JP2982396B2 - Internal combustion engine cooling system - Google Patents
Internal combustion engine cooling systemInfo
- Publication number
- JP2982396B2 JP2982396B2 JP3178498A JP17849891A JP2982396B2 JP 2982396 B2 JP2982396 B2 JP 2982396B2 JP 3178498 A JP3178498 A JP 3178498A JP 17849891 A JP17849891 A JP 17849891A JP 2982396 B2 JP2982396 B2 JP 2982396B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- annular
- cylinder liner
- passage
- annular groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 19
- 238000001816 cooling Methods 0.000 title description 16
- 239000003507 refrigerant Substances 0.000 claims description 64
- 238000007599 discharging Methods 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 description 11
- 239000002826 coolant Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- 241001496782 Darina Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
Landscapes
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は内燃機関の冷却装置に係
り、特にシリンダライナ外周に環状溝を設けて冷媒を流
し、内燃機関の冷却を行なう冷却装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an internal combustion engine, and more particularly to a cooling device for cooling an internal combustion engine by providing an annular groove around an outer periphery of a cylinder liner to flow a refrigerant.
【0002】[0002]
【従来の技術】数個のシリンダが配置されたシリンダブ
ロックと、そのシリンダブロック上面に位置し、下面に
へこみを有するシリンダヘッドとは、内燃機関の燃焼室
を形造っている。また、シリンダブロックのボア部内周
面にシリンダライナ外周面が嵌装される。従って、機関
作動により燃焼室で発生した高温の熱はシリンダブロッ
クやシリンダヘッドを通じてシリンダライナ等へ伝達さ
れる。2. Description of the Related Art A cylinder block in which several cylinders are arranged, and a cylinder head located on the upper surface of the cylinder block and having a depression on the lower surface form a combustion chamber of an internal combustion engine. Further, an outer peripheral surface of the cylinder liner is fitted to an inner peripheral surface of the bore of the cylinder block. Therefore, high-temperature heat generated in the combustion chamber by the operation of the engine is transmitted to the cylinder liner and the like through the cylinder block and the cylinder head.
【0003】そこで、シリンダライナの壁面を冷却する
と共に、冷媒の沸騰を防止するために、シリンダブロッ
クのボア部内周面とシリンダライナ外周面との間に冷媒
通路を形成し、その冷媒通路に冷媒を流すようにした所
謂グルーブクーリングによる内燃機関の冷却装置が従来
より知られている(例えば、実開昭63−168242
号公報)。In order to cool the wall surface of the cylinder liner and prevent the refrigerant from boiling, a refrigerant passage is formed between the inner peripheral surface of the bore of the cylinder block and the outer peripheral surface of the cylinder liner. 2. Description of the Related Art A cooling device for an internal combustion engine by so-called groove cooling in which air flows is conventionally known (for example, Japanese Utility Model Application Laid-Open No. 63-168242).
No.).
【0004】図4は上記の従来の内燃機関の冷却装置の
一例の構造図を示し、同図(A)は平面図、同図(B)
は同図(A)のB−B線に沿う縦断面図を示す。図4
(A),(B)において、シリンダブロック1に嵌装さ
れるシリンダライナ2の外周面には、例えば31 〜34
で示す如く断面矩形状の環状溝がシリンダライナ2の軸
方向に4個形成されている。この環状溝31 〜34 はシ
リンダライナ2をシリンダブロック1のボア部内に嵌装
したとき、ボア部の内周面4との間で環状の冷媒通路を
形成する。FIG. 4 is a structural view of an example of the above-mentioned conventional cooling device for an internal combustion engine, wherein FIG. 4A is a plan view and FIG.
Shows a vertical cross-sectional view along the line BB in FIG. FIG.
(A), (B), the the outer circumferential surface of the cylinder liner 2 is fitted to the cylinder block 1 is for example 3 1 to 3 4
As shown in the figure, four annular grooves having a rectangular cross section are formed in the axial direction of the cylinder liner 2. The annular groove 3 1 to 3 4 when fitted to the cylinder liner 2 into the bore portion of the cylinder block 1, to form a refrigerant passage of an annular between the inner circumferential surface 4 of the bore portion.
