[go: up one dir, main page]

JP2981340B2 - Method for producing catalyst for catalytic hydrocracking of heavy hydrocarbons - Google Patents

Method for producing catalyst for catalytic hydrocracking of heavy hydrocarbons

Info

Publication number
JP2981340B2
JP2981340B2 JP4120212A JP12021292A JP2981340B2 JP 2981340 B2 JP2981340 B2 JP 2981340B2 JP 4120212 A JP4120212 A JP 4120212A JP 12021292 A JP12021292 A JP 12021292A JP 2981340 B2 JP2981340 B2 JP 2981340B2
Authority
JP
Japan
Prior art keywords
catalyst
heavy hydrocarbons
hydrogen
oil
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4120212A
Other languages
Japanese (ja)
Other versions
JPH06165935A (en
Inventor
薫 藤元
弘一 鷲見
勝也 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ENJINIARINGU KK
Original Assignee
TOYO ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ENJINIARINGU KK filed Critical TOYO ENJINIARINGU KK
Priority to JP4120212A priority Critical patent/JP2981340B2/en
Publication of JPH06165935A publication Critical patent/JPH06165935A/en
Application granted granted Critical
Publication of JP2981340B2 publication Critical patent/JP2981340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】減圧残渣や超重質油、オイルサン
ドビチュメン等の重質炭化水素類もしくは石炭類と重質
炭化水素の混合物から良好な性状を持つ分解生成油を得
るための触媒及びその触媒を用いた重質炭化水素類の接
触水素化分解プロセスに関する。
The present invention relates to a catalyst for obtaining a cracked oil having good properties from heavy hydrocarbons such as vacuum residue, ultra-heavy oil, oil sand bitumen, or a mixture of coals and heavy hydrocarbons. The present invention relates to a catalytic hydrocracking process of heavy hydrocarbons using a catalyst.

【0002】[0002]

【従来の技術】石油精製業界では、減圧残渣や超重質
油、オイルサンドビチュメン等の重質炭化水素類より良
好な性状を持つ分解精製油を得るため、下記の方法が用
いられている。 (1) ビスブレーカー、コーカー等の熱分解プロセス (2) FCCに代表される接触熱分解プロセス (3) 接触水素化分解プロセス (4) 石炭と重質炭化水素類との混合物を処理するため共
処理プロセス(コ・プロセッシング) (5) 鉄系触媒を用いる石炭液化技術
2. Description of the Related Art In the petroleum refining industry, the following methods are used in order to obtain cracked and refined oils having properties better than heavy hydrocarbons such as vacuum residues, ultra-heavy oils and oil sand bitumen. (1) Pyrolysis process of visbreaker, coker, etc. (2) Catalytic pyrolysis process represented by FCC (3) Catalytic hydrocracking process (4) Co-treatment for treating a mixture of coal and heavy hydrocarbons Treatment process (co-processing) (5) Coal liquefaction technology using iron-based catalyst

【0003】[0003]

