JP2991901B2 - Ultraviolet absorbing silica glass and method for producing the same - Google Patents
Ultraviolet absorbing silica glass and method for producing the sameInfo
- Publication number
- JP2991901B2 JP2991901B2 JP5246155A JP24615593A JP2991901B2 JP 2991901 B2 JP2991901 B2 JP 2991901B2 JP 5246155 A JP5246155 A JP 5246155A JP 24615593 A JP24615593 A JP 24615593A JP 2991901 B2 JP2991901 B2 JP 2991901B2
- Authority
- JP
- Japan
- Prior art keywords
- silica glass
- transition metal
- ultraviolet
- metal element
- absorbing silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
Description
【産業上の利用分野】本発明は、紫外線吸収性に優れ、
かつ耐失透性にも優れたシリカガラス、特に放電管用お
よび高輝度放電灯バルブ材用の紫外線吸収性シリカガラ
スおよびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a silica glass excellent in devitrification resistance, particularly to an ultraviolet absorbing silica glass for a discharge tube and a high-intensity discharge lamp bulb material, and a method for producing the same .
【0002】[0002]
【従来の技術】従来、照明工業分野では各種放電管用材
料としてシリカガラス、特に天然の水晶を電気溶融した
いわゆる“溶融石英ガラス”、が使用されてきた。とこ
ろがこの溶融石英ガラスは紫外線の透過率が高く、この
溶融石英ガラスで作った放電管は、紫外線をよく透過す
るため空気中の酸素から人体に有害なオゾンを発生させ
るという欠点があった。そのため、Ti、V、Cr、M
n、Fe、Co、Ni、CuまたはCeをド−プした紫
外線吸収性シリカガラスが開発され、それが例えば、特
公昭39−21056号公報、特公昭46−42114
号公報、特開昭52−89280号公報および特開昭5
4−79978号公報等に記載されている。2. Description of the Related Art Conventionally, in the field of the lighting industry, silica glass, particularly so-called "fused quartz glass" obtained by electromelting natural quartz has been used as a material for various discharge tubes. However, this fused silica glass has a high transmittance of ultraviolet rays, and a discharge tube made of this fused silica glass has a drawback that ozone harmful to the human body is generated from oxygen in the air because ultraviolet rays are transmitted well. Therefore, Ti, V, Cr, M
Ultraviolet-absorbing silica glass doped with n, Fe, Co, Ni, Cu or Ce has been developed, which is disclosed, for example, in JP-B-39-21056 and JP-B-46-42114.
JP-A-5-89280 and JP-A-5-89280
4-79978.
【0003】しかしながら、上記公報記載のシリカガラ
スは、波長約220nm以下の紫外線を吸収するが、そ
れより長い波長の紫外線の吸収性は悪く、例えばこのシ
リカガラスで作成した自動車用ヘッドライト等は、その
発光時に発生した前記長波長の紫外線で人間の肉眼を痛
めたり、自動車用ヘッドライトを構成するプラスチック
ス部材を著しく劣化させるという欠点が有った。その
上、上記シリカガラスはOH基や水素分子濃度が高く、
それで作成された高輝度放電灯はそのバルブ材中に封入
した発光ガスが前記OH基から生じた酸素と反応し黒色
失透を起こしたり、また水素分子がランプの作動電圧を
上昇させたり、あるいはシリカガラス中のアルカリ金属
元素による結晶化や封入ガスによる化学的エッチングが
促進され白色失透を発生させたりし、その寿命は短いも
のであった。[0003] However, the silica glass described in the above publication absorbs ultraviolet light having a wavelength of about 220 nm or less, but has poor absorption of ultraviolet light having a wavelength longer than that. The long-wavelength ultraviolet light generated at the time of the light emission damages human eyes and significantly degrades a plastics member constituting an automobile headlight. In addition, the above silica glass has a high OH group and hydrogen molecule concentration,
In the high-intensity discharge lamp produced therefrom, the luminous gas sealed in the bulb material reacts with oxygen generated from the OH group to cause black devitrification, or hydrogen molecules increase the operating voltage of the lamp, or The crystallization by the alkali metal element in the silica glass and the chemical etching by the sealing gas are promoted to cause white devitrification, and the life is short.
【0004】[0004]
【発明が解決しようとする課題】こうした現状を踏まえ
て、本発明者等は、放電管用シリカガラスにおいて約4
00nm以下の紫外線を吸収しオゾンの発生、人体への
悪影響、およびプラスチックスの劣化を防止し、しかも
高輝度放電灯のバルブ材としても発光効率の低下が少な
い紫外線吸収性シリカガラスの開発について鋭意研究を
重ねた結果、シリカガラス中のOH基濃度および水素分
子濃度を特定の範囲に限定するとともに、遷移金属元素
を含有させ、その遷移金属元素のイオン価数を制御する
ことにより前記目的が達成できることを見出し、本発明
を完成したものである。In view of these circumstances, the present inventors have proposed a silica glass for a discharge tube of about 4%.