【0005】また、シリンダライナ2とシリンダブロッ
ク1との互いに対向する位置で、かつ、シリンダライナ
2の軸方向(縦方向)に、上記の複数の環状溝31 〜3
4 の間を連通する縦溝5と6が形成されている。また、
シリンダブロック1の最もシリンダヘッド側の位置に
は、縦溝5に連通した冷媒導入口7が形成され、また縦
溝6に連通した冷媒導出口8が形成されている。The plurality of annular grooves 3 1 to 3 are positioned at positions where the cylinder liner 2 and the cylinder block 1 face each other and in the axial direction (longitudinal direction) of the cylinder liner 2.
Vertical grooves 5 and 6 communicating between the four are formed. Also,
At the position of the cylinder block 1 closest to the cylinder head, a refrigerant inlet 7 communicating with the vertical groove 5 is formed, and a refrigerant outlet 8 communicating with the vertical groove 6 is formed.
【0006】また、燃焼室で発生し、シリンダライナ2
へ伝達される熱は、燃焼室に近づくほど(図4(B)の
断面図の上部ほど)シリンダライナ壁面の温度を高くさ
せるため、シリンダライナ2の壁面温度が均一となるよ
うに冷却するために、環状溝の断面積が燃焼室に近い環
状溝ほど、すなわち34 →33 →32 →31 の順で小と
されている。[0006] Further, it is generated in the combustion chamber, and the cylinder liner 2
In order to increase the temperature of the cylinder liner wall surface as it approaches the combustion chamber (upward in the cross-sectional view of FIG. 4B), the heat transferred to the combustion chamber is cooled so that the wall surface temperature of the cylinder liner 2 becomes uniform. to, and is about the annular groove close to the cross-sectional area of the annular groove combustion chamber, that is, 3 4 → 3 3 → 3 2 → 3 1 small in the order.
【0007】上記の従来の冷却装置によれば、冷媒導入
口7から導入された冷媒は、縦溝5を図4(B)中、上
から下方向へ流れつつ環状溝31 〜33 に分配され縦溝
5の底部に達した冷媒は最下部の環状溝34 に流れ込
む。複数個の環状溝31 〜34 を図4(B)中、X方向
へ夫々通過する冷媒は、その際にシリンダライナ2の外
周壁面の熱を奪いつつ、かつ、上部の環状溝3ほど断面
積が小であるので大なる速度で流れて縦溝6に到り、こ
こで集合された後、冷媒導出口8より外部のラジエータ
を通して循環ポンプ(いずれも図示せず)へ導出され、
その後再び冷媒導入口7に到る。According to the conventional cooling device of the above, the refrigerant introduced from the refrigerant inlet port 7, the longitudinal grooves 5 in FIG. 4 (B), the annular groove 3 1 to 3 3 while flowing downward from the top the refrigerant that has reached the bottom of the distributed longitudinal grooves 5 flows into the annular groove 3 4 the bottom. In FIG. 4 (B) a plurality of annular grooves 3 1 to 3 4, the refrigerant respectively pass through the X-direction, while absorbing heat of the outer peripheral wall surface of the cylinder liner 2 in this case, and, as the upper part of the annular groove 3 Since the cross-sectional area is small, it flows at a high speed to reach the vertical groove 6, where it is assembled, and then led out of the refrigerant outlet 8 through an external radiator to a circulation pump (neither is shown).
Thereafter, the refrigerant reaches the refrigerant inlet 7 again.
【0008】このように、上記の従来装置によれば、燃
焼室で発生し、シリンダライナ2へ伝達される熱を、シ
リンダライナ2の壁面の入熱分布に応じた速度(温度が
高い所ほど速い)で冷媒を循環させることにより、シリ
ンダライナ2の壁面を略均一に冷却することができる。As described above, according to the above-described conventional apparatus, the heat generated in the combustion chamber and transmitted to the cylinder liner 2 is converted into a velocity (a higher temperature where the temperature is higher) according to the heat input distribution on the wall surface of the cylinder liner 2. By circulating the refrigerant at (fast), the wall surface of the cylinder liner 2 can be cooled substantially uniformly.