【発明が解決しようとする課題】上記に述べた良好な性
状を有する軽質油製造を目的とする重質油炭化水素類の
接触水素化分解技術にはそれぞれ以下に述べる問題点が
ある。 (1) の熱分解法 炭化水素の熱分解には重縮合反応を伴うため、ガス、ピ
ッチ、コークの生成が多く、軽質油の取得率が少ない。 (2) の接触分解法 触媒上にコークスが生成し、活性低下が大きく、触媒被
毒も生じるので、その対策が必要であり、特に重金属を
多く含有する原料油に制限がある。 (3) の水素化分解法 水素化分解に用いられる触媒は、不活性な担体に水素化
能を有する金属を分散させ、金属の凝集防止のための対
策として第2、第3の金属を添加するのが通常であり、
従って担体は金属を担持する場にすぎず、水素消費量が
多く、軽質油収率も悪く、転化率も満足のいくものでは
なかった。 (4) の石炭と重質炭化水素類のコ・プロセッシング 触媒の活性低下が激しい問題点に加え、軽質油収率が低
く、アスファルテンやプレアスファルテンが残渣中に残
存するため、残渣からの油分の回収に減圧蒸留、濾過、
沈降分離等の分離工程が必要である。 (5) の石炭液化法 鉄系触媒を用いた場合、水素化深度を高めるとガス生成
が多く、水素消費量が多くなる。残渣中にアスファルテ
ンやプレアスファルテンが残るので、油分の回収には減
圧蒸留法、溶剤脱灰法、加圧葉状濾過法等が採用されて
いるが、油分の回収率が悪い。
The above-described techniques for catalytic hydrocracking of heavy oil hydrocarbons for the production of light oils having good properties have the following problems. (1) Pyrolysis method Since pyrolysis of hydrocarbons involves a polycondensation reaction, gas, pitch, and coke are generated frequently, and the light oil acquisition rate is low. (2) Catalytic cracking method Coke is generated on the catalyst, the activity is greatly reduced, and the catalyst is poisoned. Therefore, countermeasures are required, and there is a limit to the feed oil containing a large amount of heavy metals. (3) Hydrocracking method The catalyst used for hydrocracking involves dispersing a metal capable of hydrogenation on an inert carrier and adding a second or third metal as a measure to prevent metal agglomeration. It is normal to do
Therefore, the carrier was only a place for supporting the metal, the hydrogen consumption was large, the light oil yield was poor, and the conversion was not satisfactory. (4) Co-processing of coal and heavy hydrocarbons In addition to the problem of severely decreasing the activity of the catalyst, the light oil yield is low, and asphaltene and preasphaltene remain in the residue, so the oil content from the residue Vacuum distillation, filtration, and recovery
Separation steps such as sedimentation are required. (5) Coal liquefaction method When an iron-based catalyst is used, increasing the hydrogenation depth increases gas generation and increases hydrogen consumption. Since asphaltenes and preasphaltenes remain in the residue, vacuum distillation, solvent demineralization, pressurized leaf filtration, and the like are employed for oil recovery, but the oil recovery is poor.

【0004】[0004]

【課題を解決するための手段】本発明は(3) の接触水素
化分解プロセスに属するもので、本発明はガス状炭化水
素の生成が少なく、軽・中質油収率が高く、原料中のア
スファルテンやプレアスファルテンを全て軽・中質油と
コークスに転化させる触媒の提供と、その触媒を用いた
重質炭化水素類の接触水素化分解法を提供することにあ
る。重質炭化水素類の処理に触媒を適用する場合の基本
的な課題は、コーク前駆体であるアスファルテンやプレ
アスファルテンを如何にして水素化分解するかである。
本発明の触媒は従来の水素化能のみを有する触媒でな
く、炭素担体に脱水素能を持たせ、アスファルテンやプ
レアスファルテンのコーク前駆体から脱水素した水素が
担体上を移動し、水素化能を有する金属上で炭化水素を
水素化する逆スピルオーバー効果を活用する。すなわち
脱水素と水素化能を持つ2元機能触媒の提供にある。即
ち本発明は、灰分が3重量%未満の褐炭を炭酸ガス雰囲
気下に 400〜800 ℃にて乾留して得られた乾留炭を、炭
酸ガスもしくは水蒸気雰囲気下で 600〜900℃にて活性
化させて得られた炭素担体に周期律表VIII属より選ばれ
た1ないし1以上の金属を担持させた後、水素にて還元
し、次いで硫化処理して得た重質炭化水素類接触水素化
分解用触媒、並びに該触媒を使用した重質炭化水素類の
接触水素化分解法である。脱水素能を持つ炭素担体の製
造と、水素化能を有する金属からなる2元機能触媒の最
も重要な点は炭素担体の選定にある。目的に適した炭素
担体の原料としては、元素分析値wt%(C;60〜80、
O;40〜20) で、かつ芳香族群の平均数が0.5 〜1.5 の
範囲にある褐炭が使用される。褐炭に含まれる灰分は3
重量%未満であることが必要で、少ないほど望ましく、
1.5重量%以下が特に好ましい。灰分の高い褐炭の場
合、例えば一般に灰分を10数重量%を含有するMorwell
炭は本発明の原料としては使用し得ないが、脱灰して灰
分量を3重量%未満とすれば使用することが可能であ
る。特に好ましい褐炭の種類としてはYallourn炭、脱灰
したMorwell 炭等が挙げられる。
The present invention belongs to the catalytic hydrocracking process of (3), and the present invention has low production of gaseous hydrocarbons, high light and medium oil yield, It is an object of the present invention to provide a catalyst for converting all asphaltene and pre-asphalten into light and medium oils and coke, and to provide a method for catalytic hydrocracking of heavy hydrocarbons using the catalyst. A basic problem in applying a catalyst to the treatment of heavy hydrocarbons is how to hydrocrack asphaltene and preasphaltene, which are coke precursors.
The catalyst of the present invention is not a catalyst having only a conventional hydrogenation ability, but has a carbon support having a dehydrogenation ability, and hydrogen dehydrogenated from a coke precursor of asphalten or preasphaltene moves on the support, and the hydrogenation ability Utilizing the reverse spillover effect of hydrogenating hydrocarbons on metals having That is, an object of the present invention is to provide a bifunctional catalyst having dehydrogenation and hydrogenation capabilities. That is, the present invention activates carbonized coal obtained by carbonizing brown coal having an ash content of less than 3% by weight at 400 to 800 ° C. in a carbon dioxide gas atmosphere at 600 to 900 ° C. in a carbon dioxide gas or steam atmosphere. One or more metals selected from Group VIII of the Periodic Table are supported on the carbon support obtained by reduction, then reduced with hydrogen, and then subjected to sulfurization treatment to obtain catalytic hydrogenation of heavy hydrocarbons. This is a catalytic cracking method and a catalytic hydrocracking method for heavy hydrocarbons using the catalyst. The most important points of the production of a carbon support having a dehydrogenating ability and the bifunctional catalyst comprising a metal having a hydrogenating ability are in selecting the carbon support. As raw materials of the carbon support suitable for the purpose, elemental analysis values wt% (C;
O; 40 to 20), and lignite having an average number of aromatic groups in the range of 0.5 to 1.5 is used. Ash content in brown coal is 3
It is necessary to be less than the weight%, the less is desirable,
Particularly preferred is 1.5% by weight or less. In the case of lignite with high ash content, for example, Morwell, which generally contains ash
Charcoal cannot be used as a raw material of the present invention, but can be used if it is deashed and the ash content is less than 3% by weight. Particularly preferred types of brown coal include Yallourn coal and demineralized Morwell coal.