We are keen to develop UV-absorbing silica glass that absorbs ultraviolet light of 00 nm or less to prevent ozone generation, harmful effects on the human body, and deterioration of plastics, and that has little decrease in luminous efficiency as a bulb material for high-intensity discharge lamps. As a result of repeated research, the above object was achieved by limiting the OH group concentration and hydrogen molecule concentration in silica glass to specific ranges, containing a transition metal element, and controlling the ionic valence of the transition metal element. The present invention has been completed by finding out what can be done.
【0005】本発明は、紫外線吸収性に優れ人体への悪
影響、プラスチックス部材の劣化のない紫外線吸収性シ
リカガラスを提供することを目的とする。An object of the present invention is to provide an ultraviolet-absorbing silica glass which has excellent ultraviolet-absorbing properties and does not adversely affect the human body and does not deteriorate plastics members.
【0006】また、本発明は、耐熱性が高く高圧水銀ラ
ンプ、メタルハライドランプ等の高 輝度放電灯用バルブ
材として使用しても熱変形がなく、しかも耐失透性にも
優れた紫外線吸収性シリカガラスを提供することを目的
とする。Further , the present invention provides a high-pressure mercury lamp having high heat resistance.
For high- intensity discharge lamps such as lamps and metal halide lamps
Even when used as a material, there is no thermal deformation and also devitrification resistance
An object is to provide an excellent ultraviolet absorbing silica glass.
【0007】さらに、本発明は、上記紫外線吸収性シリ
カガラスを製造する新規な製造方法を提供することを目
的とする。Another object of the present invention is to provide a novel method for producing the above-mentioned ultraviolet absorbing silica glass.
【0008】[0008]
【課題を解決するための手段】上記目的を達成する本発
明は、放電管用の紫外線吸収性シリカガラスであって、
そのOH基濃度が200wt.ppm以下、水素分子濃
度が5×10 16 molecules/cm3以下で、か
つ制御されたイオン価数を有する遷移金属元素の少なく
とも1種類が含有されている紫外線吸収性シリカガラス
およびその製造方法に係る。According to the present invention, there is provided an ultraviolet absorbing silica glass for a discharge tube,
When the OH group concentration is 200 wt. The present invention relates to an ultraviolet-absorbing silica glass containing at least one transition metal element having a hydrogen molecule concentration of 5 × 10 16 molecules / cm 3 or less and having a controlled ionic valence, and a method for producing the same. .
【0009】さらに、本発明は、高輝度放電灯用の紫外
線吸収性シリカガラスである場合、そのOH基濃度が2
0wt.ppm以下、水素分子濃度が5×1016mol
ecules/cm3以下で、かつ制御されたイオン価
数を有する遷移金属元素の少なくとも1種類が含有され
ている紫外線吸収性シリカガラスおよびその製造方法に
係る。Further, according to the present invention, when the ultraviolet absorbing silica glass for a high-intensity discharge lamp is used, its OH group concentration is 2
0 wt. ppm or less, hydrogen molecule concentration is 5 × 10 16 mol
The present invention relates to an ultraviolet-absorbing silica glass containing at least one transition metal element having a controlled ionic valence of not more than ecules / cm 3 and a method for producing the same.
【0010】上記遷移金属元素とは、Ti、V、Cr、
Mn、Fe、 Co、Ni、Cu、Zr、Nb、Mo、
Tc、Ru、Ce、Pr、Nd、Pm、SmおよびEu
の原子番号22〜29、40〜44および58〜63の
元素をいう。特に好ましい遷移金属元素はチタン、クロ
ム、セリウムである。前記遷移金属元素の含有量は10
〜10,000wt.ppmの範囲であり、その範囲が
10wt.ppm未満ではイオン価数制御処理を適切に
選択しても約400nm以下の紫外線の吸収効果がみら
れず、また10,000wt.ppm以上では紫外線吸
収性シリカガラスの可視域での透明性が悪くなり、バル
ブ材としたときの光出力が落ちる。The above-mentioned transition metal elements include Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo,
Tc, Ru, Ce, Pr, Nd, Pm, Sm and Eu
Of elements 22 to 29, 40 to 44 and 58 to 63 Particularly preferred transition metal elements are titanium, chromium and cerium. The content of the transition metal element is 10
-10,000 wt. ppm, and the range is 10 wt. If it is less than ppm, even if the ionic valence control process is appropriately selected, the effect of absorbing ultraviolet rays of about 400 nm or less is not observed, and 10,000 wt. Above ppm, UV absorption
Transparency in the visible region of the absorptive silica glass is deteriorated, and the light output when used as a bulb material is reduced.
