JP2994859B2 - Gas temperature measurement method - Google Patents
Gas temperature measurement methodInfo
- Publication number
- JP2994859B2 JP2994859B2 JP4176698A JP17669892A JP2994859B2 JP 2994859 B2 JP2994859 B2 JP 2994859B2 JP 4176698 A JP4176698 A JP 4176698A JP 17669892 A JP17669892 A JP 17669892A JP 2994859 B2 JP2994859 B2 JP 2994859B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- gas temperature
- laser
- collision
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、レーザ誘起蛍光法を用
いたガス温度計測方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas temperature measuring method using a laser-induced fluorescence method.
【0002】[0002]
【従来の技術】レーザ誘起蛍光法(以下「LIF」と略
称する)におけるエネルギー準位間の遷移過程を図3に
示す。LIFでは入射光としてガス分子の電子エネルギ
ー差に対応するレーザ光の波長が選択され、入射光の吸
収によりガス分子は上位電子準位へと励起される。入射
光の吸収に続き、ガス分子は放射や衝突の過程を経て安
定した基底準位へと戻る。このときに観察される光が蛍
光である。2. Description of the Related Art FIG. 3 shows a transition process between energy levels in a laser-induced fluorescence method (hereinafter abbreviated as "LIF"). In the LIF, a wavelength of a laser beam corresponding to a difference in electron energy between gas molecules is selected as incident light, and the gas molecules are excited to a higher electronic level by absorption of the incident light. Following the absorption of the incident light, the gas molecules return to a stable ground level through radiation and collision processes. The light observed at this time is fluorescence.
【0003】一般的なLIFを用いたガス温度計測の実
験装置の構成を図4に示す。同図(a)で励起用パルス
レーザ1より発したレーザ光をビームスプリッタ3aで
分光し、2台の色素レーザ2a,2bをそれぞれ発振さ
れて異なる2本の波長のレーザ光として出力させる。2
本のレーザ光は、一定の時間間隔(数10μS)を設けて
発振された後、ビームスプリッタ3bにて同軸状に整合
され、さらにビームエキスパンダ4にてシート状にされ
て測定場に入射される。FIG. 4 shows a configuration of an experimental apparatus for measuring gas temperature using a general LIF. In FIG. 2A, the laser light emitted from the excitation pulse laser 1 is split by the beam splitter 3a, and the two dye lasers 2a and 2b are oscillated and output as laser lights having two different wavelengths. 2
The laser light is oscillated at a fixed time interval (several tens of μS), is aligned coaxially by the beam splitter 3b, is formed into a sheet by the beam expander 4, and is incident on the measurement field. You.
【0004】それぞれのレーザ光より誘起される蛍光
は、図4(b)に示すようにそれぞれレンズ5a,5b
で集光され、CCDカメラ6a,6bで撮像、計測され
る。このとき、色素レーザ2aからCCDカメラ6a
へ、色素レーザ2bからCCDカメラ6bへレーザの発
振と撮像の同期をとるためのライン7a,7bが配設さ
れるので、CCDカメラ6a,6bで計測された蛍光強
度の比を求めることにより、測定場でのガス温度が決定
される。[0004] Fluorescence induced by each laser beam is converted into lenses 5a and 5b as shown in FIG.
And are imaged and measured by the CCD cameras 6a and 6b. At this time, the CCD camera 6a
Since lines 7a and 7b for synchronizing laser oscillation and imaging are provided from the dye laser 2b to the CCD camera 6b, the ratio of the fluorescence intensity measured by the CCD cameras 6a and 6b is obtained. The gas temperature at the measurement site is determined.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記のよ
うな実験装置にあっては、約0.1気圧以下の低圧力場
でのみしか適用することができないという条件がある。
これはすなわち、LIFにおける衝突過程が無放射過程
であるために、LIFを用いて温度計測を行なうために
はこの衝突による過程を定量的に見積もる必要がある
が、この過程は測定場に存在する化学種濃度に依存する
ため、一般に衝突の定量的計測は困難であるためであ
る。However, there is a condition that the above experimental apparatus can be applied only in a low pressure field of about 0.1 atm or less.
That is, since the collision process in the LIF is a non-radiative process, it is necessary to quantitatively estimate the process due to the collision in order to measure the temperature using the LIF, but this process exists in the measurement field. This is because it is generally difficult to measure the collision quantitatively because it depends on the chemical species concentration.