【0005】本発明に用いられる触媒炭素担体の製法は
以下の通りである。褐炭をCO2 気流中で 400〜800 ℃
に加熱乾留して得られた乾留炭を、さらにCO2 もしく
はスチーム雰囲気下あるいはCO2 、スチームの共存下
で600 〜900 ℃にて活性化処理して炭素担体とする。活
性化は、特に炭酸ガス中で800 〜900 ℃で処理するのが
効果的である。次に、周期律表VIII属から選ばれた金属
塩の好ましくは0.5 〜5規定水溶液に上記炭素担体を数
時間浸漬し、含浸法にて金属を担持させる。炭素担体は
活性化されているため、速やかにほとんど溶解している
金属塩を吸着する。この場合の金属の担持量は 0.1重量
%から10重量%で十分である。
The method for producing the catalytic carbon carrier used in the present invention is as follows. Lignite is 400-800 ℃ in CO 2 stream
The carbonized carbon obtained by carbonization under heating is further activated at 600 to 900 ° C. in a CO 2 or steam atmosphere or in the presence of CO 2 and steam to obtain a carbon carrier. The activation is particularly effective at a temperature of 800 to 900 ° C. in carbon dioxide gas. Next, the above carbon carrier is immersed in an aqueous solution of a metal salt selected from the group VIII of the periodic table, preferably in a 0.5 to 5 N aqueous solution, for several hours, and the metal is supported by an impregnation method. Since the carbon support is activated, it quickly adsorbs almost dissolved metal salts. In this case, the supported amount of the metal is sufficiently from 0.1% by weight to 10% by weight.