【0011】本発明の紫外線吸収性シリカガラスは、遷
移金属元素を含有したシリカガラスをイオン価数制御処
理に付して、遷移金属元素のイオン価数を変え約400
nm以下の紫外線が吸収されるように制御されたシリカ
ガラスである。前記イオン価数制御処理とは、遷移金属
元素含有シリカガラスを酸化雰囲気中で800〜130
0℃で加熱処理するか、または紫外線、X線、γ線を照
射し酸化する処理をいう。The ultraviolet-absorbing silica glass of the present invention is prepared by subjecting a silica glass containing a transition metal element to an ionic valence control treatment to change the ionic valence of the transition metal element by about 400.
It is a silica glass that is controlled to absorb ultraviolet light of nm or less. The ionic valence control treatment is performed by changing the transition metal element-containing silica glass in an oxidizing atmosphere to 800 to 130.
0 ℃ In either heat treatment or ultraviolet rays, X-rays, irradiation with γ-rays means a process of oxidation.
【0012】上記イオン価数の制御とは、シリカガラス
の紫外線域の光透過スペクトルが約400nm以上にな
るようにイオン価数を変えることをいう。例えば、セリ
ウム含有シリカガラスを800〜1300℃で酸化雰囲
気中で酸化処理すると約400以下の紫外線を吸収する
ようになる。[0012] The control of the ionic valence refers to changing the ionic valence as light transmission spectrum of the ultraviolet region of the silica glass is above about 400 nm. For example, when cerium-containing silica glass is oxidized at 800 to 1300 ° C. in an oxidizing atmosphere, it absorbs about 400 or less ultraviolet rays.
【0013】さらに、本発明の紫外線吸収性シリカガラ
スは、紫外線の吸収が多く放電灯バルブ材の温度を上昇
させ、ランプの発光効率を高める。その上、遷移金属元
素が含有されているところからシリカガラスの耐熱性が
向上し、発光時その表面温度が約1000℃にも上昇す
る高輝度放電灯のバルブ材の用途に供しても熱変形を起
すことがない。Further , the ultraviolet absorbing silica gel of the present invention
Absorbs a lot of ultraviolet light and raises the temperature of the discharge lamp bulb material
To increase the luminous efficiency of the lamp . In addition, the heat resistance of the silica glass is improved because the transition metal element is contained, and the surface temperature of the silica glass rises to about 1000 ° C. at the time of light emission. Does not occur.
【0014】ところで、シリカガラス中に含有されるO
H基は、高輝度放電灯の発光時に分解され酸素を発生し
それが封入金属ガスおよび電極の金属タングステンと反
応し黒色失透を起こさせる。また、水素分子の発生は再
点弧スパイク電圧の発生および作動電圧の上昇を起こさ
せるといわれている(松野博光他(1981)メタルハ
ライドランプにおける光束維持率低下の機構、照明学会
誌、第65巻,第4号、176〜181頁)。さらに、
シリカガラス中のアルカリ金属元素やアルカリ土類金属
元素による結晶化促進や封入ガスによる化学的エッチン
グにより白色失透が起ると推定される。黒色失透および
白色失透、ならびに作動電圧の上昇が起るとランプの発
光効率が著しく低下するが、前記黒色失透および作動電
圧の上昇はシリカガラス中のOH基濃度および水素分子
濃度を低減させることによりある程度解決できる。しか
しながら、白色失透も含め、これらの問題を十分解決す
るためには具体的に放電管用の紫外線吸収性シリカガラ
スの場合はシリカガラス中のOH基濃度を200wt.
ppm以下、水素分子濃度を5×10 16 molecul
es/cm3以下、かつ遷移金属元素を含有させ耐熱性
を向上させる必要がある。By the way, O contained in silica glass
The H group is decomposed during emission of the high-intensity discharge lamp to generate oxygen, which reacts with the enclosed metal gas and the metal tungsten of the electrode to cause black devitrification. It is also said that the generation of hydrogen molecules causes a re-ignition spike voltage and an increase in operating voltage (Hiromitsu Matsuno et al. (1981) Mechanism of decrease in luminous flux maintenance rate in metal halide lamps, Journal of the Illuminating Engineering Institute, Vol. 65) , No. 4, pp. 176-181). further,
It is presumed that white devitrification occurs due to promotion of crystallization by an alkali metal element or an alkaline earth metal element in silica glass and chemical etching by a sealing gas. When black and white devitrification and an increase in operating voltage occur, the luminous efficiency of the lamp is remarkably reduced. Can be solved to some extent. However, in order to sufficiently solve these problems, including white devitrification, concretely, ultraviolet absorbing silica glass for discharge tubes is used.