【0006】また、衝突の影響を取り除く計測方法とし
て飽和蛍光法が存在するが、非常に高いエネルギーを有
するレーザ光が必要となり、実用的ではない。それゆ
え、従来の技術では広い温度、圧力範囲におけるガス温
度を計測することは不可能であった。There is a saturation fluorescence method as a measuring method for removing the influence of collision, but a laser beam having a very high energy is required, which is not practical. Therefore, it was impossible to measure the gas temperature in a wide temperature and pressure range with the conventional technology.
【0007】本発明は上記のような実情に鑑みてなされ
たもので、その目的とするところは、既存のレーザ光が
有するエネルギー範囲内で衝突の影響を受けずに広い温
度、圧力範囲で計測可能なガス温度計測方法を提供する
ことにある。The present invention has been made in view of the above circumstances, and has as its object to measure a wide temperature and pressure range within the energy range of existing laser light without being affected by collision. It is to provide a possible gas temperature measurement method.
【0008】[0008]
【課題を解決するための手段及び作用】すなわち本発明
は、LIFを用いたガス温度計測方法であって、測定場
に存在する測定分子に励起される電子上位回転準位が等
しく、下位振動準位の異なる2本の吸収線を選択し、こ
れと同じ2つの波長のレーザ光を一定時間間隔で照射
し、照射時期に同期して測定場で発した蛍光の強度を測
定し、2つの蛍光強度の比をとることにより該測定場の
ガス温度を決定するようにしたもので、上位電子回転準
位が等しいためにそれぞれの蛍光線における衝突の効果
は同一となり、結果として相対的に衝突の影響を取り除
いて既存のレーザ光が有するエネルギー範囲内でも衝突
の影響を受けずに広い温度、圧力範囲で計測が可能とな
る。That is, the present invention relates to a gas temperature measuring method using an LIF, wherein an upper rotational level excited by a measurement molecule existing in a measurement field is equal to a lower vibration level. Two absorption lines having different wavelengths are selected, and the same two wavelengths of laser light are irradiated at regular time intervals, and the intensity of the fluorescence emitted from the measurement site is measured in synchronization with the irradiation time. The gas temperature of the measurement field is determined by taking the ratio of the intensities.Because the upper electron rotation levels are equal, the effect of the collision on each fluorescent ray becomes the same, and as a result, the relative collision By removing the influence, even within the energy range of the existing laser light, measurement can be performed in a wide temperature and pressure range without being affected by the collision.
【0009】[0009]
【実施例】以下図面を参照して本発明の一実施例を説明
する。実験装置の構成自体については上記図4で示した
ものと基本的に同一であるので、同一部分には同一符号
を付してその説明は省略する。An embodiment of the present invention will be described below with reference to the drawings. Since the configuration of the experimental apparatus itself is basically the same as that shown in FIG. 4, the same parts are denoted by the same reference numerals and description thereof will be omitted.
【0010】しかるに図1はそのレーザ誘起過程を示す
もので、測定場に存在する測定ガス分子に励起された電
子上位回転準位が等しく、下位振動準位の異なる2本の
吸収線、例えば0Hでは308.97nmと314.6
9nmを選択する。そして、選択した2本の吸収線と同
じ2つの波長のレーザ光を一定時間間隔で測定場に照射
し、照射時期に同期して測定場で発した蛍光の強度を測
定する。FIG. 1 shows the laser-induced process. Two absorption lines having the same upper rotational level excited by the measurement gas molecules existing in the measurement field and different lower vibration levels, for example, 0H 308.97 nm and 314.6
Select 9 nm. Then, laser beams having the same two wavelengths as the selected two absorption lines are irradiated to the measurement field at regular time intervals, and the intensity of fluorescence emitted from the measurement field is measured in synchronization with the irradiation timing.
【0011】このようにすることで、上位電子回転準位
が等しいためにそれぞれの蛍光線における衝突の効果は
同一となり、これはすなわち蛍光を発する割当てが等し
くなるということなので、結果として相対的に衝突の影
響を取り除かれたこととなる。したがって、測定した2
つの蛍光強度の比をとることにより該測定場のガス温度
を決定すれば、既存のレーザ光が有するエネルギー範囲
内でも衝突の影響を受けずに広い温度、圧力範囲で計測
が可能となるものである。In this way, since the upper electron rotational levels are equal, the effect of collision on each fluorescent ray is the same, which means that the assignment of emitting fluorescence is equal, and as a result, it is relatively The effect of the collision has been removed. Therefore, the measured 2
If the gas temperature of the measurement field is determined by taking the ratio of the two fluorescence intensities, it is possible to measure over a wide temperature and pressure range without being affected by collisions even within the energy range of the existing laser light. is there.
