JP2997816B2 - Capacitor - Google Patents
CapacitorInfo
- Publication number
- JP2997816B2 JP2997816B2 JP2182365A JP18236590A JP2997816B2 JP 2997816 B2 JP2997816 B2 JP 2997816B2 JP 2182365 A JP2182365 A JP 2182365A JP 18236590 A JP18236590 A JP 18236590A JP 2997816 B2 JP2997816 B2 JP 2997816B2
- Authority
- JP
- Japan
- Prior art keywords
- header
- flat tubes
- partition wall
- intermediate partition
- meandering flat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
- F28D1/0478—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 この発明は、例えばルームクーラ等に用いられるコン
デンサに関する。Description: TECHNICAL FIELD The present invention relates to a capacitor used for, for example, a room cooler.
従来の技術 従来、ルームクーラ用コンデンサは、多数の冷媒通路
を有する1つのアルミニウム押出形材製偏平管が蛇行状
に曲げられ、この蛇行状偏平管の直管部同士の間にフィ
ンが介在されたサーペンタイン型のものが、その直管部
を水平にして、いわゆる水平置きの状態で使用されてい
た。2. Description of the Related Art Conventionally, in a room cooler condenser, a single aluminum extruded profiled flat tube having a number of refrigerant passages is bent in a meandering shape, and fins are interposed between straight pipe portions of the meandering flat tube. The serpentine type is used in a so-called horizontal state with its straight pipe part horizontal.
発明が解決しようとする課題 しかしながら、このような従来のサーペンタイン型の
コンデンサでは、蛇行状偏平管が1つの広幅の押出形材
によりつくられているため、その直管部の幅(すなわち
水平置きコンデンサの高さ)が非常に大きいものであ
り、従って冷媒がコンデンサ下側の冷媒通路部分に溜ま
りやすく、このため冷媒がすべての通路に分かれて流れ
ることなく、一部の通路に片寄って流れることになり、
従って実際に冷媒が接触するコンデンサの管部の伝熱面
積が減少して、熱交換効率が低下するという問題があっ
た。However, in such a conventional serpentine-type capacitor, since the meandering flat tube is made of one wide extruded member, the width of the straight tube portion (that is, the horizontally placed capacitor) is used. Is very large, and therefore, the refrigerant easily accumulates in the refrigerant passage portion below the condenser, so that the refrigerant does not flow into all the passages but flows to some of the passages. Become
Therefore, there is a problem that the heat transfer area of the tube portion of the condenser with which the refrigerant actually contacts is reduced, and the heat exchange efficiency is reduced.
この発明の目的は、上記の従来技術の問題を解決し、
コンデンサが水平置きの状態であっても、分流を良くす
ることができ、冷媒がコンデンサ下側の冷媒通路部分に
溜まることなく、すべての通路に分かれてスムーズに流
れ、冷媒の接触伝熱面が、コンデンサの管部全体の有効
伝熱面と一致して、熱交換効率が大幅に向上する、コン
デンサを提供しようとするにある。An object of the present invention is to solve the above-mentioned problems of the prior art,
Even when the condenser is placed horizontally, it is possible to improve the branch flow, the refrigerant does not accumulate in the refrigerant passage part under the condenser, it flows smoothly through all the passages, and the contact heat transfer surface of the refrigerant An object of the present invention is to provide a condenser in which the effective heat transfer surface of the entire pipe portion of the condenser coincides with the heat exchange efficiency and the heat exchange efficiency is greatly improved.
課題を解決するための手段 上記の目的を達成するために、まず第1発明のコンデ
ンサは、上下方向に並列状に配置された多数の蛇行状偏
平管と、これらの蛇行状偏平管の両端部のうち同側の端
部同士を相互に連結する左右一対のヘッダとを備えてい
るコンデンサにおいて、両ヘッダのうちの一方のヘッダ
の内部に1つの中間仕切壁が、所定のレベルにおいてか
つ蛇行状偏平管の端部同士の間で該ヘッダを横断する方
向に設けられて、仕切壁より上側の上部ヘッダ部分に接
続された蛇行状偏平管の数よりも、仕切壁より下側の下
部ヘッダ部分に接続された蛇行状偏平管の数の方が少な
いものとなされており、上部ヘッダ部分もしくは同ヘッ
ダ部分の上端部自体に流体導入管が接続されるととも
に、下部ヘッダ部分もしくは同ヘッダ部分の下端部自体
に流体排出管が接続されていることを特徴としている。Means for Solving the Problems In order to achieve the above object, first, the capacitor of the first invention comprises a number of meandering flat tubes arranged in parallel in the vertical direction, and both ends of the meandering flat tubes. A pair of left and right headers interconnecting the ends on the same side, one intermediate partition wall is provided inside one of the headers at a predetermined level and meandering. A lower header portion below the partition wall than the number of meandering flat tubes provided between the ends of the flat tubes in a direction crossing the header and connected to the upper header portion above the partition wall. The number of meandering flat tubes connected to the lower portion is smaller than that of the upper header portion or the upper end portion of the header portion, and the fluid introduction tube is connected to the lower header portion or the lower end of the header portion. Department It is characterized in that a fluid discharge pipe is connected to itself.