In the case of the glass, the OH group concentration in the silica glass is set to 200 wt.
ppm or less, the hydrogen molecule concentration is 5 × 10 16 molecular
It is necessary to improve the heat resistance by containing es / cm 3 or less and containing a transition metal element.
【0015】また、放電管が高輝度放電灯である場合は
OH基濃度を20wt.ppm以下、水素分子濃度を5
×1016molecules/cm3以下、かつ遷移金
属元素を含有させなければならない。 Further, 20 wt an OH group concentration when the discharge tube is a high intensity discharge lamp. ppm or less, hydrogen molecule concentration of 5
× 10 16 molecules / cm 3 or less and a transition metal element must be contained.
【0016】上記OH基濃度の測定は、D.M.Dod
d,D.B.Fraser(1960),Optica
l Determinations of OH in
Fused Silica,J.Applied P
hysics,Vol.37, p.3911(196
6)の方法により、また水素分子濃度の測定は、V.
S. Khotimchenko,et al.(19
87) Determining the Conte
nt of Hydrogen Dissolved
in Quartz Glass Using the
Methodof Raman Scatterin
g and Mass Spectrometry,
J.Appl.Spectrosc.,Vol.46,
No.6,pp632〜635の方法により行なわれ
る。The measurement of the OH group concentration is described in D. M. Dod
d, D. B. Fraser (1960), Optica
l Determinations of OH in
Fused Silica, J. et al. Applied P
physics, Vol. 37, p. 3911 (196
According to the method of 6), and the measurement of the hydrogen molecule concentration,
S. Khotimchenko, et al. (19
87) Determining the Conte
nt of Hydrogen Dissolved
in Quartz Glass Using the
Methodof Raman Scatterin
g and Mass Spectrometry,
J. Appl. Spectrosc. , Vol. 46,
No. 6, pp. 632 to 635.
【0017】このように約400mm以下の紫外線を吸
収し、かつ耐失透性に優れた特性を有する本発明の紫外
線吸収性シリカガラスは以下の手段で製造される。すな
わち、水晶粉と遷移金属化合物、例えば塩化物、ヨウ化
物、炭酸塩、硝酸塩等の化合物を混合し、その混合原料
を真空電気溶融法でガラス化するか、または前記遷移金
属元素化合物と四塩化ケイ素との混合物を酸水素炎加水
分解法のス−ト法でガラス化し、次いでこのシリカガラ
スをイオン価数制御処理に付し、シリカガラス中の遷移
金属元素のイオン価数を必要な値に制御することで製造
される。[0017] ultraviolet thus about 400mm absorbs UV light below, and the present invention having excellent properties in resistance to devitrification
The line absorbing silica glass is produced by the following means. That is, quartz powder is mixed with a transition metal compound, for example, a compound such as chloride, iodide, carbonate, or nitrate, and the mixed material is vitrified by a vacuum electric melting method, or the transition metal element compound and tetrachloride are mixed. The mixture with silicon is vitrified by the soot method of the oxyhydrogen flame hydrolysis method, and then this silica glass is subjected to an ionic valence control treatment to make the ionic valence of the transition metal element in the silica glass to a required value. Manufactured by controlling
Is done .
【0018】上記製造におけるシリカガラス原料である
水晶粉への遷移金属元素化合物の混合は、遷移金属化合
物が水溶性であれば水溶液で、また、不溶性固体粒子で
あれば粒度を調整して粉体混合する手段が選ばれる。特
に真空電気溶融法でガラス化するに当っては遷移金属元
素化合物が混合されたシリカガラス原料を約200℃に
保持し、さらに約1000℃に保持する前処理をするこ
とで含水量を調整するのがよく、特に遷移金属化合物を
水溶液で混合したときは前記前処理を行うのが重要であ
る。In the above production, the mixing of the transition metal element compound with the quartz powder, which is a raw material of silica glass, is carried out by using an aqueous solution if the transition metal compound is water-soluble, or by adjusting the particle size if the transition metal compound is insoluble solid particles. The means of mixing is chosen . Especially hitting the vitrified in a vacuum electric melting method transition metal source
The raw material of silica glass mixed with elemental compound
Pre-treatment at about 1000 ° C.
It is preferable to adjust the water content with
When mixing with an aqueous solution, it is important to perform the pretreatment.
You .