【0012】また、異なる下位振動準位を使用している
ため、励起する2つの下位振動準位のエネルギー差を大
きくすることが可能となり、高精度での温度計測が可能
となる。Further, since different lower vibration levels are used, it is possible to increase the energy difference between the two lower vibration levels to be excited, and to measure the temperature with high accuracy.
【0013】図2は蛍光強度の比と温度の関係を示すも
ので、第1のレーザ光による蛍光強度Aと第2のレーザ
光による蛍光強度Bの比「B/A」には温度依存性が存
在し、この強度比「B/A」により温度が決定されるこ
ととなるものである。FIG. 2 shows the relationship between the ratio of the fluorescence intensity and the temperature. The ratio "B / A" of the fluorescence intensity A of the first laser beam and the fluorescence intensity B of the second laser beam depends on the temperature. Exists, and the temperature is determined by the intensity ratio “B / A”.
【0014】上記のような方法をとることにより、原理
的に圧力の影響を受けないため、高圧場での温度計測も
可能となるため、従来では不可能であったバーナ、エン
ジン筒内、CVD装置内等の温度を点、面で計測するこ
とができる。By adopting the above-mentioned method, since it is not affected by pressure in principle, it is possible to measure the temperature in a high pressure field. The temperature inside the apparatus or the like can be measured at points or planes.
【0015】[0015]
【発明の効果】以上に述べた如く本発明によれば、LI
Fを用いたガス温度計測方法であって、測定場に存在す
る測定分子に励起される電子上位回転準位が等しく、下
位振動準位の異なる2本の吸収線を選択し、これと同じ
2つの波長のレーザ光を一定時間間隔で照射し、照射時
期に同期して測定場で発した蛍光の強度を測定し、2つ
の蛍光強度の比をとることにより該測定場のガス温度を
決定するようにしたので、上位電子回転準位が等しいた
めにそれぞれの蛍光線における衝突の効果は同一とな
り、結果として相対的に衝突の影響を取り除いて既存の
レーザ光が有するエネルギー範囲内でも衝突の影響を受
けずに広い温度、圧力範囲で計測が可能なガス温度計測
方法を提供することができる。As described above, according to the present invention, the LI
In the gas temperature measurement method using F, two absorption lines having the same upper rotational level of electrons excited by the measurement molecules existing in the measurement field and different lower vibration levels are selected, and the same two absorption lines are selected. Laser light of two wavelengths is irradiated at regular time intervals, the intensity of the fluorescence emitted at the measurement site is measured in synchronization with the irradiation time, and the gas temperature at the measurement site is determined by taking the ratio of the two fluorescence intensities. As a result, since the upper electron rotation levels are equal, the effect of the collision on each fluorescent beam is the same, and as a result, the effect of the collision is relatively eliminated and the effect of the collision is within the energy range of the existing laser beam. It is possible to provide a gas temperature measurement method capable of performing measurement in a wide temperature and pressure range without receiving the gas.
【図1】本発明の一実施例に係るレーザ誘起過程を示す
図。FIG. 1 is a diagram showing a laser induction process according to one embodiment of the present invention.
【図2】同実施例に係る蛍光強度の比と温度の関係を示
す図。FIG. 2 is a view showing the relationship between the ratio of the fluorescence intensity and the temperature according to the embodiment.
【図3】従来のLIFを用いたガス温度計測方法を示す
図。FIG. 3 is a diagram showing a conventional gas temperature measurement method using an LIF.
【図4】従来のLIFを用いたガス温度計測の実験装置
構成を示す図。FIG. 4 is a diagram showing a configuration of an experimental apparatus for measuring gas temperature using a conventional LIF.