【0009】[0009]
【発明が解決しようとする課題】しかるに、上記の従来
装置では、図5に示す如く、冷媒導入口7に流入した冷
媒は縦溝5を介して殆ど流路を曲げられることなく最上
部の環状溝31 に流入するのに対して、最上部から2番
目以降の環状溝32 ,33 に対してはa,bで示す如く
流路が直角に曲げられて流入する。しかし、冷媒は比較
的高速で縦溝5を流れるために慣性によって直角に流路
が変化するのは困難である。このため、環状溝32 ,3
3 等の最上部から2番目以降の環状溝では図5にc及び
dに夫々示す如く各環状溝32 ,33 の冷媒入口部の上
流位置に淀みが発生する。この淀みは、最上部より2番
目の環状溝32 においてcで示す如く最も大きく、下部
の環状溝33 ,34 ほど緩和される傾向にある。これ
は、縦溝5での冷媒の流速は、流量の低下に伴って下部
ほど低くなるため、慣性効果がaで示す上部位置で最も
大きく、以下下部に行くほど減少するためである。However, in the above-mentioned conventional apparatus, as shown in FIG. 5, the refrigerant flowing into the refrigerant introduction port 7 has the uppermost annular shape with almost no bending of the flow path through the vertical groove 5. whereas flowing into the groove 3 1, for the top of the second and subsequent annular groove 3 2, 3 3 a, the flow path as indicated by b flows bent at a right angle. However, since the refrigerant flows through the vertical groove 5 at a relatively high speed, it is difficult to change the flow path at right angles due to inertia. For this reason, the annular grooves 3 2 , 3
In the second and subsequent annular groove from the top is, such as 3 stagnation occurs upstream position of the refrigerant inlet portion of the annular groove 3 2, 3 3 As shown respectively in c and d in FIG. This stagnation is the largest as shown by c in the second annular groove 3 2 from the top tend to be relaxed as the lower part of the annular groove 3 3, 3 4. This is because the flow velocity of the refrigerant in the vertical groove 5 becomes lower toward the lower part as the flow rate decreases, so that the inertia effect is greatest at the upper position indicated by a, and decreases below the lower part.
【0010】このような淀みが入熱量の多いシリンダラ
イナ2の上部で発生すると、冷媒が沸騰し、その結果発
生した冷媒中の空気が循環ポンプ内に滞留して循環ポン
プの出力流量を低下させるため、ラジエータで冷却不調
となりオーバーヒートの原因となるおそれがある。When such stagnation occurs in the upper portion of the cylinder liner 2 having a large amount of heat input, the refrigerant boils, and the resulting air in the refrigerant stays in the circulation pump to reduce the output flow rate of the circulation pump. As a result, the radiator may malfunction due to cooling, which may cause overheating.
【0011】本発明は上記の点に鑑みなされたもので、
環状通路の冷媒が導入される側の開口部の形状を所定形
状とすることにより、上記の課題を解決した内燃機関の
冷却装置を提供することを目的とする。[0011] The present invention has been made in view of the above points,
An object of the present invention is to provide a cooling device for an internal combustion engine that solves the above-mentioned problem by making the shape of an opening of the annular passage on the side where the refrigerant is introduced into a predetermined shape.
【0012】[0012]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、シリンダブロックと該シリンダブロック
に嵌装されるシリンダライナとの間に該シリンダライナ
の周方向に沿って形成され、かつ、該シリンダライナの
軸方向に複数形成された環状通路と、前記シリンダライ
ナの軸方向に延在し、かつ、互いに異なる位置で前記複
数の環状通路間を夫々連通するように設けられた第1及
び第2の連通路と、前記第1の連通路に冷媒を供給する
ための冷媒導入口と、前記複数の環状通路及び前記第2
の連通路を通った冷媒を排出するための冷媒導出口とを
有する内燃機関の冷却装置において、前記冷媒導入口を
前記複数の環状通路の最上部の環状通路に直接開口する
ように前記第1の連通路に接続し、 前記第1の連通路に
対する前記複数の環状通路の開口部のうち最上部の環状
通路を除く環状通路の開口部を、該第1の連通路から該
環状通路に流入する冷媒の主流に沿う流線形状に形成し
たものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to form a cylinder block between a cylinder block and a cylinder liner fitted to the cylinder block along a circumferential direction of the cylinder liner, and A plurality of annular passages formed in the axial direction of the cylinder liner, and a first annular passage extending in the axial direction of the cylinder liner and provided at different positions to communicate between the plurality of annular passages. And a second communication path, a refrigerant inlet for supplying a refrigerant to the first communication path, the plurality of annular paths and the second communication path.