【0019】一方、酸水素炎加水分解法のス−ト法でガ
ラス化する場合は、透明ガラス化前のスート体を塩素ま
たは塩化水素ガス雰囲気で脱水処理することにより水分
を低下させ、OH基および水素分子濃度を調整するのが
よい。On the other hand, in the case of vitrification by the soot method of the oxyhydrogen flame hydrolysis method, the soot body before transparent vitrification is dehydrated in a chlorine or hydrogen chloride gas atmosphere to obtain a water content.
And adjust the OH group and hydrogen molecule concentration.
Good .
【0020】以下、実施例で本発明を更に具体的に説明
する。Hereinafter, the present invention will be described more specifically with reference to examples.
【実施例】(1)シリカガラスの作成 実施例1〜5について、天然水晶粉を粒径10〜100
μmに調整し、塩素ガス雰囲気中で加熱する高純度化処
理を行い、SiO2純度を99.999wt.%とし
た。次に、この水晶粉に純度99.99wt.%のチタ
ン、セリウム、クロムの各酸化物粉体を混合した。前記
混合粉体を200℃に保持、さらに1000℃に保持
し、含水量を調整した後、真空電気溶融法で透明ガラス
化を行った。得られた遷移金属元素含有シリカガラスを
大気中、1100℃100時間の加熱酸化処理、または
Co−60を用いたγ線照射処理にてイオン価数制御処
理を行った。前記イオン価数制御処理されたシリカガラ
スについて物性を評価し、その結果を表1に示す。EXAMPLES (1) Preparation of silica glass In Examples 1 to 5, natural quartz powder was used in a particle size of 10 to 100.
μm, and a high-purity treatment of heating in a chlorine gas atmosphere is performed to make the SiO 2 purity 99.999 wt. %. Next, a purity of 99.99 wt. % Of each oxide powder of titanium, cerium and chromium was mixed. The mixed powder was kept at 200 ° C., and further kept at 1000 ° C., and after adjusting the water content, transparent vitrification was performed by a vacuum electric melting method. The obtained transition metal element-containing silica glass was subjected to a heat oxidation treatment at 1100 ° C. for 100 hours in the air or a γ-ray irradiation treatment using Co-60 to perform an ion valence control treatment. The physical properties of the silica glass subjected to the ion valence control treatment were evaluated, and the results are shown in Table 1.
【0021】実施例6について、上記実施例と同様に調
整された混合粉体を、酸水素炎ベルヌイ法により透明ガ
ラス化を行った。得られた遷移金属元素含有シリカガラ
スをCo−60によるγ線照射を行い、イオン価数制御
処理を行った。前記イオン価数制御処理されたシリカガ
ラスについて物性を評価し、その結果を表1に示す。 In Example 6, the mixed powder prepared in the same manner as in the above example was transparently vitrified by an oxyhydrogen flame Bernoulli method. The obtained transition metal element-containing silica glass was irradiated with γ-rays using Co-60 to perform an ion valence control process. The physical properties of the silica glass subjected to the ion valence control treatment were evaluated, and the results are shown in Table 1 .
【0022】実施例7、8について、シリカ原料である
高純度四塩化ケイ素にセリウム、チタンの塩化物を混合
した。次にこの混合原料を酸水素炎加水分解法のス−ト
法によりス−ト体を作成した。このス−ト体を塩素ガス
雰囲気中で加熱処理し、水分を低減させた。この脱水ス
−ト体を真空中にて加熱処理し、透明ガラスとした。さ
らに、得られた遷移金属元素含有シリカガラスを大気
中、1100℃100時間にて加熱酸化処理を行い、イ
オン価数制御処理を行った。前記イオン価数制御処理さ
れたシリカガラスについて物性を評価し、その結果を表
1に示す。In Examples 7 and 8, cerium and titanium chloride were mixed with high-purity silicon tetrachloride as a silica raw material. Next, a soot body was prepared from this mixed raw material by the soot method of oxyhydrogen flame hydrolysis. This soot body was subjected to a heat treatment in a chlorine gas atmosphere to reduce moisture. This dehydrated soot body was heat-treated in a vacuum to obtain a transparent glass. Further, the obtained transition metal element-containing silica glass was heated and oxidized at 1,100 ° C. for 100 hours in the air to perform an ion valence control process. The physical properties of the silica glass subjected to the ion valence control treatment were evaluated, and the results are shown in Table 1.
【0023】比較のため本発明のイオン価数制御処理を
適切に行なわない又は還元雰囲気中で行なったシリカガ
ラス、および信越石英(株)製のM−382について上
記実施例と同様に物性を評価し、その結果を比較例1〜
4として表1に示す。For comparison, the silica glass which was not appropriately subjected to the ion valence control treatment of the present invention or which was performed in a reducing atmosphere , and M-382 manufactured by Shin-Etsu Quartz Co., Ltd.