【符号の説明】 1…励起用パルスレーザ、2a,2b…色素レーザ、3
a,3b…ビームスプリッタ、4…ビームエキスパン
ダ、5a,5b…レンズ、6a,6b…CCDカメラ。[Explanation of Symbols] 1 ... pulse laser for excitation, 2a, 2b ... dye laser, 3
a, 3b: beam splitter, 4: beam expander, 5a, 5b: lens, 6a, 6b: CCD camera.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−30628(JP,A) 特開 昭53−67481(JP,A) 特開 昭60−107535(JP,A) 特開 昭62−175648(JP,A) 特開 昭64−57720(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01K 11/20 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-30628 (JP, A) JP-A-53-67481 (JP, A) JP-A-60-107535 (JP, A) JP-A-62 175648 (JP, A) JP-A-64-57720 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01K 11/20
Claims (1)
ス温度計測方法であって、測定場に存在する測定分子の
励起される電子上位回転準位が等しく、下位振動準位の
異なる2本の吸収線を選択し、これと同じ2つの波長の
レーザ光を一定時間間隔で照射し、照射時期に同期して
測定場で発した蛍光の強度を測定し、2つの蛍光強度の
比をとることにより該測定場のガス温度を決定すること
を特徴としたガス温度計測方法。A gas temperature measurement method using a laser-induced fluorescence (LIF) method, wherein two higher-order rotational levels of electrons excited by measurement molecules existing in a measurement field and different lower-order vibration levels are provided. And irradiates the same two wavelengths of laser light at regular time intervals, measures the intensity of the fluorescent light emitted at the measurement site in synchronization with the irradiation time, and takes the ratio of the two fluorescent light intensities. Determining the gas temperature of the measurement site by using the method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4176698A JP2994859B2 (en) | 1992-07-03 | 1992-07-03 | Gas temperature measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4176698A JP2994859B2 (en) | 1992-07-03 | 1992-07-03 | Gas temperature measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0618337A JPH0618337A (en) | 1994-01-25 |
JP2994859B2 true JP2994859B2 (en) | 1999-12-27 |
Family
ID=16018181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4176698A Expired - Lifetime JP2994859B2 (en) | 1992-07-03 | 1992-07-03 | Gas temperature measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2994859B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5204078B2 (en) * | 2009-11-20 | 2013-06-05 | 三菱重工業株式会社 | Gas component measuring device in piping and flue for exhaust gas component measurement |
CN108151906A (en) * | 2016-12-02 | 2018-06-12 | 中国科学院大连化学物理研究所 | A kind of method that more absorption lines measure gas temperature |
CN119043524B (en) * | 2024-11-01 | 2025-02-25 | 成都嘉纳海威科技有限责任公司 | A real-time detection method for laser temperature |
-
1992
- 1992-07-03 JP JP4176698A patent/JP2994859B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0618337A (en) | 1994-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0666473B1 (en) | Method for the excitation of dyes | |
US8208505B2 (en) | Laser system employing harmonic generation | |
JP4545337B2 (en) | microscope | |
JP2994859B2 (en) | Gas temperature measurement method | |
Magde et al. | Excited singlet absorption in blue laser dyes: measurement by picosecond flash photolysis | |
JP3112648B2 (en) | Monitoring method and apparatus for etching by-product | |
JP3377706B2 (en) | 3D temperature / concentration measuring device | |
JP3281857B2 (en) | Temperature distribution measuring device in combustor | |
JPH09210909A (en) | Measuring device using laser beam | |
JP2760681B2 (en) | Method and apparatus for measuring iodine concentration in gas | |
Hart et al. | Laser induced stepwise and two-photon ionization studies of strontium in the air acetylene flame | |
JPH10206330A (en) | Laser emission spectroscopy method and apparatus | |
JP3197132B2 (en) | Measuring device using laser light | |
Miyabe et al. | Identification of single-colour multiphoton ionization transitions of atomic gadolinium | |
JPH04274743A (en) | Laser emission analysis method | |
JP2836859B2 (en) | Three-dimensional spatial and time-resolved absorption spectrum measurement device | |
JP2602928B2 (en) | Laser emission spectroscopy | |
JPS6381248A (en) | Gas analysis instrument | |
JP2002323566A (en) | X-ray pulse width measuring method and device using hydrated electron generation | |
JPH03150448A (en) | Method for measuring component concentration | |
SU702913A1 (en) | Method of measuring divergence of laser radiation | |
JPH06147975A (en) | Method for measuring intensity distribution of excimer laser beam | |
JP3082744B2 (en) | Electrophoresis device | |
JPH0617866B2 (en) | Time-resolved absorption measuring device | |
JP2809228B2 (en) | Electrophoresis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990921 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 13 |