In the cooling system of an internal combustion engine having a coolant outlet port for discharging the refrigerant having passed through the communicating passage, the coolant inlet port
Open directly to the uppermost annular passage of the plurality of annular passages
Connected to the first communication passage as described above , and connected to the first communication passage.
The uppermost annular portion of the plurality of annular passage openings
The opening of the annular passage excluding the passage is formed in a streamline shape along the main flow of the refrigerant flowing into the annular passage from the first communication passage.
【0013】[0013]
【作用】本発明では、冷媒導入口から第1の連通路に流
入する冷媒は、シリンダライナの最上部の環状通路には
直進して導入される。また、最上部の環状通路より下方
の環状通路に流入する冷媒は、その主流が環状通路の開
口部の流線形状に沿って流入することとなるため、環状
通路の開口部付近において冷媒は円滑に流される。According to the present invention, the refrigerant flows from the refrigerant inlet to the first communication passage.
The incoming refrigerant flows into the annular passage at the top of the cylinder liner.
It goes straight and is introduced. Also, below the uppermost annular passage
The main flow of the refrigerant flowing into the annular passage flows along the streamline shape of the opening of the annular passage, so that the refrigerant flows smoothly near the opening of the annular passage.
【0014】[0014]
【実施例】図1は本発明装置の第1実施例の要部断面
図、図2は本発明になる内燃機関の冷却装置の一実施例
の平面図を示す。図1及び図2において、シリンダブロ
ック11に嵌装されるシリンダライナ12の外周面に
は、図1に131〜133 で示す如き複数の環状溝が例
えば等間隔で形成されている。なお、図1では複数の環
状溝のうち3つを示している。このシリンダライナ12
をシリンダブロック11のボア部内に嵌装することによ
り、環状溝131 〜133 とシリンダブロック11のボ
ア部内周面11aとにより環状通路が形成される。な
お、図2中、12aはシリンダライナ12のボア部内周
面を示す。1 is a sectional view of a main part of a first embodiment of the present invention, and FIG. 2 is a plan view of one embodiment of a cooling device for an internal combustion engine according to the present invention. 1 and 2, on the outer circumferential surface of the cylinder liner 12 is fitted in the cylinder block 11, a plurality of annular grooves as shown in FIG. 1 131-134 3 are formed at equal intervals, for example. FIG. 1 shows three of the plurality of annular grooves. This cylinder liner 12
The by fitted into the bore portion of the cylinder block 11, an annular passage is formed by a bore in the peripheral surface 11a of the annular groove 131-134 3 and the cylinder block 11. In FIG. 2, reference numeral 12a denotes an inner peripheral surface of the bore of the cylinder liner 12.
【0015】また、シリンダブロック11とシリンダラ
イナ12に、131〜133 等の複数の環状溝をシリン
ダライナ12の軸方向に連通する縦溝14が前記第1の
連通路として形成され、また図2の平面図に示すよう
に、縦溝14と180°異なる位置にも環状溝131 〜
133 等をシリンダライナ12の軸方向に連通する縦溝
15が前記第2の連通路として形成されている。Further, the cylinder block 11 and the cylinder liner 12, longitudinal grooves 14 communicating the plurality of annular grooves, such as 131-134 3 in the axial direction of the cylinder liner 12 is formed as the first communication path, also as shown in the plan view of FIG. 2, also annular grooves 13 1 to the longitudinal grooves 14 and 180 ° positions different
13 3 etc. flutes 15 communicating with the axial direction of the cylinder liner 12 a is formed as the second communication path.
【0016】また、複数の環状溝のうちシリンダヘッド
に最も近い位置にある環状溝131 と略同一平面上に、
縦溝14と連通する冷媒導入口16が形成されると共
に、縦溝15と連通する冷媒導出口17が形成されてい
る。これにより、冷媒導入口16の延在方向上に環状溝
131 が位置し、また最上部より2段目以降の下部の環
状溝132 ,133 等は冷媒導入口16の延在方向上に
なく、縦溝14の延在方向と略直交する方向に冷媒が分
流されて導入されることとなる。Furthermore, on substantially the same plane as the annular groove 13 1 positioned closest to the cylinder head of the plurality of annular grooves,
A refrigerant inlet 16 communicating with the vertical groove 14 is formed, and a refrigerant outlet 17 communicating with the vertical groove 15 is formed. Thus, the annular groove 13 1 is positioned on the extending direction of the refrigerant inlet 16, also annular groove 13 2, 13 3, etc. at the bottom of the second and subsequent stages from the top is rolled Zaikata improved coolant inlet 16 Instead, the refrigerant is divided and introduced in a direction substantially perpendicular to the extending direction of the vertical groove 14.
【0017】本実施例はかかる構造の冷却装置におい
て、縦溝14に対する環状溝131 〜133 の開口部を
図1に示す如く、縦溝14から環状溝131 〜133 に
流入する冷媒の主流に沿う流線形状に形成したものであ
る。The present embodiment in the cooling device of such a structure, as shown the opening of the annular groove 131-134 3 for longitudinal grooves 14 in FIG. 1, the refrigerant flowing from the longitudinal groove 14 in the annular groove 131-134 3 Is formed in a streamline shape along the mainstream of the above.
【0018】すなわち、図1に示すように、シリンダラ
イナ12の軸方向に隣接する2つの環状溝131 と13
2 との間のシリンダライナ12外周壁は縦溝14近傍で
18で示す如く下部が流線形状に形成されており、同様
に環状溝132 と133 との間、環状溝133 とそれに
隣接する下部の環状溝(図示せず)との間のシリンダラ
イナ12外周壁も、夫々縦溝14近傍で19,20で示
す如く流線形状とされている。[0018] That is, as shown in FIG. 1, two annular grooves 13 1 adjacent in the axial direction of the cylinder liner 12 and 13
Cylinder liner 12 the outer peripheral wall between the 2 is formed in the lower part streamlined shape as shown at 18 in longitudinal grooves 14 near similarly between the annular groove 13 2 and 13 3, it an annular groove 13 3 The outer peripheral wall of the cylinder liner 12 between the adjacent lower annular groove (not shown) also has a streamline shape as indicated by 19 and 20 in the vicinity of the vertical groove 14, respectively.
【0019】次に本実施例の作用について説明する。冷
媒導入口16に導入された冷媒は、図1に実線Iで示す
如く右方向へ進んで縦溝14に供給され、更にIIで示す
如くその流路を殆ど曲げられることなく直進して縦溝1
4から環状溝131 に導入される一方、冷媒の一部は縦
溝14内をIII で示す如く下方向に進み、一部がIVで示
す如く環状溝132 に分配され、残りがVで示す如く縦
溝14を通って環状溝133 に分配されつつ縦溝14を
下方向へ進む。Next, the operation of this embodiment will be described. The refrigerant introduced into the refrigerant inlet 16 advances to the right as shown by the solid line I in FIG. 1 and is supplied to the longitudinal groove 14, and further proceeds straight with almost no bending in the flow path as shown by II. 1
4 while being introduced into the annular groove 13 from 1, part of the refrigerant goes downward as shown within the vertical groove 14 in III, part of which is distributed in an annular groove 13 2 as indicated by IV, the rest is at V being dispensed into the annular groove 13 3 through the vertical groove 14 as shown proceeds flutes 14 downward.
【0020】環状溝131 〜133 等のすべての環状溝
に分配された冷媒は、図2に実線の矢印VI及びVII で示
す如き方向に流れつつシリンダライナ12の外周壁面の
熱を奪い、その後縦溝15内で合流した後矢印VIIIで示
す如く冷媒導出口17より循環ポンプ方向へ導出され
る。The annular groove 131-134 3 all refrigerant distributed in the annular groove of the like, absorbing heat of the outer peripheral wall surface of the cylinder liner 12 while flowing in a direction as shown by the solid line arrows VI and VII in Fig. 2, Then, after merging in the vertical groove 15, as shown by an arrow VIII, it is led out from the refrigerant outlet 17 in the direction of the circulation pump.
【0021】ここで、前記したように従来は図1の環状
溝132 に分配される冷媒は流速が特に速いために慣性
によって冷媒の流路がシリンダライナ12の軸方向と直
交する方向へ曲がりきらないため、環状溝132 の冷媒
入口上流位置に図5にcで示したように淀みが発生し
た。[0021] Here, conventionally, as described above refrigerant to be distributed to an annular groove 13 2 in FIG. 1 is bent in a direction in which the flow passage of the refrigerant by the inertia due to the particularly high flow velocity is perpendicular to the axial direction of the cylinder liner 12 since no Kira, stagnation occurs as shown by c in FIG. 5 to the coolant inlet upstream position of the annular groove 13 2.
【0022】これに対し、本実施例によれば、環状溝1
31 の縦溝14に対する開口部近傍に在る特に流速の速
い冷媒が環状溝132 に分流されるときは、図1に実線
の矢印IVで示す如く、分流される冷媒の主流が環状溝1
31 と132 間の壁の流線形状18に沿って流れるた
め、上記の淀みcが発生しない。換言すると、淀みcが
発生するような冷媒入口上流位置には環状溝間の壁が形
成されているため、淀みcが発生しない。On the other hand, according to the present embodiment, the annular groove 1
3 when the refrigerant particularly fast flow rates are in the vicinity of the opening for one of the longitudinal groove 14 is shunted into the annular groove 13 2, as indicated by solid line arrow IV in FIG. 1, the main annular groove of the refrigerant is diverted 1
3 1 and 13 to flow along the wall of the streamlined shape 18 between the two, above stagnation c does not occur. In other words, since the wall between the annular grooves is formed at the upstream position of the refrigerant inlet where the stagnation c occurs, the stagnation c does not occur.
【0023】同様にして、環状溝133 の冷媒入口上流
位置の淀み(図5のd)が発生する位置には、環状溝1
32 ,133 間の壁が存在するため、淀みdが発生しな
い。図示しない他の環状溝も同様である。[0023] In the same manner, a position of the refrigerant inlet upstream position of the annular groove 13 3 stagnation (d in FIG. 5) is generated, the annular groove 1
3 2, for 13 3 between the walls is present, stagnation d does not occur. The same applies to other annular grooves not shown.
【0024】これにより、本実施例によれば、淀みの発
生を防止でき、よって淀みの発生に起因して発生するこ
とがある冷媒の沸騰及びオーバーヒートを未然に防止す
ることができる。Thus, according to the present embodiment, the occurrence of stagnation can be prevented, and thus the boiling and overheating of the refrigerant, which may occur due to the occurrence of stagnation, can be prevented.
【0025】また、本実施例では、131 〜133 等の
複数の環状溝のうちシリンダライナ12の軸方向に隣接
する各2つの環状溝間の、縦溝14に対する開口部近傍
の壁が、従来より厚い部分をもつ流線形状とされている
ため、縦溝14に対する環状溝開口部付近の壁の剛性を
従来に比し向上することができ、信頼性を向上すること
ができる。Further, in this embodiment, between the two annular grooves adjacent in the axial direction of the cylinder liner 12 of the plurality of annular grooves, such as 131-134 3, the walls of the vicinity of the opening for the longitudinal grooves 14 The rigidity of the wall near the opening of the annular groove with respect to the vertical groove 14 can be improved as compared with the conventional case, and the reliability can be improved.
【0026】次に本発明の他の実施例について説明す
る。図3は本発明の第2実施例の要部断面図を示す。同
図中、図1と同一構成部分には同一符号を付し、その説
明を省略する。Next, another embodiment of the present invention will be described. FIG. 3 is a sectional view showing a main part of a second embodiment of the present invention. In the figure, the same components as those of FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
【0027】図3において、22は冷媒導入口で、シリ
ンダヘッドに最も遠い位置にある環状溝231 と略同一
平面上に形成されている。シリンダライナ12’の外周
面には、231 〜233 等の複数の環状溝が形成されて
いる。縦溝27はこれら複数の環状溝をシリンダライナ
12’の軸方向に連通し、かつ、冷媒導入口22に連通
されている。[0027] In FIG. 3, 22 is a coolant inlet port is formed on the annular groove 23 1 and substantially the same plane located farthest in the cylinder head. The outer peripheral surface of the cylinder liner 12 ', a plurality of annular grooves such as 23 1 to 23 3 are formed. The vertical groove 27 communicates the plurality of annular grooves in the axial direction of the cylinder liner 12 ′, and communicates with the refrigerant inlet 22.
【0028】本実施例は基本的には第1実施例と同様の
構成であるが、冷媒導入口22がシリンダヘッドに対し
て最も遠い位置にあるため、冷媒導入口22から流入さ
れた冷媒は縦溝27内を図3中、下から上方向へ流れつ
つ各環状溝231 〜233 等へ分流される点が第1実施
例と異なる。This embodiment is basically the same as the first embodiment except that the refrigerant inlet 22 is located farthest from the cylinder head. in Figure 3 the inside longitudinal groove 27, that is diverted to the respective annular grooves 23 1 while flowing upwardly to 23 3 and the like from below differs from the first embodiment.
【0029】ここで、環状溝231 〜233 等の縦溝2
7に対する開口部の形状が、分流されて導入される冷媒
の主流に沿う流線形状に形成されているため、相隣る2
つの環状溝間の縦溝27に対する開口部近傍の壁が、図
1に24〜26で示す如き流線形状に形成されている。
従って、本実施例も第1実施例と同様に、淀みの発生を
防止することができる。[0029] Here, longitudinal grooves 2, such as annular grooves 23 1 to 23 3
Since the shape of the opening with respect to 7 is formed in a streamline shape that follows the main flow of the refrigerant that is divided and introduced, the adjacent two
The wall near the opening to the vertical groove 27 between the two annular grooves is formed in a streamline shape as shown by 24 to 26 in FIG.
Therefore, in the present embodiment as well as in the first embodiment, the occurrence of stagnation can be prevented.
【0030】[0030]
【発明の効果】上述のごとく、本発明によれば、シリン
ダライナの熱的の厳しい最上位置では冷媒導入口を最上
部の環状通路に直接開口するようになし冷却効果を高め
るととに、冷媒の流路中に淀みが発生し易い下方の環状
通路の冷媒導入部を、流入する冷媒の主流に沿う流線形
状に形成して冷媒が円滑に流入するようにしたため、淀
みの発生を防止することができ、よって淀みに起因する
冷媒の沸騰を防止でき、オーバーヒートを未然に防止す
ることができる等の特長を有するものである。As described above, according to the present invention, according to the present invention, cylindrical
The refrigerant inlet is located at the top of the Darina
Opening directly into the annular passage of the section to enhance the cooling effect
In addition, since the refrigerant introduction portion of the lower annular passage in which stagnation is likely to occur in the flow path of the refrigerant is formed in a streamline shape along the main flow of the flowing refrigerant, so that the refrigerant flows in smoothly, The stagnation can be prevented from occurring, so that the refrigerant can be prevented from boiling due to stagnation, and overheating can be prevented beforehand.
【図1】本発明装置の第1実施例の要部断面図である。FIG. 1 is a sectional view of a main part of a first embodiment of the apparatus of the present invention.
【図2】本発明になる内燃機関の冷却装置の一実施例の
平面図である。FIG. 2 is a plan view of one embodiment of a cooling device for an internal combustion engine according to the present invention.
【図3】本発明装置の第2実施例の要部断面図である。FIG. 3 is a sectional view of a main part of a second embodiment of the apparatus of the present invention.
【図4】従来の内燃機関の冷却装置の一例の構造図であ
る。FIG. 4 is a structural diagram of an example of a conventional cooling device for an internal combustion engine.
【図5】発明が解決しようとする課題の説明図である。FIG. 5 is an explanatory diagram of a problem to be solved by the invention.
11 シリンダブロック 12,12’ シリンダライナ 131 ,132 ,133 ,231 ,232 ,233 環
状溝 14,27 縦溝(第1の連通路) 15 縦溝(第2の連通路) 16,22 冷媒導入口 17 冷媒導出口11 a cylinder block 12, 12 'the cylinder liner 13 1, 13 2, 13 3, 23 1, 23 2, 23 3 annular groove 14 and 27 flutes (first communication path) 15 flutes (second communication path) 16,22 Refrigerant inlet 17 Refrigerant outlet
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−167448(JP,A) 実開 昭63−168242(JP,U) 特許84904(JP,C2) (58)調査した分野(Int.Cl.6,DB名) F02F 1/16 F02F 1/14 F01P 3/02 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-1-167448 (JP, A) JP-A-63-168242 (JP, U) Patent 84904 (JP, C2) (58) Fields investigated (Int. Cl. 6 , DB name) F02F 1/16 F02F 1/14 F01P 3/02
Claims (1)
に嵌装されるシリンダライナとの間に該シリンダライナ
の周方向に沿って形成され、かつ、該シリンダライナの
軸方向に複数形成された環状通路と、前記シリンダライ
ナの軸方向に延在し、かつ、互いに異なる位置で前記複
数の環状通路間を夫々連通するように設けられた第1及
び第2の連通路と、前記第1の連通路に冷媒を供給する
ための冷媒導入口と、前記複数の環状通路及び前記第2
の連通路を通った冷媒を排出するための冷媒導出口とを
有する内燃機関の冷却装置において、前記冷媒導入口を前記複数の環状通路の最上部の環状通
路に直接開口するように前記第1の連通路に接続し、 前記第1の連通路に対する前記複数の環状通路の開口部
のうち最上部の環状通路を除く環状通路 の開口部を、該
第1の連通路から該環状通路に流入する冷媒の主流に沿
う流線形状に形成したことを特徴とする内燃機関の冷却
装置。An annular passage formed between a cylinder block and a cylinder liner fitted to the cylinder block along a circumferential direction of the cylinder liner, and a plurality of annular passages formed in an axial direction of the cylinder liner. A first and second communication passages extending in the axial direction of the cylinder liner and provided to communicate between the plurality of annular passages at different positions from each other; A refrigerant inlet for supplying a refrigerant, the plurality of annular passages and the second
And a refrigerant outlet for discharging the refrigerant passing through the communication passage of the internal combustion engine.
An opening of the plurality of annular passages connected to the first communication passage so as to open directly to a road;
Wherein the opening of the annular passage other than the uppermost annular passage is formed in a streamline shape along the main flow of the refrigerant flowing into the annular passage from the first communication passage. .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3178498A JP2982396B2 (en) | 1991-07-18 | 1991-07-18 | Internal combustion engine cooling system |
US07/906,499 US5207189A (en) | 1991-07-08 | 1992-06-30 | Cooling system for an internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3178498A JP2982396B2 (en) | 1991-07-18 | 1991-07-18 | Internal combustion engine cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0526101A JPH0526101A (en) | 1993-02-02 |
JP2982396B2 true JP2982396B2 (en) | 1999-11-22 |
Family
ID=16049512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3178498A Expired - Fee Related JP2982396B2 (en) | 1991-07-08 | 1991-07-18 | Internal combustion engine cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2982396B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6395042B2 (en) * | 2014-10-01 | 2018-09-26 | 三菱自動車工業株式会社 | Cylinder block cooling structure |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0329560Y2 (en) * | 1987-04-22 | 1991-06-24 |
-
1991
- 1991-07-18 JP JP3178498A patent/JP2982396B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0526101A (en) | 1993-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8960137B2 (en) | Integrated exhaust cylinder head | |
JPS60190646A (en) | Cooling device for engine cylinder block | |
US7225766B2 (en) | Engine cylinder cooling jacket | |
JPH0140218B2 (en) | ||
JPH01134052A (en) | Cooling structure for cylinder head in water cooling multicylinder engine | |
JP3096090B2 (en) | Engine cooling device | |
WO2017068732A1 (en) | Cooling structure for water-cooled engine | |
JPS627914A (en) | Cooling device for internal combustion engine | |
JP2004124945A (en) | Water jacket for cylinder head | |
US20160138521A1 (en) | Cylinder block | |
JP3073275B2 (en) | Cylinder head of water-cooled internal combustion engine | |
JP2982396B2 (en) | Internal combustion engine cooling system | |
JP2745872B2 (en) | Internal combustion engine cooling system | |
CN221347091U (en) | Cylinder heads, engines and vehicles | |
CN218235280U (en) | Cylinder head cooling water jacket and engine | |
JP2993188B2 (en) | Internal combustion engine cooling system | |
JP2745868B2 (en) | Internal combustion engine cooling system | |
JP2785519B2 (en) | Internal combustion engine cooling system | |
JPH04140457A (en) | Cylinder block structure of engine | |
JPH04362256A (en) | Cooling device for internal combustion engine | |
JPH02149752A (en) | Cooling device for cylinder head | |
JP2778371B2 (en) | Internal combustion engine cooling system | |
AU2022229339B2 (en) | Engine and vehicle | |
JP2005120945A (en) | Cylinder block cooling structure | |
JPH0248658Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070924 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |