[go: up one dir, main page]

JP2981366B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2981366B2
JP2981366B2 JP5144751A JP14475193A JP2981366B2 JP 2981366 B2 JP2981366 B2 JP 2981366B2 JP 5144751 A JP5144751 A JP 5144751A JP 14475193 A JP14475193 A JP 14475193A JP 2981366 B2 JP2981366 B2 JP 2981366B2
Authority
JP
Japan
Prior art keywords
insulating film
wiring
film
semiconductor device
teos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5144751A
Other languages
Japanese (ja)
Other versions
JPH0714917A (en
Inventor
司 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP5144751A priority Critical patent/JP2981366B2/en
Priority to KR1019940010935A priority patent/KR0149468B1/en
Publication of JPH0714917A publication Critical patent/JPH0714917A/en
Application granted granted Critical
Publication of JP2981366B2 publication Critical patent/JP2981366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、更に詳しくは、半導体基板上の配線により生じ
た凹凸を平坦化する、層間絶縁膜の形成方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an interlayer insulating film for flattening unevenness caused by wiring on a semiconductor substrate.

【0002】[0002]

【従来の技術】半導体素子の高密度化、高集積化にとっ
て配線を層間絶縁膜を挟んで3次元的に積層する技術は
不可欠なものである。特に、ロジック系のULSIで
は、3層以上のAl配線が要求される。また、この配線
の三次元化に伴って、増大する表面段差を制御して埋め
込み平坦化する技術が必要となってくる。
2. Description of the Related Art A technique for three-dimensionally stacking wirings with an interlayer insulating film interposed therebetween is indispensable for increasing the density and integration of semiconductor elements. In particular, a logic ULSI requires three or more layers of Al wiring. In addition, as the wiring becomes three-dimensional, a technique for controlling an increasing surface step and performing burying and flattening is required.

【0003】現在、Al配線、Al合金配線や高融点導
体をバリアメタルとした積層構造配線等の層間絶縁膜形
成法として、低温成膜が可能で、優れた埋め込み平坦性
を示すTEOS(テトラ・エトキシ・シラン)−O
3(オゾン)系常圧CVD法が、微細デバイスにおける
層間絶縁膜の平坦化技術として、極めて有望なプロセス
として検討されている。
At present, as a method of forming an interlayer insulating film such as an Al wiring, an Al alloy wiring or a laminated structure wiring using a high melting point conductor as a barrier metal, a TEOS (tetra-metal oxide) film which can be formed at a low temperature and has excellent buried flatness can be obtained. Ethoxy silane) -O
3 (Ozone) -based atmospheric pressure CVD is being studied as a very promising process as a technique for planarizing an interlayer insulating film in a fine device.

【0004】[0004]

【発明が解決しようとする課題】上記のような、例え
ば、積層構造配線において、図4(a)に示すように、
成膜時に優れた埋め込み平坦性を示すTEOS−O3
常圧CVD膜9を用いると下地材料依存性のため、例え
ば、Al−Si−Cu合金1aとTiW合金(又はWS
i合金)1bからなるメタルの積層構造の下層配線1と
その下のBPSG膜(図示せず。)では成長速度が異な
るために良好な平坦化形状が得られない等の問題が発生
している。そのために、図4(b)に示すように、単一
の下地を得るために、TEOS−O3系常圧CVD膜9
を形成する前にプラズマTEOS膜10を形成してい
る。なお、図4は従来技術における積層構造配線を有す
る半導体装置の要部断面図である。
As shown in FIG. 4 (a), for example, in a wiring having a laminated structure as described above,
When a TEOS-O 3 -based atmospheric pressure CVD film 9 having excellent buried flatness during film formation is used, it depends on the underlying material. For example, an Al—Si—Cu alloy 1a and a TiW alloy (or WS
Since the growth rate is different between the lower wiring 1 and the BPSG film (not shown) therebelow, there is a problem that a good flattened shape cannot be obtained, etc. . Therefore, as shown in FIG. 4B, in order to obtain a single base, a TEOS-O 3 -based normal pressure CVD film 9 is formed.
The plasma TEOS film 10 is formed before the formation. FIG. 4 is a cross-sectional view of a main part of a semiconductor device having a laminated structure wiring according to the related art.

【0005】しかし、プラズマTEOS膜10上に形成
したTEOS−O3 系常圧CVD膜9は良好な埋め込み
特性が得られるが、シラン系絶縁膜やプラズマTEOS
膜と比較して膜中に水分を多量に含んでいる。そのた
め、メタル間のコンタクト特性やトランジスタ特性に影
響を及ぼして、デバイスの製品歩留まりや信頼性を下げ
る要因となっている。
[0005] However, although the TEOS-O 3 -based normal pressure CVD film 9 formed on the plasma TEOS film 10 can obtain a good embedding property, the silane-based insulating film and the plasma TEOS
The film contains a large amount of water as compared with the film. Therefore, it affects the contact characteristics between metals and the characteristics of transistors, which is a factor that lowers the product yield and reliability of devices.

【0006】本発明は、より水分の含まない、膜質の向
上した、良好な埋め込み特性が得られる層間絶縁膜の形
成方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming an interlayer insulating film containing less moisture, having improved film quality, and obtaining good filling characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、配線による半導体基板上の凹凸を平坦化する
工程を有する半導体装置の製造方法に於いて、上記半導
体基板上に上記配線を設けた後、窒素を含む有機ソース
を用いたプラズマCVD法により上記配線の全面を被覆
するように第1絶縁膜を堆積する第1工程と、TEOS
−O3系常圧CVD法により上記第1絶縁膜上の凹凸を
埋めるように第2絶縁膜を堆積する第2工程とを有する
ことを特徴とするものである。
According to a method of manufacturing a semiconductor device of the present invention, there is provided a method of manufacturing a semiconductor device having a step of flattening irregularities on a semiconductor substrate by wiring, wherein the wiring is formed on the semiconductor substrate. Forming a first insulating film so as to cover the entire surface of the wiring by a plasma CVD method using an organic source containing nitrogen;
The -O 3 an atmospheric pressure CVD method is characterized in that a second step of depositing a second insulating film so as to fill the unevenness on the first insulating film.

【0008】[0008]

【作用】上記本発明を用いて、窒素を含む有機ソースを
用いたプラズマ系絶縁膜(SiO2 膜)を形成すること
によって、窒化された表面の絶縁膜が形成され、TEO
S−O3 系常圧CVD膜の膜質が改善される。
According to the present invention, by forming a plasma-based insulating film (SiO 2 film) using an organic source containing nitrogen, an insulating film having a nitrided surface is formed.
The film quality of the S—O 3 -based normal pressure CVD film is improved.

【0009】[0009]

【実施例】以下に、一実施例の基づいて本発明を詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on one embodiment.

【0010】図1は本発明の一実施例の半導体装置の製
造方法を説明する図であり、図2(a)乃至(c)は本
発明の他の実施例の半導体装置の製造方法を説明する図
であり、図3は本発明の他の実施例の半導体装置の製造
方法を説明する図である。
FIG. 1 is a diagram for explaining a method of manufacturing a semiconductor device according to one embodiment of the present invention. FIGS. 2A to 2C are diagrams illustrating a method of manufacturing a semiconductor device according to another embodiment of the present invention. FIG. 3 is a diagram illustrating a method of manufacturing a semiconductor device according to another embodiment of the present invention.

【0011】図1に示すように、半導体基板(図示せ
ず。)上に下層配線1、例えば、Al−Si−Cu合金
1a上にTiW合金又はTiN合金1bが形成され、表
面には凹凸が生じている。なお、本実施例においては、
下層配線1に積層構造配線を用いているが、Al配線、
Al合金配線等も適用可能である。
As shown in FIG. 1, a lower wiring 1 is formed on a semiconductor substrate (not shown), for example, a TiW alloy or a TiN alloy 1b is formed on an Al—Si—Cu alloy 1a. Has occurred. In this embodiment,
Although a multilayer structure wiring is used for the lower wiring 1, an Al wiring,
Al alloy wiring or the like is also applicable.

【0012】上記凹凸を平坦化するため、まず、下層配
線1上に、以下の条件下で、窒素を含む有機ソース系プ
ラズマCVD法により第1絶縁膜2を堆積する。ガスと
して、O2及び有機ソースを共に流量約530SCCM
で流し、圧力を約9.0Torrとし、基板(図示ぜ
ず。)の設定温度を約390℃とし、Rfパワーを約4
50Wとし、第1絶縁膜2を形成する。また、有機ソー
スとして、液体ソース(室温)でTEOSと蒸気圧がほ
ぼ等しい材料が用いられる。具体的には、ヘキサメチル
ジシラザンや、トリメチルシリルジエチルアミン等が適
用可能である。これより、下層配線1の表面及び側面を
第1絶縁膜2で被覆する。
In order to flatten the irregularities, first, a first insulating film 2 is deposited on the lower wiring 1 by an organic source plasma CVD method containing nitrogen under the following conditions. As a gas, O 2 and an organic source are used together at a flow rate of about 530 SCCM.
At a pressure of about 9.0 Torr, a set temperature of a substrate (not shown) of about 390 ° C., and an Rf power of about 4
The first insulating film 2 is formed at 50 W. As the organic source, a material having a vapor pressure substantially equal to that of TEOS in a liquid source (room temperature) is used. Specifically, hexamethyldisilazane, trimethylsilyldiethylamine, or the like can be used. Thus, the surface and side surfaces of the lower wiring 1 are covered with the first insulating film 2.

【0013】次に、第1絶縁膜2上に、以下の条件下
で、TEOS−O3系常圧CVD法により第2絶縁膜3
を堆積する。ガスとして、TEOS(キャリアN2 )を
約2.0SLM、O2を約7.5SLM、O3濃度を約
5.0%とし、基板(図示ぜず。)の設定温度を約38
0℃として、TEOS−O3系常圧CVD法を行う。こ
れにより、第1絶縁膜2上に残っている凹凸を埋め、成
膜時においても、リフロー形状が得られる平坦化絶縁膜
が形成できる。
Next, a second insulating film 3 is formed on the first insulating film 2 by a TEOS-O 3 system atmospheric pressure CVD method under the following conditions.
Is deposited. As the gas, TEOS (carrier N 2 ) is about 2.0 SLM, O 2 is about 7.5 SLM, O 3 concentration is about 5.0%, and the set temperature of the substrate (not shown) is about 38.
At 0 ° C., a TEOS-O 3 normal pressure CVD method is performed. As a result, the unevenness remaining on the first insulating film 2 is filled, and a flattened insulating film capable of obtaining a reflow shape can be formed even during film formation.

【0014】その後、複合段差や厳しい下地段差を有す
る場合、図2に示すように、エッチバック法を用いて、
層間絶縁膜の平坦化を更に向上させることができる。ま
ず、図2(a)に示すように、窒素を含む有機ソース系
プラズマCVD法により第1絶縁膜2を堆積した後、第
1絶縁膜2上にTEOS−O3系常圧CVD法を用いて
第2絶縁膜3を堆積する。その後、更に有機シラノール
系ガラス4を塗布し、熱処理により硬化させる。
Thereafter, when there is a composite step or a severe base step, as shown in FIG.
The planarization of the interlayer insulating film can be further improved. First, as shown in FIG. 2A, a first insulating film 2 is deposited by an organic source-based plasma CVD method containing nitrogen, and then a TEOS-O 3 -based normal pressure CVD method is used on the first insulating film 2. Then, a second insulating film 3 is deposited. Thereafter, an organic silanol-based glass 4 is further applied and cured by heat treatment.

【0015】続いて、図2(b)に示すように、エッチ
バックを行った後、有機ソースとしてTEOS又は窒素
を含む有機ソースを用いて、上述のプラズマCVD法と
同じ条件下で、プラズマCVD法を行い、第3絶縁膜5
を形成することで平坦化絶縁膜形成ができる。
Subsequently, as shown in FIG. 2B, after performing an etch-back, the plasma CVD is performed under the same conditions as the above-mentioned plasma CVD using an organic source containing TEOS or nitrogen as an organic source. The third insulating film 5
Is formed, a planarization insulating film can be formed.

【0016】次に、図2(c)に示すように、下層配線
1上の層間絶縁膜をなす絶縁膜2,3或は2,3,5を
選択的に除去し、スルーホール6を形成した後、上層配
線7を形成し、スルーホール6を介して、下層配線1と
上層配線7との電気的接続を図る。
Next, as shown in FIG. 2C, the insulating films 2, 3 or 2, 3, 5 forming an interlayer insulating film on the lower wiring 1 are selectively removed to form a through hole 6. After that, the upper wiring 7 is formed, and the lower wiring 1 and the upper wiring 7 are electrically connected via the through hole 6.

【0017】また、図3に示すように、スパッタ技術で
コンタクトの穴埋めができない場合に、スルーホール6
にプラグ8を形成して、配線1,7間の電気的接続を行
っても良い。
As shown in FIG. 3, when the contact hole cannot be filled by the sputtering technique,
A plug 8 may be formed at the end to make electrical connection between the wirings 1 and 7.

【0018】実際に、TEOS−O3系常圧CVD膜の
下地材料に対する膜質を評価したところ、表1に示すよ
うに、下地がSi基板やプラズマ−TEOS膜に比べ
て、窒素を含む有機ソース系プラズマ膜は膜中水分量は
少なく、膜質が大幅に改善されていることが分かる。
When the film quality of the TEOS-O 3 -based atmospheric pressure CVD film with respect to the underlying material was actually evaluated, as shown in Table 1, the organic source containing nitrogen was lower than that of the Si substrate or the plasma-TEOS film as shown in Table 1. It can be seen that the system plasma film has a small amount of water in the film and the film quality is greatly improved.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上、詳細に説明したように、本発明を
用いることにより、サブハーフミクロンの配線を平坦化
する際、下地に窒素を含む有機ソースを用いたプラズマ
系絶縁膜を形成することで、下地にプラズマ−TEOS
絶縁膜を形成した場合と比較して、TEOS−O3系常
圧CVD法により形成された絶縁膜の、膜中水分量が減
少する等の膜質を改善することができる。このことによ
って、膜中の水分によるメタル間のコンタクト特性やト
ランジスタ特性の劣化を抑制し、デバイスの製品歩留ま
りや信頼性を向上させることができる。
As described above in detail, by using the present invention, it is possible to form a plasma-based insulating film using an organic source containing nitrogen as a base when planarizing sub-half micron wiring. Then, plasma-TEOS on the base
Compared with the case where the insulating film is formed, the quality of the insulating film formed by the TEOS-O 3 -based normal pressure CVD method, such as a decrease in the amount of moisture in the film, can be improved. As a result, deterioration of contact characteristics between metals and transistor characteristics due to moisture in the film can be suppressed, and product yield and reliability of the device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の半導体装置の製造方法を説
明する図である。
FIG. 1 is a diagram illustrating a method for manufacturing a semiconductor device according to one embodiment of the present invention.

【図2】本発明の他の実施例の半導体装置の製造方法を
説明する図である。
FIG. 2 is a diagram illustrating a method of manufacturing a semiconductor device according to another embodiment of the present invention.

【図3】本発明の他の実施例の半導体装置の製造方法を
説明する図である。
FIG. 3 is a diagram illustrating a method of manufacturing a semiconductor device according to another embodiment of the present invention.

【図4】従来技術における配線を有する半導体装置の要
部断面図である。
FIG. 4 is a cross-sectional view of a main part of a semiconductor device having a wiring according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 下層配線 1a Al−Si−Cu合金層 1b TiW合金層又はWSi合金層 2 第1絶縁膜 3 第2絶縁膜 4 有機シラノール系ガラス 5 第3絶縁膜 6 スルーホール 7 上層配線 8 プラグ DESCRIPTION OF SYMBOLS 1 Lower wiring 1a Al-Si-Cu alloy layer 1b TiW alloy layer or WSi alloy layer 2 First insulating film 3 Second insulating film 4 Organosilanol-based glass 5 Third insulating film 6 Through hole 7 Upper wiring 8 Plug

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/31 H01L 21/312 - 21/314 H01L 21/316 H01L 21/318 - 21/32 H01L 21/3205 H01L 21/321 H01L 21/3213 H01L 21/47 - 21/475 H01L 21/768 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01L 21/31 H01L 21/312-21/314 H01L 21/316 H01L 21/318-21/32 H01L 21 / 3205 H01L 21/321 H01L 21/3213 H01L 21/47-21/475 H01L 21/768

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配線による半導体基板上の凹凸を平坦化
する工程を有する半導体装置の製造方法に於いて、 上記半導体基板上に上記配線を設けた後、窒素を含む有
機ソースを用いたプラズマCVD法により上記配線の全
面を被覆するように第1絶縁膜を堆積する第1工程と、 TEOS−O3系常圧CVD法により上記第1絶縁膜上
の凹凸を埋めるように第2絶縁膜を堆積する第2工程と
を有することを特徴とする、半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, comprising the step of flattening irregularities on a semiconductor substrate by wiring, wherein the wiring is provided on the semiconductor substrate, and plasma CVD is performed using an organic source containing nitrogen. a first step of depositing a first insulating film so as to cover the entire surface of the wiring by law, the TEOS-O 3 based atmospheric pressure CVD a second insulating film so as to fill the unevenness on the first insulating film A method of manufacturing a semiconductor device, comprising: a second step of depositing.
JP5144751A 1993-06-16 1993-06-16 Method for manufacturing semiconductor device Expired - Lifetime JP2981366B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5144751A JP2981366B2 (en) 1993-06-16 1993-06-16 Method for manufacturing semiconductor device
KR1019940010935A KR0149468B1 (en) 1993-06-16 1994-05-19 Manufacturing Method of Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5144751A JP2981366B2 (en) 1993-06-16 1993-06-16 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0714917A JPH0714917A (en) 1995-01-17
JP2981366B2 true JP2981366B2 (en) 1999-11-22

Family

ID=15369533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5144751A Expired - Lifetime JP2981366B2 (en) 1993-06-16 1993-06-16 Method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP2981366B2 (en)
KR (1) KR0149468B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100230365B1 (en) * 1996-06-29 1999-11-15 윤종용 Method for interlayer insulation film formatiom of semiconductor
KR100419878B1 (en) * 1997-12-11 2004-05-20 주식회사 하이닉스반도체 Method for fabricating semiconductor device
KR100659394B1 (en) 2005-08-08 2006-12-19 삼성전자주식회사 Method of forming insulating film and method of manufacturing semiconductor device using same

Also Published As

Publication number Publication date
JPH0714917A (en) 1995-01-17
KR0149468B1 (en) 1998-12-01
KR950001861A (en) 1995-01-04

Similar Documents

Publication Publication Date Title
CN1134049C (en) Plasma treatment for improving adhesiveness between inorgnic material and copper
US6159851A (en) Borderless vias with CVD barrier layer
US5866945A (en) Borderless vias with HSQ gap filled patterned metal layers
US20060246714A1 (en) Method of forming a conductive contact
JPH04167429A (en) Semiconductor device and its manufacturing method
JP3021336B2 (en) Method for forming wiring layer of semiconductor device
JP2985789B2 (en) Method for manufacturing semiconductor device
US6696368B2 (en) Titanium boronitride layer for high aspect ratio semiconductor devices
JPH11204645A (en) Interlayer insulating film for semiconductor device and method of manufacturing the same
KR100331906B1 (en) Method for manufacturing a semiconductor device
JP2981366B2 (en) Method for manufacturing semiconductor device
JPS6390838A (en) Manufacture of electrical mutual connection
JP3087692B2 (en) Method for manufacturing semiconductor device
JP2001176875A (en) Semiconductor device
TW202123385A (en) Integrated circuit structure and method for forming the same
JPH08139190A (en) Method for manufacturing semiconductor device
JPH11512877A (en) Capped interlayer dielectric for chemical mechanical polishing
US6559542B1 (en) Semiconductor device and method of manufacturing the same
JPH08181214A (en) Semiconductor device
JP4006720B2 (en) Semiconductor device and manufacturing method thereof
JP3407516B2 (en) Semiconductor device and manufacturing method thereof
JP2739829B2 (en) Method for manufacturing semiconductor device
JP2833370B2 (en) Method for manufacturing semiconductor device
KR100396684B1 (en) Method for forming metal interconnection of semiconductor device
JPH08204004A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 14

EXPY Cancellation because of completion of term