Physical properties were evaluated in the same manner as in the Examples, and the results were compared with Comparative Examples 1 to 1.
4 is shown in Table 1.
【0024】(2)物性値の測定 ・ OH基濃度の測定;赤外線吸収分光光度法により測
定(前出D.M.Dodd,et al.(1987)
参照)。 ・ 水素分子濃度の測定;ラマン散乱法(前出V.S.
Khotim−chenko,et al.(198
7)参照)。 ・ 遷移金属元素濃度の測定;原子吸光光度法により測
定。 ・ 光透過波長域の測定;厚さ2mm、両面鏡面研磨仕
上げしたサンプルを光透過率計にて190〜900nm
の範囲の光を測定。 ・ アンプルテスト;直径10mm×厚さ2mm×長さ
100mmのチュ−ブを作成し、チュ−ブの一端を丸く
封じ、試験管の形にした。次に乾燥したグロ−ブボック
ス内にてDyI3粒子を投入した。このチュ−ブを真空
引きし、残りの一端も丸封じアンプルを作成した。これ
を1100℃で100時間加熱処理した後、炉より取り
出し目視にてアンプル内壁の白色失透の程度を観察し
た。(2) Measurement of physical property values-Measurement of OH group concentration; measured by infrared absorption spectrophotometry (DM Dodd, et al. (1987), supra)
reference). -Measurement of hydrogen molecule concentration; Raman scattering method (see VS.
Khotim-chenko, et al. (198
7)). -Measurement of transition metal element concentration; measured by atomic absorption spectrophotometry. -Measurement of light transmission wavelength range: 190 mm to 900 nm of a sample having a thickness of 2 mm and mirror-polished on both sides with a light transmittance meter
Measure light in the range. Ampoule test: A tube having a diameter of 10 mm, a thickness of 2 mm and a length of 100 mm was prepared, and one end of the tube was roundly sealed to form a test tube. Next, DyI 3 particles were introduced into the dried glove box. The tube was evacuated, and the other end was rounded to form an ampule. This was heated at 1100 ° C. for 100 hours, taken out of the furnace, and visually observed for the degree of white devitrification on the inner wall of the ampoule.
【0025】[0025]
【表1】 [Table 1]
【0026】上記表1に示すように本発明の紫外線吸収
性シリカガラスは約400nm以下の紫外線を良く吸収
し、しかも白色失透の発生がほとんどない。As shown in Table 1 above, the ultraviolet absorption of the present invention was
Sex silica glass well absorb about 400nm UV light below, yet the generation of white devitrification little.
【0027】[0027]
【発明の効果】本発明の紫外線吸収性シリカガラスは、
紫外線吸収性に優れ、かつ耐失透性にも優れているとこ
ろから、自動車のヘッドライト、プロジェクタ−および
一般照明用放電管材料としても、またメタルハライドラ
ンプ等の高輝度放電灯用バルブ材として有用である。The ultraviolet-absorbing silica glass of the present invention comprises:
Excellent ultraviolet absorption and devitrification resistance, useful as a discharge lamp material for automotive headlights, projectors and general lighting, and also as a bulb material for high-intensity discharge lamps such as metal halide lamps It is .
フロントページの続き (72)発明者 栗山 満葉 福島県郡山市田村町金屋字川久保88 信 越石英株式会社 石英技術研究所内 (72)発明者 ウォルフガング・エングリシュ ドイツ連邦共和国 ケルクハイム ヘル デルライン ストラッセ 54 (56)参考文献 特開 平4−231343(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03C 4/08 C03B 20/00 C03C 3/06 Continued on the front page (72) Inventor Mitsuha Kuriyama 88, Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Shin-Etsu Quartz Co., Ltd. References JP-A-4-231343 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03C 4/08 C03B 20/00 C03C 3/06
Claims (10)
って、そのOH基濃度が200wt.ppm以下、水素
分子濃度が5×10 16 molecules/cm3以下
で、かつ制御されたイオン価数を有する遷移金属元素の
少なくとも1種類が含有されていることを特徴とする紫
外線吸収性シリカガラス。1. An ultraviolet absorbing silica glass for a discharge tube, wherein the OH group concentration is 200 wt. ppm or less, purple, characterized in that at least one is contained in the transition metal elements hydrogen molecule concentration is 5 × 10 16 molecules / cm 3 or less, and has controlled the ionic valence
External ray absorbing silica glass.
リカガラスであって、そのOH基濃度が20wt.pp
m以下、水素分子濃度が5×1016molecules
/cm3以下で、かつ制御されたイオン価数を有する遷
移金属元素の少なくとも1種類が含有されていることを
特徴とする紫外線吸収性シリカガラス。2. An ultraviolet-absorbing silica glass for a high-intensity discharge lamp bulb material, which has an OH group concentration of 20 wt. pp
m or less, and the hydrogen molecule concentration is 5 × 10 16 molecules
An ultraviolet-absorbing silica glass containing at least one transition metal element having a controlled ionic valence of at most / cm 3 .
0wt.ppmであることを特徴とする請求項1または
2記載の紫外線吸収性シリカガラス。3. The content of the transition metal element is 10 to 10,000.
0 wt. The ultraviolet absorbing silica glass according to claim 1 or 2, wherein the content is ppm.
真空電気溶融法でガラス化したことを特徴とする請求項
1または2記載の紫外線吸収性シリカガラス。4. The ultraviolet absorbing silica glass according to claim 1, wherein a mixture of the quartz powder and the transition metal element compound is vitrified by a vacuum electric melting method.
合物を酸水素炎加水分解法のス−ト法でガラス化したこ
とを特徴とする請求項1または2記載の紫外線吸収性シ
リカガラス。5. The ultraviolet absorbing sheet according to claim 1, wherein a mixture of silicon tetrachloride and a transition metal element compound is vitrified by a soot method of oxyhydrogen flame hydrolysis. /> Lika glass.
ウムから選ばれた元素の少なくとも1種類であることを
特徴とする請求項1ないし5項のいずれかに記載の紫外
線吸収性シリカガラス。6. The ultraviolet according to claim 1, wherein the transition metal element is at least one element selected from titanium, chromium and cerium.
Line absorbing silica glass.
カガラスの製造方法において、シリカガラスの原料と少
なくとも1種類の遷移金属元素化合物との混合物の含水
量を調整したのち、溶融ガラス化して透明シリカガラス
とし、次いで酸化雰囲気中で加熱処理または放射線照射
処理を行い含有する遷移金属元素のイオン価数を制御す
ることを特徴とする紫外線吸収性シリカガラスの製造方
法。 7. The ultraviolet absorbent silicone according to claim 1 or 2.
In the production process of Kaglass, the raw material of silica glass and
Moisture in mixture with at least one transition metal element compound
After adjusting the amount, it is melted and vitrified to form a transparent silica glass.
And then heat treatment or irradiation in an oxidizing atmosphere
Control the valence of transition metal elements contained
For producing ultraviolet-absorbing silica glass characterized by the following:
Law .
カガラスの製造方法において、水晶粉と少なくとも1種
類の遷移金属元素化合物との混合物の含水量を調整した
のち、真空電気溶融法により溶融ガラス化を行い、次い
で酸化雰囲気中で800〜1300℃で加熱処理するか
または紫外線、X線およびγ線から選ばれる放射線を照
射し含有する遷移金属元素のイオン価数を制御すること
を特徴とする紫外線吸収性シリカガラスの製造方法。 8. The ultraviolet absorbent silicone according to claim 1 or 2.
In a method for producing kagurasu, at least one kind of quartz powder
Water content of mixtures with certain transition metal compounds
After that, melt vitrification was performed by the vacuum electric melting method.
Heat treatment at 800 ~ 1300 ℃ in oxidizing atmosphere
Or irradiate radiation selected from ultraviolet rays, X-rays and γ-rays.
Controlling the valence of transition metal elements contained in radiation
A method for producing a UV-absorbing silica glass, comprising:
カガラスの製造方法において、高純度四塩化珪素と少な
くとも1種類の遷移金属元素化合物との混合物を酸水素
炎加水分解法のスート法でスート体を作成し、該スート
体を塩素ガス雰囲気中で加熱処理し含水量を調整したの
ち、真空中で加熱処理し溶融ガラス化し、次いで酸化雰
囲気中で800〜1300℃で加熱処理するかまたは紫
外線、X線およびγ線から選ばれる放射線を照射し含有
する遷移金属元素のイオン価数を制御することを特徴と
する紫外線吸収性シリカガラスの製造方法。 9. The ultraviolet absorbent silicone according to claim 1 or 2.
In the production method of Kaglass, high purity silicon tetrachloride and
A mixture with at least one transition metal element compound
A soot body is prepared by a soot method of a flame hydrolysis method.
The body was heated in a chlorine gas atmosphere to adjust the water content.
That is, heat treatment is performed in a vacuum to form a molten glass, and then an oxidizing atmosphere
Heat treatment at 800-1300 ° C in an atmosphere or purple
Irradiation selected from external rays, X-rays and γ-rays
Controlling the valence of transition metal elements
Of producing ultraviolet absorbing silica glass.
はセリウムの各化合物であることを特徴とする請求項7
ないし9のいずれかに記載の紫外線吸収性シリカガラス
の製造方法。 【0001】10. The transition metal element compound is titanium, chromium or titanium.
