micronization chamber having a spout of charged fine particles charged together, and a grid-shaped electrode provided near a substrate installation portion in the thin film growth chamber.
【請求項4】 前記帯電微粒子の噴出口は、前記薄膜成
長室内に設置される基板表面からそらした方向に向いて
いることを特徴とする請求項3記載の薄膜成長装置。
4. The discharge port of the charged fine particles is provided with the thin film forming member.
Facing away from the surface of the board installed in the long room
Thin film growth apparatus according to claim 3, wherein the are.
JP17804492A 1992-06-12 1992-07-06 Thin film formation method and thin film growth apparatus Expired - Fee Related JP2998870B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP17804492A JP2998870B2 (en) 1992-07-06 1992-07-06 Thin film formation method and thin film growth apparatus
DE69333864T DE69333864T2 (en) 1992-06-12 1993-06-14 Manufacturing method for semiconductor device with capacitor
EP93304609A EP0574275B1 (en) 1992-06-12 1993-06-14 Semiconductor device having capacitor
EP97106056A EP0789395B1 (en) 1992-06-12 1993-06-14 Manufacturing method for semiconductor device having capacitor
DE69317940T DE69317940T2 (en) 1992-06-12 1993-06-14 Semiconductor device with capacitor
US08/778,953 US5717233A (en) 1992-06-12 1997-01-06 Semiconductor device having capacitior and manufacturing method thereof
US08/947,712 US6126752A (en) 1992-06-12 1997-10-09 Semiconductor device having capacitor and manufacturing apparatus thereof
US08/950,920 US6080617A (en) 1992-06-12 1997-10-15 Semiconductor device having capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17804492A JP2998870B2 (en) 1992-07-06 1992-07-06 Thin film formation method and thin film growth apparatus

Publications (2)

Publication Number Publication Date
JPH0625869A JPH0625869A (en) 1994-02-01
JP2998870B2 true JP2998870B2 (en) 2000-01-17

Family

ID=16041616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17804492A Expired - Fee Related JP2998870B2 (en) 1992-06-12 1992-07-06 Thin film formation method and thin film growth apparatus

Country Status (1)

Country Link
JP (1) JP2998870B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993732B2 (en) 2006-07-28 2011-08-09 Ricoh Company, Ltd. Heat-sensitive pressure-sensitive adhesive and heat-sensitive adhesive material
JP5526456B2 (en) 2006-09-11 2014-06-18 株式会社リコー Heat-sensitive adhesive and heat-sensitive adhesive sheet

Also Published As

Publication number Publication date
JPH0625869A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
EP1227172A3 (en) Method of reducing plasma charge damage for plasma processes
JP4355036B2 (en) Ionization sputtering equipment
JP2936276B2 (en) Method and apparatus for manufacturing transparent conductive film
US6171659B1 (en) Process for the formation of a coating on a substrate and device for the use this process
JP2002513862A (en) Ionized physical vapor deposition method and apparatus
JP2998870B2 (en) Thin film formation method and thin film growth apparatus
JPS63149374A (en) Sputtering device
JP4233702B2 (en) Carbon sputtering equipment
US4512284A (en) Glow discharge apparatus for use in coating a disc-shaped substrate
JP4164154B2 (en) Ionization sputtering equipment
EP1073197A3 (en) Method for producing oriented piezoelectric films
JPH0219461A (en) Sputtering device
JPH08153882A (en) Method of manufacturing thin film solar cell
JP2002363743A (en) Sputtering device
JP2606033Y2 (en) Sputtering equipment
JP2003273194A (en) Electrostatic chuck
JPS63103065A (en) Film formation by sputtering
JPS613879A (en) Sputtering device
JP2001035861A (en) Method for manufacturing thin film and manufacturing device
JPH0375630B2 (en)
JPH10130832A (en) Low-pressure remote sputtering system
JPH0788573B2 (en) Film formation method
JP2004137534A (en) Sputtering equipment
JPS61243173A (en) Magnetron sputtering device
JPH01309964A (en) Functional deposit film-forming device by sputtering method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20071105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101105

LAPS Cancellation because of no payment of annual fees