【0006】担持させた金属を乾燥後、N2 雰囲気下で
300〜500 ℃で加熱分解し、還元後硫化させて使用され
る。尚、原料褐炭中のイオウ分が多い場合、この硫化を
必要としないこともある。周期律表VIII属金属としては
鉄、コバルト、ニッケル等があげられるが、費用、取り
扱いの容易さから特に鉄が好ましく、又、還元の容易さ
からその硝酸塩、酢酸塩等を用いるのが好ましい。還元
はH2 もしくはCO,H2 混合物が使用できる。好まし
くはH2 雰囲気下で400〜500℃で数時間還元する。硫化
はH2Sを含むガス中で実施できる。このようにして得
られた触媒は水素移行現象効果を有する2元機能触媒と
なり、下記特性を発揮する。この水素移行現象を伴う接
触水素化分解は、熱分解及び水素化分解と触媒によるコ
ーク前駆体から軽質分への水素移行を基本反応とするも
のである。水素機構現象は別名逆スピルオーバー現象と
も呼ばれ、触媒現象を説明する理論であり、活性炭上に
吸着されたアスファルテンもしくはプレアスファルテン
の水素が脱離し、その水素が活性炭上を移行し、活性炭
上の水素化能を有する金属上でその水素が原料炭化水素
に受け渡されることにより、重質炭化水素の接触水素化
分解反応が説明できる。このようにアスファルテンもし
くはプレアスファルテンの水素が水素化反応に活用され
るため、必要とする水素の量が少なくてすむ利点があ
る。同時に、アスファルテンもしくはプレアスファルテ
ンが脱水素されコークとなり、活性炭上に沈積するため
生成物中にはアスファルテンもしくはプレアスファルテ
ンが存在しないため、生成物の粘度が低くなり、その取
り扱いを容易にする。
After the supported metal is dried, it is dried under N 2 atmosphere.
It is decomposed by heating at 300-500 ° C, reduced and sulfurized before use. In addition, when the sulfur content in the raw material brown coal is large, this sulfurization may not be necessary. Examples of the Group VIII metal of the periodic table include iron, cobalt, nickel and the like, and iron is particularly preferable in terms of cost and ease of handling, and it is preferable to use nitrates and acetates thereof in terms of ease of reduction. For the reduction, H 2 or a mixture of CO and H 2 can be used. Reduction is preferably performed at 400 to 500 ° C. for several hours in an H 2 atmosphere. Sulfide can be carried out in a gas containing H 2 S. The catalyst thus obtained is a bifunctional catalyst having a hydrogen transfer phenomenon effect, and exhibits the following characteristics. The catalytic hydrocracking accompanied by this hydrogen transfer phenomenon is based on the basic reaction of thermal decomposition, hydrocracking, and transfer of hydrogen from a coke precursor to light components by a catalyst. The hydrogen mechanism phenomenon, also called the reverse spillover phenomenon, is a theory that explains the catalytic phenomenon.Hydrogen of asphaltene or preasphalten adsorbed on activated carbon is desorbed, the hydrogen moves on the activated carbon, and hydrogen on the activated carbon is removed. The transfer of the hydrogen to the raw material hydrocarbon on the metal having chemical activity can explain the catalytic hydrocracking reaction of heavy hydrocarbons. Since hydrogen of asphaltene or pre-asphalten is used for the hydrogenation reaction, there is an advantage that the amount of hydrogen required is small. At the same time, asphaltene or pre-asphalten is dehydrogenated to form coke, which is deposited on the activated carbon, so that there is no asphaltene or pre-asphalten in the product, so that the viscosity of the product is reduced and its handling is facilitated.

【0007】本触媒を用いての重質炭化水素類の接触水
素化分解、改質は、細粒化した触媒と重質炭化水素類を
混合し、管型反応器にて処理し、簡単なフラッシング(F
lashing)の後留出分の蒸留分離、残渣を固液分離し、液
分をFlashingの留出分と一緒に蒸留分離することができ
る。本発明では、反応の転化率を抑えることにより留出
油を回収するとともに、触媒に沈着もしくは独立して分
散したコークスを液相から分離することなく、少量の液
相中に分散した状態で系外に抜き出すことも可能であ
る。又、触媒を成形し、固定床式・移動床式反応器に充
填し反応させることも、流動床式反応器に適用すること
も可能である。
[0007] The catalytic hydrocracking and reforming of heavy hydrocarbons using the present catalyst involves mixing a finely divided catalyst and heavy hydrocarbons, treating the mixture in a tubular reactor, Flushing (F
After distillation of the lashing), the residue can be separated by solid-liquid separation, and the liquid can be separated by distillation together with the flashing distillate. In the present invention, the distillate is recovered by suppressing the conversion of the reaction, and the coke deposited or independently dispersed on the catalyst is not separated from the liquid phase but is dispersed in a small amount of the liquid phase. It is also possible to pull it out. It is also possible to form a catalyst and charge it in a fixed-bed / moving-bed reactor for reaction, or to apply it to a fluidized-bed reactor.

【0008】さらに本触媒の応用例として以下があげら
れるが、これらに限定されるものではない。 1) 石炭と石油系重質油を混合し、本触媒を添加し、ス
ラリー状とした後、水素加圧下で加熱して石炭を液化す
ると同時に石油系重質油を改質する。 2) 石炭と溶剤を混合し、本触媒を添加し、スラリー状
とした後水素加圧下で加熱して石炭を液化する。 3) 石炭液化の残渣油に触媒を添加し、スラリー状とし
た後水素加圧下で加熱して軽質油に変換する。
Further, examples of application of the present catalyst include, but are not limited to, the following. 1) Coal and petroleum heavy oil are mixed, this catalyst is added to make a slurry, and then heated under hydrogen pressure to liquefy coal and simultaneously reform petroleum heavy oil. 2) Coal and solvent are mixed, this catalyst is added, slurry is formed, and then heated under hydrogen pressure to liquefy coal. 3) Add a catalyst to the residual oil of coal liquefaction, make it into a slurry, and heat it under hydrogen pressure to convert it to light oil.

【0009】[0009]

【実施例】以下に実施例を挙げて本発明を更に詳しく説
明するが、本発明はこれらに限定されるものではない。 実施例1 以下の組成を有し、芳香族群の平均数 1.0、炭素中の芳
香族比率が50%で揮発分40〜50%である褐炭を、内径50
mmの石英製ロータリーキルン中炭酸ガス流通下で室温か
ら5℃/分で 600℃まで昇温し、600 ℃で60分保持乾留
し、乾留炭を得た。得られた乾留炭をCO2 雰囲気下で
600℃から10℃/分で 850℃まで昇温した後、60分保持
し活性化させ、炭素担体を得た。炭素担体を1規定硝酸
鉄水溶液に3時間浸漬し、Feを5重量%担持させた
後、乾燥し、N2 雰囲気下で400 ℃にて1時間加熱後、
2 雰囲気下で450 ℃にて1時間還元した後、H2 +H
2S(1:0.25)混合ガスで450 ℃にて30分予備硫化し
た。反応条件等を表1に示す。 ・原料褐炭の組成 重量% C:67.2、H:4.3 、N:1.0 、S:0.2 、
O:27. 2 、灰分:0.6 得られた触媒の性状は以下の通りであった。 比表面積 840m2/g 細孔容積 0.18cm3/g MCH 転化率 70.7 % 実施例2 反応時間を30分とした以外は実施例1と同様にして触媒
を調製した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Example 1 Lignite having the following composition, an average number of aromatic groups of 1.0, an aromatic ratio in carbon of 50%, and a volatile matter of 40 to 50%, was treated with an inner diameter of 50%.
The temperature was raised from room temperature to 600 ° C. at a rate of 5 ° C./min from a room temperature under a carbon dioxide gas flow in a quartz rotary kiln having a diameter of mm, and the mixture was carbonized at 600 ° C. for 60 minutes to obtain carbonized coal. Under the CO 2 atmosphere
After the temperature was raised from 600 ° C. to 850 ° C. at 10 ° C./min, it was kept and activated for 60 minutes to obtain a carbon carrier. The carbon carrier was immersed in a 1N aqueous solution of iron nitrate for 3 hours, loaded with 5% by weight of Fe, dried, and heated at 400 ° C. for 1 hour in an N 2 atmosphere.
After reducing at 450 ° C. for 1 hour under H 2 atmosphere, H 2 + H
2 S (1: 0.25) for 30 minutes presulfided at 450 ° C. in a mixed gas. Table 1 shows the reaction conditions and the like. -Composition of raw material lignite C: 67.2, H: 4.3, N: 1.0, S: 0.2,
O: 27.2, ash: 0.6 The properties of the obtained catalyst were as follows. Specific surface area 840 m 2 / g Pore volume 0.18 cm 3 / g MCH conversion 70.7% Example 2 A catalyst was prepared in the same manner as in Example 1 except that the reaction time was changed to 30 minutes.

【0010】実施例3 原料として脱灰 Morwell炭を用いる以外は実施例2と同
様にして触媒を調製した。
Example 3 A catalyst was prepared in the same manner as in Example 2 except that demineralized Morwell coal was used as a raw material.