つぎに、第2発明のコンデンサは、上下方向に並列状
に配置された多数の蛇行状偏平管と、これらの蛇行状偏
平管の両端部のうち同側の端部同士を相互に連結する左
右一対のヘッダとを備えているコンデンサにおいて、両
ヘッダの内部に中間仕切壁が、左右交互に異なるレベル
においてかつ蛇行状偏平管の端部同士の間でそれぞれヘ
ッダを横断する方向に設けられ、上位の中間仕切壁とこ
れが設けられているヘッダの上端部との間の上部ヘッダ
部分に、最も多い数の蛇行状偏平管の端部が接続され、
上位の中間仕切壁と下位の中間仕切壁との間の中間ヘッ
ダ部分に、これより少ない数の蛇行状偏平管の端部が接
続され、下位の中間仕切壁とこれが設けられているヘッ
ダの下端部との間の下部ヘッダ部分に、最も少ない数の
蛇行状偏平管の端部が接続されており、最上位の中間仕
切壁とこれが設けられているヘッダの上端部との間の上
部ヘッダ部分もしくは同ヘッダの上端部自体に流体導入
管が接続されるとともに、最下位の中間仕切壁とこれが
設けられているヘッダの下端部との間の下部ヘッダ部分
もしくは同ヘッダの下端部自体に流体排出管が接続され
ていることを特徴としている。Next, the capacitor of the second invention comprises a number of meandering flat tubes arranged in parallel in the vertical direction, and left and right connecting ends of these meandering flat tubes on the same side among both ends. In a capacitor including a pair of headers, an intermediate partition wall is provided inside both headers at different levels on the left and right sides alternately and in a direction crossing the headers between the ends of the meandering flat tubes, respectively. The end portion of the largest number of meandering flat tubes is connected to the upper header portion between the intermediate partition wall and the upper end portion of the header provided with the intermediate partition wall,
An end portion of a smaller number of meandering flat tubes is connected to an intermediate header portion between the upper intermediate partition wall and the lower intermediate partition wall, and the lower intermediate partition wall and the lower end of the header in which the lower intermediate partition wall is provided. The lower header portion between the upper and lower portions is connected to the end of the smallest number of meandering flat tubes, and the upper header portion between the uppermost intermediate partition and the upper end of the header where it is provided. Alternatively, the fluid introduction pipe is connected to the upper end portion of the header itself, and the fluid is discharged to the lower header portion between the lowermost intermediate partition wall and the lower end portion of the header provided with the same or the lower end portion of the header itself. The tube is connected.
なお、蛇行状偏平管の直管部同士の間には、通常、フ
ィンが介在されるが、このフィンは、多数の蛇行状偏平
管の直管部に共通に渡された長い1枚もののコルゲート
・フィンであっても良いし、分割されて各蛇行状偏平管
の直管部毎に介在された短いコルゲート・フィン、ある
いはまたスカイブ・フィン等であっても良い。Usually, fins are interposed between the straight pipe portions of the meandering flat tube, and the fins are a long corrugated sheet which is commonly passed to the straight pipe portions of a number of meandering flat tubes. It may be a fin, a short corrugated fin or a skive fin which is divided and interposed in each straight pipe portion of each meandering flat tube.
作用 上記コンデンサによれば、蛇行状偏平管が多数のもの
に分割されて、並列状に配置されているから、従来のコ
ンデンサように全体として1つの蛇行状偏平管を用いた
場合に比べて、同容積でかつ冷媒通路の数が同じコンデ
ンサでは、分割された蛇行状偏平管の各冷媒通路の断面
積が小さくなることになる。そして、上部ヘッダ部分よ
りも下部ヘッダ部分に、あるいはまた上部ヘッダ部分、
中間ヘッダ部分よりも下部ヘッダ部分に至るほど、接続
される蛇行状偏平管の数が順次少ないものとなされてい
て、しかも接続された蛇行状偏平管の数が最も多い上部
ヘッダ部分に流体導入管が接続され、かつ接続された蛇
行状偏平管の数が最も少ない方の下部ヘッダ部分に流体
排出管が接続されているから、コンデンサの各通路を通
過する冷媒の流速が、コンデンサの上部より下部に至る
ほど速くなり、従ってコンデンサが水平置きの状態であ
っても、冷媒がコンデンサ下側の冷媒通路部分に溜まる
ことがない。According to the above capacitor, since the meandering flat tubes are divided into a number of components and arranged in parallel, compared with the case where one meandering flat tube is used as a whole as in the conventional capacitor, In a condenser having the same volume and the same number of refrigerant passages, the sectional area of each refrigerant passage of the divided meandering flat tube becomes smaller. And, in the lower header part rather than the upper header part, or also in the upper header part,
The number of meandering flat tubes connected to the lower header portion is smaller than the middle header portion, and the fluid introduction pipe is connected to the upper header portion where the number of connected meandering flat tubes is the largest. Is connected, and the fluid discharge pipe is connected to the lower header portion having the smallest number of connected meandering flat tubes, so that the flow rate of the refrigerant passing through each passage of the condenser is lower than that of the upper part of the condenser. Therefore, even if the condenser is placed horizontally, the refrigerant does not accumulate in the refrigerant passage below the condenser.
また、左右一対のヘッダの内部に1つまたは2つ以上
の中間仕切壁が設けられて、コンデンサの入口部分より
出口部分に至るほど通路断面積が少なくなるように通路
断面積を変えているから、冷媒をすべての通路に確実に
分けてスムーズに流すことができ、冷媒の接触伝熱面
が、コンデンサの管部全体の有効伝熱面と一致するとと
もに、コンデンサにおける冷媒の移動距離も長くなるた
め、熱交換効率が大幅に向上するものである。Also, one or two or more intermediate partition walls are provided inside the pair of left and right headers, and the passage cross-sectional area is changed so that the passage cross-sectional area decreases from the inlet to the outlet of the condenser. In this way, the refrigerant can be surely distributed to all the passages and can flow smoothly, the contact heat transfer surface of the refrigerant coincides with the effective heat transfer surface of the entire pipe section of the condenser, and the refrigerant travel distance in the condenser also increases. Therefore, the heat exchange efficiency is greatly improved.
実 施 例 つぎに、この発明の実施例を図面に基づいて説明す
る。Next, an embodiment of the present invention will be described with reference to the drawings.
この明細書において、上下、左右は第2図を基準と
し、上とは第2図上側、下とは同下側をいゝ、また左と
は同図図面紙葉の表側、右とは同裏側をいうものとす
る。In this specification, upper, lower, left and right refer to FIG. 2, upper means upper side of FIG. 2, lower means lower side of FIG. It means the back side.
この発明によるコンデンサを、ルームクーラのコンデ
サに適用した第1実施例を示す第1図と第2図におい
て、この発明によるコンデンサは、多数の冷媒通路を有
する5つのアルミニウム押出形材製の蛇行状偏平管
(3)が、相互に所定の間隙(5)をおいて上下方向に
並列状に配置され、これらの蛇行状偏平管(3)(3)
の左右両端部のうち同側の端部同士が、左右ヘッダ
(1)(2)により互いに連結されている。各蛇行状偏
平管(3)の直管部(3a)(3a)同士の間には、5つの
蛇行状偏平管(3)に共通するように渡された長い1枚
もののコルゲート・フィン(4)が介在されている。FIGS. 1 and 2 show a first embodiment in which a condenser according to the present invention is applied to a condenser of a room cooler. In FIGS. 1 and 2, the condenser according to the present invention has a meandering shape made of five extruded aluminum members having a number of refrigerant passages. Flat tubes (3) are vertically arranged in parallel with a predetermined gap (5) therebetween, and these meandering flat tubes (3) (3)
Of the left and right ends are connected to each other by left and right headers (1) and (2). Between the straight pipe portions (3a) (3a) of each meandering flat tube (3), one long corrugated fin (4) passed in common to the five meandering flat tubes (3). ) Is interposed.
左右ヘッダ(1)(2)の上下両端は、それぞれ端部
閉塞壁(10)(10)により塞がれており、また一方の左
側ヘッダ(1)の内部には、1つの中間仕切壁(6)
が、下から2番目と3番目の蛇行状偏平管(3)(3)
の端部同士の間のレベルにおいて、該ヘッダ(1)を横
断する方向に設けられている。従って、仕切壁(6)よ
り上側の上部ヘッダ部分(1a)に接続された蛇行状偏平
管(3)の数よりも、仕切壁(6)より下側の下部ヘッ
ダ部分(1b)に接続された蛇行状偏平管(3)の数の方
が少ないものとなされている。The upper and lower ends of the left and right headers (1) and (2) are closed by end closing walls (10) and (10), respectively, and one intermediate partition wall (1) is provided inside one left header (1). 6)
But the second and third meandering flat tubes from the bottom (3) (3)
At the level between the ends of the header (1) in the direction crossing the header (1). Therefore, it is connected to the lower header part (1b) below the partition wall (6), rather than the number of meandering flat tubes (3) connected to the upper header part (1a) above the partition wall (6). The number of meandering flat tubes (3) is smaller.
そして、左側ヘッダ(1)の上端部寄りの上部ヘッダ
部分(1a)に、冷媒導入管(7)が接続され、また同ヘ
ッダ(1)の下端寄りの下部ヘッダ部分(1b)に冷媒排
出管(8)が接続されている。A refrigerant introduction pipe (7) is connected to an upper header part (1a) near the upper end of the left header (1), and a refrigerant discharge pipe is connected to a lower header part (1b) near the lower end of the header (1). (8) is connected.
上記において、冷媒導入管(7)から左側ヘッダ
(1)の仕切壁(6)のより上側の部分(1a)に、冷媒
が導入されると、これは3つの蛇行状偏平管(3)の群
の冷媒通路内に分かれて流入する。冷媒は、これら3つ
の蛇行状偏平管(3)の群の冷媒通路内を通過した後、
他方の右側ヘッダ(2)内に至り、そこで流れの方向を
下向きに変えて、同右側ヘッダ(2)の下半部より、今
度は中間仕切壁(6)より下側の2つの蛇行状偏平管
(3)の冷媒通路内に分かれて流入する。冷媒は、これ
ら2つの蛇行状偏平管(3)の冷媒通路内を通過した
後、左側ヘッダ(1)の下半部分(1b)内に至り、冷媒
排出管(8)からコンデンサの外部に排出されるもので
ある。In the above, when the refrigerant is introduced from the refrigerant introduction pipe (7) to the upper part (1a) of the partition wall (6) of the left header (1), the refrigerant is introduced into the three meandering flat tubes (3). The refrigerant flows into the group of refrigerant passages separately. After passing through the refrigerant passage of the group of these three meandering flat tubes (3),
The flow is turned downward in the other right header (2), and the two meandering flats below the middle partition wall (6) from the lower half of the right header (2) are turned. The refrigerant flows into the refrigerant passage of the pipe (3) separately. After passing through the refrigerant passages of the two meandering flat tubes (3), the refrigerant reaches the lower half (1b) of the left header (1) and is discharged from the refrigerant discharge tube (8) to the outside of the condenser. Is what is done.
このように、上記コンデンサによれば、蛇行状偏平管
(3)が5つに分割されて、並列状に配置されているか
ら、例えば全体として1つの蛇行状偏平管を用いたコン
デンサに比べて、同容積でかつ冷媒通路の数が同じ場合
には、分割された蛇行状偏平管(3)の各冷媒通路の断
面積が小さくなることになる。As described above, according to the capacitor, since the meandering flat tube (3) is divided into five and arranged in parallel, for example, as compared to a capacitor using one meandering flat tube as a whole, In the case of the same volume and the same number of refrigerant passages, the sectional area of each refrigerant passage of the divided meandering flat tube (3) becomes smaller.
また、上部ヘッダ部分(1a)よりも下部ヘッダ部分
(1b)に接続される蛇行状偏平管(3)の数が少ないも
のとなされていて、しかも接続された蛇行状偏平管
(3)の数が多い方の上部ヘッダ部分(1a)に流体導入
管(7)が接続され、かつ接続された蛇行状偏平管
(3)の数が少ない方の下部ヘッダ部分(1b)に流体排
出管(8)が接続されているから、コンデンサの各通路
を通過する冷媒の流速が、コンデンサの上部より下部に
至るほど速くなり、従ってコンデンサが水平置きの状態
であっても、冷媒がコンデンサ下側の冷媒通路部分に溜
まることがない。Further, the number of meandering flat tubes (3) connected to the lower header portion (1b) is smaller than that of the upper header portion (1a), and the number of connected meandering flat tubes (3) is smaller. The fluid introduction pipe (7) is connected to the upper header portion (1a) having a larger number of fluids, and the fluid discharge pipe (8) is connected to the lower header portion (1b) having a smaller number of connected meandering flat tubes (3). ) Is connected, the flow velocity of the refrigerant passing through each passage of the condenser becomes higher as it goes from the upper part to the lower part of the condenser, and therefore, even when the condenser is placed horizontally, the refrigerant flows under the condenser under the condenser. There is no accumulation in the passage.
また上記のように、左側ヘッダ(1)の内部に1つの
中間仕切壁(6)が設けられていて、コンデンサの入口
部分と出口部分の通路断面積を3:2となるように変えて
いるから、冷媒を、すべての蛇行状偏平管(3)の通路
に確実に分けてスムーズに流すことができるとともに、
コンデンサにおける冷媒の移動距離も長くなるため、熱
交換効率が大幅に向上するものである。Also, as described above, one intermediate partition (6) is provided inside the left header (1), and the passage cross-sectional area of the inlet and outlet of the condenser is changed to be 3: 2. Thus, the refrigerant can be surely divided into the passages of all the meandering flat tubes (3) and smoothly flowed,
Since the moving distance of the refrigerant in the condenser becomes longer, the heat exchange efficiency is greatly improved.
第3図は、この発明の第2実施例を示すものである。
ここで、上記第1実施例の場合と異なる点は、上下方向
に6つの蛇行状偏平管(3)が水平状態に並列に状配置
されている点、左右両ヘッダ(1)(2)の内部に、そ
れぞれ中間仕切壁(6)(6)が、左右交互に異なるレ
ベルにおいてかつ蛇行状偏平管(3)(3)の端部同士
の間でそれぞれヘッダ(1)(2)を横断する方向に設
けられて、上位の中間仕切壁(6)とこれが設けられて
いるヘッダ(1)の上端部との間の上部ヘッダ部分(1
a)に、最も多い数の蛇行状偏平管(3)の端部が接続
され、上位の中間仕切壁(6)と下位の中間仕切壁
(6)との間の中間ヘッダ部分に、これより少ない数の
蛇行状偏平管(3)の端部が接続され、下位の中間仕切
壁(6)とこれが設けられているヘッダ(2)の下端部
との間の下部ヘッダ部分(2a)に、最も少ない数の蛇行
状偏平管(3)の端部が接続されている点、上位の中間
仕切壁(6)とこれが設けられている左側ヘッダ(1)
の上端部との間の上部ヘッダ部分(1a)に冷媒導入管
(7)が接続されるとともに、下位の中間仕切壁(6)
とこれが設けられている右側ヘッダ(2)の下端部との
間の下部ヘッダ部分(2a)に冷媒排出管(8)が接続さ
れている点にある。FIG. 3 shows a second embodiment of the present invention.
Here, the point different from the case of the first embodiment is that six meandering flat tubes (3) are vertically arranged in parallel in the vertical direction, and that the right and left headers (1) and (2) are Inside, respective intermediate partitions (6), (6) traverse the headers (1), (2) respectively at different levels on the left and right sides and between the ends of the meandering flat tubes (3), (3). And an upper header portion (1) between the upper intermediate partition (6) and the upper end of the header (1) in which it is provided.
In (a), the ends of the largest number of meandering flat tubes (3) are connected, and the intermediate header part between the upper intermediate partition (6) and the lower intermediate partition (6), The end of the small number of meandering flat tubes (3) is connected to the lower header portion (2a) between the lower intermediate partition (6) and the lower end of the header (2) provided with the lower intermediate partition (6). The point where the ends of the smallest number of meandering flat tubes (3) are connected, the upper intermediate partition (6) and the left header (1) on which it is provided.
A refrigerant introduction pipe (7) is connected to an upper header portion (1a) between the upper end portion of the lower intermediate partition wall (6).
The point is that the refrigerant discharge pipe (8) is connected to the lower header portion (2a) between the lower header portion (2a) and the lower end portion of the right header (2) provided with this.
この第2実施例のコンデンサによれば、冷媒導入管
(7)から左側ヘッダ(1)の上位の中間仕切壁(6)
のより上側の部分(1a)に、冷媒が導入されると、これ
は3つの蛇行状偏平管(3)の群の冷媒通路内に分かれ
て流入する。According to the condenser of the second embodiment, the upper intermediate partition wall (6) of the left header (1) from the refrigerant inlet pipe (7).
When the refrigerant is introduced into the upper part (1a), it flows into the refrigerant passages of the group of three meandering flat tubes (3).
ついで冷媒は、右側ヘッダ(2)において流れの方向
を下向きに変えて、右側ヘッダ(2)の中央部分より2
つの蛇行状偏平管(3)の冷媒通路内に分かれて流入す
る。さらに冷媒は、左側ヘッダ(1)の下半部分(1b)
内に至り、そこで、流れの方向を下向きに変えて、同ヘ
ッダ(1)の下端寄り部分より1つの蛇行状偏平管
(3)の冷媒通路内に流入し、最後に右側ヘッダ(2)
の下端より部分に接続されている冷媒排出管(8)から
コンデンサの外部に排出されるものである。Next, the refrigerant changes its flow direction downward in the right header (2), and the refrigerant flows from the central portion of the right header (2) by two times.
The two meandering flat tubes (3) flow into the refrigerant passages separately. In addition, the refrigerant is in the lower half (1b) of the left header (1).
Then, the direction of the flow is changed downward, and flows into the refrigerant passage of one meandering flat tube (3) from the portion near the lower end of the header (1). Finally, the right header (2)
Is discharged to the outside of the condenser from a refrigerant discharge pipe (8) connected to a portion from the lower end of the condenser.
この第2実施例のコンデンサによれば、蛇行状偏平管
(3)が6つに分割されて、並列状に配置されているか
ら、例えば全体として1つの蛇行状偏平管を用いたコン
デンサに比べて、同容積でかつ冷媒通路の数が同じ場合
には、分割された蛇行状偏平管(3)の各冷媒通路の断
面積が小さくなることになる。According to the capacitor of the second embodiment, since the meandering flat tube (3) is divided into six parts and arranged in parallel, for example, as compared with a capacitor using one meandering flat tube as a whole, When the number of refrigerant passages is the same and the number is the same, the sectional area of each refrigerant passage of the divided meandering flat tube (3) becomes small.
また、上部ヘッダ部分(1a)、中間ヘッダ部分よりも
下部ヘッダ部分(2a)に至るほど、接続される蛇行状偏
平管(3)の数が順次少ないものとなされていて、しか
も接続された蛇行状偏平管(3)の数が最も多い上部ヘ
ッダ部分(1a)に流体導入管(7)が接続され、かつ接
続された蛇行状偏平管(3)の数が最も少ない下部ヘッ
ダ(2a)に流体排出管(8)が接続されているから、コ
ンデンサの各通路を通過する冷媒の流速が、コンデンサ
の上部より下部に至るほど速くなり、従ってコンデンサ
が水平置きの状態であっても、冷媒がコンデンサ下側の
冷媒通路部分に溜まることがない。Further, the number of meandering flat tubes (3) to be connected is gradually reduced toward the lower header portion (2a) than the upper header portion (1a) and the intermediate header portion. The fluid introduction pipe (7) is connected to the upper header portion (1a) having the largest number of flat tubes (3), and the lower header (2a) having the smallest number of connected meandering flat tubes (3) is connected to the lower header (2a). Since the fluid discharge pipe (8) is connected, the flow velocity of the refrigerant passing through each passage of the condenser becomes higher as it goes from the upper part to the lower part of the condenser, and therefore, even if the condenser is placed horizontally, the refrigerant flows. It does not accumulate in the refrigerant passage below the condenser.
また上記のように、左右両ヘッダ(1)(2)の内部
に、それぞれ中間仕切壁(6)(6)が設けられてい
て、コンデンサの入口部分から出口部分にかけて、通路
断面積を3:2:1となるように順に変えているから、冷媒
をすべての蛇行状偏平管(3)の通路に確実に分けてス
ムーズに流すことができるとともに、コンデンサにおけ
る冷媒の移動距離が約3倍と長くなるため、熱交換効率
が大幅に向上する。Further, as described above, the intermediate partition walls (6) and (6) are provided inside the left and right headers (1) and (2), respectively. Since the refrigerant is changed in order so that the ratio becomes 2: 1, the refrigerant can be surely divided into all the passages of the meandering flat tubes (3) to flow smoothly, and the moving distance of the refrigerant in the condenser is about three times. Since the length is longer, the heat exchange efficiency is greatly improved.
上記第2実施例のその他の点は、上記第1実施例の場
合と同様であるので、図面において同一のものには同一
の符号を付した。Since the other points of the second embodiment are the same as those of the first embodiment, the same components are denoted by the same reference numerals in the drawings.
なお、上記実施例においては、冷媒導入管(7)と同
排出管(8)が、ヘッダ(1)(2)の側壁部分に接続
されているが、これらの冷媒導入管(7)と同排出管
(8)は、ヘッダ(1)(2)の端部自体に、これらを
延長するように接続されていても良く、あるいはまたヘ
ッダ(1)(2)の端部に設けられた閉塞壁(10)に接
続されていても良い。In the above embodiment, the refrigerant introduction pipe (7) and the discharge pipe (8) are connected to the side walls of the headers (1) and (2). The discharge pipe (8) may be connected to the ends of the headers (1) and (2) so as to extend them, or may be a block provided at the end of the header (1) and (2). It may be connected to the wall (10).
発明の効果 この発明は、上述のように、まず第1発明によるコン
デンサは、左右両ヘッダのうちの一方のヘッダの内部に
1つの中間仕切壁が。所定のレベルにおいてかつ蛇行状
偏平管の端部同士の間で該ヘッダを横断する方向に設け
られて、仕切壁より上側の上部ヘッダ部分に接続された
蛇行状偏平管の数よりも、仕切壁より下側の下部ヘッダ
部分に接続された蛇行状偏平管の数の方が少ないものと
なされており、上部ヘッダ部分もしくは同ヘッダ部分の
上端部自体に流体導入管が接続されるとともに、下部ヘ
ッダ部分もしくは同ヘッダ部分の下端部自体に流体排出
管が接続されているものであり、また、第2発明による
コンデンサは、上記第1発明のコンデンサにおける中間
仕切壁が、左右両ヘッダ内に、交互に異なるレベルにお
いてかつ蛇行状偏平管の端部同士の間でそれぞれヘッダ
を横断する方向に設けられ、上位の中間仕切壁とこれが
設けられている左側ヘッダの上端部との間の上部ヘッダ
部分に、最も多い数の蛇行状偏平管の端部が接続され、
上位の中間仕切壁と下位の中間仕切壁との間の中間ヘッ
ダ部分に、これより少ない数の蛇行状偏平管の端部が接
続され、下位の中間仕切壁とこれが設けられている右側
辺の下端部との間の下部ヘッダ部分に、最も少ない数の
蛇行状偏平管の端部が接続されており、最上位の中間仕
切壁とこれが設けられているヘッダの上端部との間の上
部ヘッダ部分もしくは同ヘッダ部分の上端部自体に流体
導入管が接続されるとともに、最下位の中間仕切壁とこ
れが設けられているヘッダの下端部との間の下部ヘッダ
部分もしくは同ヘッダ部分の下端部自体に流体排出管が
接続されているもので、いずれにしても、この発明のコ
ンデンサによれば、蛇行状偏平管が多数のものに分割さ
れて、並列状に配置されているから、従来のコンデンサ
ように全体として1つの広幅の蛇行状偏平管を用いた場
合に比べて、同容積でかつ冷媒通路の数が同じコンデン
サでは、分割された蛇行状偏平管の各冷媒通路の断面積
が小さくなる。そして、上部ヘッダ部分よりも下部ヘッ
ダ部分に、あるいはまた上部ヘッダ部分、中間ヘッダ部
分よりも下部ヘッダ部分に至るほど、接続される蛇行状
偏平管の数が順次少ないものとなされていて、しかも接
続された蛇行状偏平管の数が多い方の上部ヘッダ部分側
に流体導入管が接続され、かつ接続された蛇行状偏平管
の数が少ない方の下部ヘッダ部分側に流体排出管が接続
されているから、コンデンサの各通路を通過する冷媒の
流速が、コンデンサの下側に至るほど速くなり、従って
コンデンサが水平置きの状態であっても、冷媒がコンデ
ンサ下側の冷媒通路部分に溜まることがない。Effects of the Invention As described above, in the capacitor according to the first invention, one intermediate partition wall is provided inside one of the left and right headers. The number of the meandering flat tubes provided at a predetermined level and between the ends of the meandering flat tubes in the direction crossing the header and connected to the upper header portion above the partition wall is larger than the number of the meandering flat tubes. The number of meandering flat tubes connected to the lower header portion on the lower side is smaller, and the fluid introduction tube is connected to the upper header portion or the upper end itself of the header portion, and the lower header is connected to the lower header portion. The fluid discharge pipe is connected to the lower end of the portion or the header itself, and the capacitor according to the second invention is such that the intermediate partition wall in the capacitor of the first invention is alternately provided in the left and right headers. At a different level and between the ends of the meandering flat tubes in the direction crossing the header, respectively, between the upper intermediate partition and the upper end of the left header where the upper intermediate partition is provided. Of the upper header portion, an end portion of the largest number serpentine flat tubes are connected,
An end portion of a smaller number of meandering flat tubes is connected to the intermediate header portion between the upper intermediate partition wall and the lower intermediate partition wall, and the lower intermediate partition wall and the right side where the lower intermediate partition wall is provided are connected. The end of the smallest number of meandering flat tubes is connected to the lower header portion between the lower end and the upper header between the uppermost intermediate partition and the upper end of the header in which it is provided. The fluid introduction pipe is connected to the upper end portion of the portion or the header portion itself, and the lower header portion or the lower end portion of the header portion between the lowermost intermediate partition wall and the lower end portion of the header provided with the same. In any case, according to the capacitor of the present invention, the meandering flat tubes are divided into a large number and arranged in parallel. As a whole One of as compared with the case of using a wide serpentine flat tubes, the number of the volume in and the refrigerant passage are the same capacitor, the cross-sectional area of each coolant passage of the divided serpentine flat tubes is reduced. The number of meandering flat tubes connected to the lower header portion rather than the upper header portion or to the lower header portion than the upper header portion and the intermediate header portion is sequentially reduced. The fluid introduction pipe is connected to the upper header part side where the number of meandering flat tubes connected is large, and the fluid discharge pipe is connected to the lower header part side where the number of connected meandering flat tubes is small. Therefore, the flow rate of the refrigerant passing through each passage of the condenser becomes higher as it reaches the lower side of the condenser, and therefore, even when the condenser is placed horizontally, the refrigerant may accumulate in the refrigerant passage portion below the condenser. Absent.
また、左右一対のヘッダの内部に1つまたは2つ以上
の中間仕切壁が設けられて、コンデンサの入口部分より
出口部分に至るほど通路断面積が少なくなるように通路
断面積を変えているから、冷媒をすべての通路に確実に
分けてスムーズに流すことができ、冷媒の接触伝熱面
が、コンデンサの管部全体の有効伝熱面と一致するとと
もに、コンデンサにおける冷媒の移動距離も長くなるた
め、熱交換効率が大幅に向上するという効果を奏する。Also, one or two or more intermediate partition walls are provided inside the pair of left and right headers, and the passage cross-sectional area is changed so that the passage cross-sectional area decreases from the inlet to the outlet of the condenser. In this way, the refrigerant can be surely distributed to all the passages and can flow smoothly, the contact heat transfer surface of the refrigerant coincides with the effective heat transfer surface of the entire pipe section of the condenser, and the refrigerant travel distance in the condenser also increases. Therefore, there is an effect that the heat exchange efficiency is greatly improved.
第1図はこの発明の第1実施例を示す斜視図、第2図は
一部切欠き左側面図、第3図はこの発明の第2実施例を
示す斜視図である。 (1)(2)……左右ヘッダ、(1a)(1b)(2a)……
ヘッダ部分、(3)……蛇行状偏平管、(6)……中間
仕切壁、(7)……冷媒導入管、(8)……冷媒排出
管。FIG. 1 is a perspective view showing a first embodiment of the present invention, FIG. 2 is a partially cutaway left side view, and FIG. 3 is a perspective view showing a second embodiment of the present invention. (1) (2) ... left and right headers, (1a) (1b) (2a) ...
Header portion, (3) meandering flat tube, (6) middle partition wall, (7) refrigerant inlet tube, (8) refrigerant outlet tube.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭63−134267(JP,U) 実開 昭60−76786(JP,U) 実開 昭57−38169(JP,U) 実開 昭56−28577(JP,U) (58)調査した分野(Int.Cl.7,DB名) F28D 1/00 - 9/04 F28F 9/00 - 9/26 F25B 39/00 - 39/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Sho 63-134267 (JP, U) Japanese Utility Model Sho 60-76786 (JP, U) Japanese Utility Model Sho 57-38169 (JP, U) Japanese Utility Model Sho 56- 28577 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F28D 1/00-9/04 F28F 9/00-9/26 F25B 39/00-39/04
Claims (2)
状偏平管(3)(3)と、これらの蛇行状偏平管(3)
(3)の両端部のうち同側の端部同士を相互に連結する
左右一対のヘッダ(1)(2)とを備えているコンデン
サにおいて、両ヘッダ(1)(2)のうちの一方のヘッ
ダ(1)の内部に1つの中間仕切壁(6)が、所定のレ
ベルにおいてかつ蛇行状偏平管(3)(3)の端部同士
の間で該ヘッダ(1)を横断する方向に設けられて、仕
切壁(6)より上側の上部ヘッダ部分(1a)に接続され
た蛇行状偏平管(3)の数よりも、仕切壁(6)より下
側の下部ヘッダ部分(1b)に接続された蛇行状偏平管
(3)の数の方が少ないものとなされており、上部ヘッ
ダ部分(1a)もしくは同ヘッダ部分(1a)の上端部自体
に流体導入管(7)が接続されるとともに、下部ヘッダ
部分(1b)もしくは同ヘッダ部分(1b)の下端部自体に
流体排出管(8)が接続されている、コンデンサ。1. A number of meandering flat tubes (3) arranged in parallel in the vertical direction, and these meandering flat tubes (3)
(3) A capacitor including a pair of left and right headers (1) and (2) for mutually connecting the ends on the same side of both ends, wherein one of the two headers (1) and (2) is provided. An intermediate partition (6) is provided inside the header (1) at a predetermined level and between the ends of the meandering flat tubes (3) (3) in a direction crossing the header (1). Connected to the lower header portion (1b) below the partition wall (6) than the number of meandering flat tubes (3) connected to the upper header portion (1a) above the partition wall (6). The number of the meandering flat tubes (3) is smaller, and the fluid introduction tube (7) is connected to the upper header portion (1a) or the upper end itself of the header portion (1a). Fluid drain pipe (8) is connected to the lower header part (1b) or the lower end of the header part (1b) It is to have, capacitor.
状偏平管(3)(3)と、これらの蛇行状偏平管(3)
(3)の両端部のうち同側の端部同士を相互に連結する
左右一対のヘッダ(1)(2)とを備えているコンデン
サにおいて、両ヘッダ(1)(2)の内部に中間仕切壁
(6)(6)が、左右交互に異なるレベルにおいてかつ
蛇行状偏平管(3)(3)の端部同士の間でそれぞれヘ
ッダ(1)(2)を横断する方向に設けられて、上位の
中間仕切壁(6)とこれが設けられているヘッダ(1)
の上端部との間の上部ヘッダ部分(1a)に、最も多い数
の蛇行状偏平管(3)の端部が接続され、上位の中間仕
切壁(6)と下位の中間仕切壁(6)との間の中間ヘッ
ダ部分に、これより少ない数の蛇行状偏平管(3)の端
部が接続され、下位の中間仕切壁(6)とこれが設けら
れているヘッダ(2)の下端部との間の下部ヘッダ部分
(2a)に、最も少ない数の蛇行状偏平管(3)の端部が
接続されており、最上位の中間仕切壁(6)とこれが設
けられているヘッダ(1)の上端部との間の上部ヘッダ
部分(1a)もしくは同ヘッダ(1)の上端部自体に流体
導入管(7)が接続されるとともに、最下位の中間仕切
壁(6)とこれが設けられているヘッダ(2)の下端部
との間の下部ヘッダ部分(2a)もしくは同ヘッダ(2)
の下端部自体に流体排出管(8)が接続されている、コ
ンデンサ。2. A number of meandering flat tubes (3) (3) arranged in parallel in the vertical direction, and these meandering flat tubes (3).
(3) In a capacitor including a pair of left and right headers (1) and (2) for mutually connecting the same end portions of both end portions, an intermediate partition is provided inside both headers (1) and (2). Walls (6), (6) are provided at alternately different levels on the left and right and between the ends of the meandering flat tubes (3), (3) in the direction crossing the headers (1), (2), respectively. Upper intermediate partition (6) and header (1) on which it is provided
The ends of the largest number of meandering flat tubes (3) are connected to the upper header portion (1a) between the upper and lower ends of the upper intermediate partition wall (6) and the lower intermediate partition wall (6). The lower end of the lower intermediate partition wall (6) and the lower end of the header (2) provided with the lower intermediate partition wall (6) are connected to the intermediate header portion between the lower end and the lower end of the intermediate partition wall (6). The lower end portion of the meandering flat tube (3) is connected to the lower header portion (2a), and the uppermost intermediate partition wall (6) and the header (1) on which the intermediate partition wall (6) is provided are connected. The fluid introduction pipe (7) is connected to the upper header portion (1a) between the upper end portion of the upper end portion or the upper end portion of the header (1), and the lowermost intermediate partition wall (6) and this are provided. Header part (2a) between the lower end of the header (2) and the header (2)
A fluid discharge pipe (8) is connected to the lower end of the condenser itself.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2182365A JP2997816B2 (en) | 1990-07-09 | 1990-07-09 | Capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2182365A JP2997816B2 (en) | 1990-07-09 | 1990-07-09 | Capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0468297A JPH0468297A (en) | 1992-03-04 |
JP2997816B2 true JP2997816B2 (en) | 2000-01-11 |
Family
ID=16117040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2182365A Expired - Lifetime JP2997816B2 (en) | 1990-07-09 | 1990-07-09 | Capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2997816B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5875837A (en) * | 1998-01-15 | 1999-03-02 | Modine Manufacturing Company | Liquid cooled two phase heat exchanger |
WO2001023823A1 (en) * | 1999-09-29 | 2001-04-05 | Norsk Hydro Asa | Heat exchanger |
DE10049256A1 (en) * | 2000-10-05 | 2002-04-11 | Behr Gmbh & Co | Serpentine heat exchanger e.g. evaporator or condenser/gas cooler for automobile air-conditioning, has link sections between corresponding pipe sections of different serpentine pipe blocks |
CN100408959C (en) * | 2001-12-21 | 2008-08-06 | 贝洱两合公司 | Heat exchanger |
EP1459026B1 (en) * | 2001-12-21 | 2010-02-24 | Behr GmbH & Co. KG | Heat exchanger, particularly for a motor vehicle |
DE10248665A1 (en) * | 2002-10-18 | 2004-04-29 | Modine Manufacturing Co., Racine | Heat exchanger in serpentine design |
JP5845574B2 (en) * | 2010-12-20 | 2016-01-20 | 富士電機株式会社 | Heat exchanger |
WO2014137217A1 (en) * | 2013-03-04 | 2014-09-12 | Norsk Hydro Asa | Heat exchanger inlet and outlet design |
CN106683830A (en) * | 2017-03-06 | 2017-05-17 | 常熟市友邦散热器有限责任公司 | Non-uniform oil duct sheet type radiator |
CN113587251B (en) * | 2021-07-26 | 2022-11-15 | 青岛海信日立空调系统有限公司 | Air conditioner |
-
1990
- 1990-07-09 JP JP2182365A patent/JP2997816B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0468297A (en) | 1992-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4712612A (en) | Horizontal stack type evaporator | |
US5482112A (en) | Condenser | |
JP3371071B2 (en) | Two-row flat tube heat exchanger | |
US5458190A (en) | Condenser | |
KR20060025082A (en) | Evaporator Using Microchannel Tube | |
JP2997816B2 (en) | Capacitor | |
JP2517872Y2 (en) | Heat exchanger | |
JPS61202084A (en) | Heat exchanger | |
JPS6334466A (en) | Condenser | |
JP2997817B2 (en) | Heat exchanger | |
EP0415584A2 (en) | Stack type evaporator | |
JPH11294973A (en) | Heat exchanger of absorption chiller / heater | |
EP0448183A2 (en) | A condenser | |
JPS63271099A (en) | Heat exchanger | |
JP2891486B2 (en) | Heat exchanger | |
US6446715B2 (en) | Flat heat exchange tubes | |
JPH0345302B2 (en) | ||
JPH0674609A (en) | Heat exchanger | |
JP2002130973A (en) | Heat exchanger | |
JPH0345301B2 (en) | ||
JPH0195288A (en) | Heat exchanger | |
JP2570310Y2 (en) | Heat exchanger | |
JPH064218Y2 (en) | Integrated heat exchange device with condenser and other heat exchangers | |
JP2001133076A (en) | Heat exchanger | |
JPH04344033A (en) | Air heat exchanger |