Is a compound of cerium.
10. The ultraviolet-absorbing silica glass according to any one of claims 9 to 9.
Manufacturing method . [0001]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5246155A JP2991901B2 (en) | 1993-09-07 | 1993-09-07 | Ultraviolet absorbing silica glass and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5246155A JP2991901B2 (en) | 1993-09-07 | 1993-09-07 | Ultraviolet absorbing silica glass and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0769671A JPH0769671A (en) | 1995-03-14 |
JP2991901B2 true JP2991901B2 (en) | 1999-12-20 |
Family
ID=17144319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5246155A Expired - Lifetime JP2991901B2 (en) | 1993-09-07 | 1993-09-07 | Ultraviolet absorbing silica glass and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2991901B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09194235A (en) * | 1996-01-12 | 1997-07-29 | Ishizuka Glass Co Ltd | Coating film having ultraviolet blocking function and method of forming the same |
JP3310159B2 (en) * | 1996-03-01 | 2002-07-29 | 昭和電線電纜株式会社 | Method for producing transparent glass body for Co-doped optical attenuator |
DE19815065A1 (en) * | 1998-04-03 | 1999-10-14 | Trumpf Lasertechnik Gmbh | HF-excited gas laser and laser tube for such a gas laser |
JP2007223845A (en) * | 2006-02-23 | 2007-09-06 | Toshiba Ceramics Co Ltd | Method for producing SiO2-TiO2 glass |
JP4952699B2 (en) * | 2008-11-06 | 2012-06-13 | ウシオ電機株式会社 | Light transmissive member |
JP2013189321A (en) * | 2010-07-14 | 2013-09-26 | Asahi Glass Co Ltd | Synthetic quartz glass for ultraviolet cut filter, and method for manufacturing the same |
JP6908237B2 (en) * | 2017-02-24 | 2021-07-21 | 東ソ−・エスジ−エム株式会社 | Quartz glass article with ultraviolet absorption and its manufacturing method |
JP7122997B2 (en) | 2019-04-05 | 2022-08-22 | 信越石英株式会社 | Titanium-containing quartz glass excellent in ultraviolet absorption and method for producing the same |
-
1993
- 1993-09-07 JP JP5246155A patent/JP2991901B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0769671A (en) | 1995-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2589043B2 (en) | High temperature lamp with UV absorbing quartz envelope | |
US5572091A (en) | Quartz glass with reduced ultraviolet radiation transmissivity, and electrical discharge lamp using such glass | |
JP5671520B2 (en) | Optical filter material made of gallium-doped quartz glass, filter component, and method of irradiation using UV radiation source | |
JP2000516192A (en) | Borosilicate glass free of lead and arsenic and lamp containing said compound | |
JPH07187706A (en) | Reductively molten borosilicate glass having improved ultraviolet transmittance and hydrolysis stability and its usage | |
US4500642A (en) | Infrared absorbing quartz glass with iron and aluminum | |
JP2991901B2 (en) | Ultraviolet absorbing silica glass and method for producing the same | |
JP2521025B2 (en) | UV absorbing glassy materials and lamps | |
JP2011184210A (en) | Synthetic silica glass and method for producing the same | |
JP3182434B2 (en) | Cerium-mixed quartz glass object and method for producing the same | |
JPH07215731A (en) | High-purity silica glass for ultraviolet lamp and method for producing the same | |
JP2931735B2 (en) | Silica glass for devitrification resistant discharge lamp | |
CN113293435B (en) | Halide perovskite nanocrystalline material based on cerium-doped glass matrix and preparation method thereof | |
JP2005170706A (en) | Ultraviolet absorbing synthetic quartz glass and method for producing the same | |
JP5406439B2 (en) | Chemical-resistant silica glass and method for producing chemical-resistant silica glass | |
JP2955463B2 (en) | Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same | |
JP3358883B2 (en) | Ultraviolet absorbing visible light transmitting silica glass for high pressure discharge lamp and method for producing the same | |
JP4756430B2 (en) | Glass for electric lamp and manufacturing method thereof | |
JP4392204B2 (en) | Quartz glass and method for producing the same | |
JP2005310455A (en) | UV lamp | |
JP6908237B2 (en) | Quartz glass article with ultraviolet absorption and its manufacturing method | |
JP2003201125A (en) | Synthetic quartz glass and its manufacturing method | |
JPS593042A (en) | Quartz glass and its manufacture | |
JPH06305768A (en) | Devitrification resistant silica glass for lamp | |
JP2009046328A (en) | Silica glass for photocatalyst and method for producing silica glass for photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071015 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111015 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121015 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 14 |