【0011】実施例4 実施例1において、Fe5重量%の代わりにNiを1重
量%担持させるようにした以外は同様にして触媒を調製
した。次いで、内容積 150mlの誘導攪拌式オートクレー
ブを用いるガス流通式の装置を用いて、本発明の触媒に
よるアラビアンヘビー減圧残油の分解反応を行った。原
料油であるアラビアンヘビー減圧油40g、実施例1にて
得た触媒4gをオートクレーブに仕込んだ後、反応温度
435℃、反応時間60分、水素圧力70kg/cm2で反応させ
た。得られたガス状炭化水素はガスクロで、留出油は蒸
留ガスクロによって分析した。トルエン不溶分をコーク
とした。上記実施例の結果を表1に示す。
Example 4 A catalyst was prepared in the same manner as in Example 1, except that 1% by weight of Ni was supported instead of 5% by weight of Fe. Then, the decomposition reaction of Arabian heavy vacuum residue was carried out by the catalyst of the present invention using a gas flow type apparatus using an induction stirring type autoclave having an inner volume of 150 ml. After charging 40 g of reduced pressure Arabian heavy oil as a feedstock oil and 4 g of the catalyst obtained in Example 1 to an autoclave, the reaction temperature was increased.
The reaction was performed at 435 ° C., a reaction time of 60 minutes, and a hydrogen pressure of 70 kg / cm 2 . The obtained gaseous hydrocarbon was analyzed by gas chromatography, and the distillate was analyzed by distillation gas chromatography. The toluene-insoluble matter was used as coke. Table 1 shows the results of the above examples.

【0012】比較例1〜3 原料として市販活性炭(比較例2)、 Morwell炭(比較
例3)を用いる以外は実施例1と同様にて触媒を調製し
た。次いで上記実施例と同様にこれらの触媒をアラビア
ンヘビー減圧残油の分解反応を行った。結果を無触媒の
場合(比較例1)と併せて表1に示す。
Comparative Examples 1-3 Catalysts were prepared in the same manner as in Example 1 except that commercially available activated carbon (Comparative Example 2) and Morwell coal (Comparative Example 3) were used as raw materials. Next, these catalysts were subjected to a decomposition reaction of Arabian heavy vacuum residual oil in the same manner as in the above Examples. The results are shown in Table 1 together with the case without the catalyst (Comparative Example 1).

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】本発明で調製される触媒は先に説明した
通り、逆スピルオーバー効果を有する2元機能触媒とな
る為、重質炭化水素類を処理した場合生成物中にコーク
前駆体であるアスファルテンやプレアスファルテンが全
く残存しないため、従来油分の回収用として用いられて
いる減圧蒸留、溶媒抽出、CDS法が不要となる。ま
た、プレコートフィルター法を用いて油分を回収する場
合は、従来は未反応アスファルテンやプレアスファルテ
ンにより濾過速度が急速に低下したが、これらが含まれ
ていないため簡単な濾過装置や遠心分離器で固液分離が
可能となる。逆スピルオーバー現象が利用できるため、
水素消費量は従来の接触水素化分解触媒に比較し1/10程
度である。
As described above, the catalyst prepared according to the present invention is a bifunctional catalyst having a reverse spillover effect, so that when heavy hydrocarbons are treated, the product is a coke precursor in the product. Since no asphaltenes or pre-asphaltenes remain, the vacuum distillation, solvent extraction and CDS methods conventionally used for oil recovery are not required. In addition, when oil is recovered using the precoat filter method, the filtration rate has been rapidly reduced in the past due to unreacted asphaltenes and preasphaltenes. Liquid separation becomes possible. Because the reverse spillover phenomenon can be used,
Hydrogen consumption is about 1/10 compared to conventional catalytic hydrocracking catalyst.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C10G 1/00 C10G 1/00 A 1/06 1/06 D 47/12 47/12 (56)参考文献 特開 昭60−58239(JP,A) 特開 昭63−260984(JP,A) 特開 昭59−93794(JP,A) 特開 昭54−90204(JP,A) 特公 昭26−875(JP,B1) 特公 昭48−43555(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B01J 21/00 - 38/74 C01B 31/08 C10G 47/14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C10G 1/00 C10G 1/00 A 1/06 1/06 D 47/12 47/12 (56) References JP-A-60- 58239 (JP, A) JP-A-63-260984 (JP, A) JP-A-59-93794 (JP, A) JP-A-54-90204 (JP, A) JP-B-26-875 (JP, B1) JP-B-48-43555 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) B01J 21/00-38/74 C01B 31/08 C10G 47/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 灰分が3重量%未満の褐炭を炭酸ガス雰
囲気下に 400〜800℃にて乾留し、得られた乾留炭を、
炭酸ガスもしくは水蒸気雰囲気下で 600〜900 ℃にて活
性化させて得られた炭素担体に周期律表VIII属より選
ばれた1ないし1以上の金属を担持させた後、水素にて
還元し、次いで硫化処理することを特徴とする重質炭化
水素類接触水素化分解用触媒の製造方法。
Claims: 1. Lignite having an ash content of less than 3% by weight is carbonized in a carbon dioxide gas atmosphere at 400 to 800 ° C.
One or more metals selected from Group VIII of the periodic table are supported on a carbon support obtained by activation at 600 to 900 ° C. in a carbon dioxide gas or steam atmosphere, and then reduced with hydrogen. , then the heavy hydrocarbons contact manufacturing method of the hydrocracking catalyst, wherein the sulfiding process.
JP4120212A 1992-05-13 1992-05-13 Method for producing catalyst for catalytic hydrocracking of heavy hydrocarbons Expired - Fee Related JP2981340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4120212A JP2981340B2 (en) 1992-05-13 1992-05-13 Method for producing catalyst for catalytic hydrocracking of heavy hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120212A JP2981340B2 (en) 1992-05-13 1992-05-13 Method for producing catalyst for catalytic hydrocracking of heavy hydrocarbons

Publications (2)

Publication Number Publication Date
JPH06165935A JPH06165935A (en) 1994-06-14
JP2981340B2 true JP2981340B2 (en) 1999-11-22

Family

ID=14780676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120212A Expired - Fee Related JP2981340B2 (en) 1992-05-13 1992-05-13 Method for producing catalyst for catalytic hydrocracking of heavy hydrocarbons

Country Status (1)

Country Link
JP (1) JP2981340B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625729B2 (en) * 1987-06-23 1997-07-02 日産自動車株式会社 Fluid-filled anti-vibration bush
JP3824464B2 (en) 1999-04-28 2006-09-20 財団法人石油産業活性化センター Method for hydrocracking heavy oils
JP3895224B2 (en) 2001-12-03 2007-03-22 東京応化工業株式会社 Positive resist composition and resist pattern forming method using the same
JP2006056750A (en) * 2004-08-20 2006-03-02 Shinshu Univ Porous carbon material and method for producing the same

Also Published As

Publication number Publication date
JPH06165935A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
US4357229A (en) Catalysts and hydrocarbon treating processes utilizing the same
US4313818A (en) Hydrocracking process utilizing high surface area catalysts
US4005005A (en) Process for recovering and upgrading hydrocarbons from tar sands
US5374350A (en) Process for treating heavy oil
US3988238A (en) Process for recovering upgraded products from coal
US4831003A (en) Catalyst composition and process of making
US4357263A (en) Catalyst for the upgrading of aromatic liquids
US4267033A (en) Upgrading of aromatic liquids
JPH08176559A (en) Method of hydroaromatizing hydrocarbon oil by using metal sulfide catalyst supported by new phosphorated carbon
US3983028A (en) Process for recovering upgraded products from coal
Fixari et al. New developments in deep hydroconversion of heavy oil residues with dispersed catalysts. 1. Effect of metals and experimental conditions
US4348270A (en) Catalysts and hydrocarbon treating processes utilizing the same
US4652647A (en) Aromatic-metal chelate compositions
GB1576039A (en) Hydroconversion of an oil-coal mixture
WO2009073469A1 (en) Catalyst to attain low sulfur diesel
US3733259A (en) Treatment of heavy petroleum oils
US5817229A (en) Catalytic hydrocarbon upgrading process requiring no external hydrogen supply
US5051389A (en) Catalyst composition prepared by vapor depositing onto a carbon support
JP2778961B2 (en) Method for two-stage catalytic hydrogenation of coal
US4295995A (en) Catalysts hydrocarbon treating processes
JPS6112960B2 (en)
JPH08168676A (en) Method for hydrogenation and dearomatization of hydrocarbon oil using carbon-carrying metal sulfide catalyst promoted byphosphate
JP2981340B2 (en) Method for producing catalyst for catalytic hydrocracking of heavy hydrocarbons
US4836912A (en) Hydroconversion process using aromatic metal chelate compositions
JPS5950276B2 (en) Method for hydrotreating mineral oils

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees