JP2980479B2 - Photomask and exposure method - Google Patents
Photomask and exposure methodInfo
- Publication number
- JP2980479B2 JP2980479B2 JP7712193A JP7712193A JP2980479B2 JP 2980479 B2 JP2980479 B2 JP 2980479B2 JP 7712193 A JP7712193 A JP 7712193A JP 7712193 A JP7712193 A JP 7712193A JP 2980479 B2 JP2980479 B2 JP 2980479B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- film
- pattern
- exposure
- photomask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 33
- 239000000758 substrate Substances 0.000 claims description 18
- 210000001747 pupil Anatomy 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 230000001788 irregular Effects 0.000 claims 1
- 230000003287 optical effect Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000003252 repetitive effect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、フォトマスク及び露光
方法に関する。ことに半導体素子、液晶素子、誘電体・
強誘電体素子、磁性体素子、超電導体素子の製造に用い
られる投影型露光装置に適用され、基板上に形成される
レジストパターンの解像度並びに、焦点深度の向上に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photomask and an exposure method. Especially semiconductor devices, liquid crystal devices, dielectrics,
The present invention is applied to a projection exposure apparatus used for manufacturing ferroelectric elements, magnetic elements, and superconductor elements, and relates to improvement in resolution and depth of focus of a resist pattern formed on a substrate.
【0002】[0002]
【従来の技術】近年、半導体素子の高集積化に伴い、よ
り微細なパターンでの回路構成が求められリソグラフィ
技術に対する一層の微細化要求が著しい。そこで、ステ
ッパと呼ばれる投影型露光装置を用いその要求に応ずる
べく検討が成されてきた。従来からの検討の中心は露光
装置に用いる光源波長の短波長化とそれに伴う、光学
系、レジスト等の周辺技術の改良に重点がおかれ、高圧
水銀ランプの輝線であるg線(波長:436nm)、i線
(波長:365nm)、さらにはKrFエキシマレーザを
用いたDeep UV 領域(波長:248nm)まで達しようと
している。しかしながら、特に半導体素子の急速な高集
積化に伴い、回路の最小線幅要求は0.3μm以下さら
に0.2μm以下と光源の波長と同等かそれ以下の値に
近ずきつつある。2. Description of the Related Art In recent years, as semiconductor devices have become more highly integrated, a circuit configuration with a finer pattern has been required, and there has been a remarkable demand for further miniaturization of lithography technology. Therefore, studies have been made using a projection type exposure apparatus called a stepper to meet the demand. The focus of conventional studies has been on shortening the wavelength of the light source used in the exposure apparatus and, accordingly, on improving peripheral technologies such as optical systems and resists. The g-line (wavelength: 436 nm), which is a bright line of a high-pressure mercury lamp, has been focused on. ), I-line (wavelength: 365 nm), and further to the Deep UV region (wavelength: 248 nm) using a KrF excimer laser. However, with the rapid integration of semiconductor devices in particular, the minimum line width requirement of the circuit is 0.3 μm or less and 0.2 μm or less, which is approaching the value equal to or less than the wavelength of the light source.
【0003】投影型露光装置の限界解像度(R)と焦点
深度(DOF)は一般的に以下のレーリーの式により求
められる。 R=k1λ/NA (1) k1 :プロセ
スにより決まる定数、 λ :光源の波長(nm)、 NA:投影レンズの開口数 DOF=k2λ/(NA)2 (2) k2 :プロセ
スにより決まる定数 したがって、(1)式から光源の短波長化なしに解像度
の向上を図るためには投影レンズの高NA(開口数)化
が挙げられる。しかしながら、高NA化は(2)式より
明らかなようにリソグラフィにおけるもう一つの重要な
特性である、焦点深度の低下を招き両特性の良好な達成
にはNAの最適化が必要である。また、高NA化は作製
技術的にも困難を伴い、現状得られる最大のNAは0.
5程度である。さらに、一般的に用いられている石英系
のレンズ材料ではより短波長域においての色収差の補正
が難しく吸収も増大する事から、発熱によるレンズ歪が
問題になってくる。[0003] The critical resolution (R) and depth of focus (DOF) of a projection type exposure apparatus are generally obtained by the following Rayleigh equation. R = k 1 λ / NA (1) k 1 : constant determined by process, λ: wavelength of light source (nm), NA: numerical aperture of projection lens DOF = k 2 λ / (NA) 2 (2) k 2 : Therefore, in order to improve the resolution without shortening the wavelength of the light source from equation (1), it is necessary to increase the numerical aperture (NA) of the projection lens. However, increasing the NA increases the other important characteristic in lithography, as is apparent from the equation (2), which leads to a decrease in the depth of focus, and it is necessary to optimize the NA in order to achieve both characteristics well. Further, increasing the NA involves difficulties in manufacturing technology, and the maximum NA that can be obtained at present is 0.
It is about 5. Further, with a generally used quartz lens material, it is difficult to correct chromatic aberration in a shorter wavelength range, and the absorption increases, so that lens distortion due to heat generation becomes a problem.
【0004】そこで、近年光源の波長、投影レンズのN
Aの改良なしに解像度、焦点深度の向上を図る3つの方
法が提案されている。第1の方法(特開昭57−620
52)は、周期的なマスクパターンの不透明部を挟む両
側の光透過部の少なくとも一方に隣合う光透過部と位相
の180°反転する透明膜を形成することにより、同一
NAのレンズに比較して解像度を高めることができる。
第2の方法(特開昭62−67547)は孤立(単一)
の光透過部の解像度向上手段として、単一の光透過部の
両側に透過光の位相を180°反転した解像限界以下の
光透過部を設けることにより得ようとしている。第3の
方法(特開平4−101148)は、照明光学系の瞳面
かその共役面あるいは投影光学系の瞳面の少なくとも1
ヶ所に、マスクの微細パターンから得られるフーリエ変
換パターンに基づいて定めた1組以上の透光部を有する
遮光板を設け、同一NAのレンズに比較し解像度と焦点
深度の向上を図ることが提案されている。Therefore, in recent years, the wavelength of the light source and the N
Three methods for improving resolution and depth of focus without improving A have been proposed. First method (Japanese Patent Laid-Open No. 57-620)
52) is compared with a lens having the same NA by forming a transparent film that is 180 ° out of phase with a light transmitting part adjacent to at least one of the light transmitting parts on both sides of the opaque part of the periodic mask pattern. Resolution can be increased.
The second method (JP-A-62-67547) is isolated (single)
As a means for improving the resolution of the light transmitting portion, an attempt is made to provide a light transmitting portion having a resolution equal to or lower than the resolution limit where the phase of the transmitted light is inverted by 180 ° on both sides of a single light transmitting portion. The third method (Japanese Patent Laid-Open No. 4-101148) discloses a method in which at least one of the pupil plane of the illumination optical system or its conjugate plane or the pupil plane of the projection optical system is used.
It is proposed to provide a light-shielding plate having at least one set of light-transmitting parts determined based on the Fourier transform pattern obtained from the fine pattern of the mask at several places, and to improve the resolution and the depth of focus as compared with lenses of the same NA Have been.
【0005】[0005]
【発明が解決しようとする課題】光源の波長を短波長化
することは解像度等の向上に重要であるが、短波長化に
伴う(狭帯域化した光源と)収差のない光学系の構築、
ならびに、露光波長域に適した透過率を有するレジスト
を中心とした周辺プロセスの構築等露光システム全体と
しての高性能な成立が必要であり、光源波長の短波長
化、縮小投影レンズを中心とした光学系は限界に近ずき
つつある。また、当然ながらこれらの露光装置、ならび
に露光プロセスに対する投資も増大しコストの低減が難
しい。It is important to shorten the wavelength of the light source to improve the resolution and the like. However, the construction of an optical system free from aberration (with a light source having a narrow band) associated with the shortening of the wavelength has been proposed.
In addition, it is necessary to establish a high-performance exposure system as a whole, such as the construction of a peripheral process centered on a resist that has a transmittance suitable for the exposure wavelength range. Optical systems are approaching their limits. In addition, as a matter of course, investment in these exposure apparatuses and exposure processes also increases, and it is difficult to reduce costs.
【0006】それに対してマスクへの加工あるいは露光
装置の光学系への遮光板の設置により、解像度、焦点深
度等の改善を図る方法は、これまで通りの光源波長とレ
ンズが適用でき、かつ、レジスト等の周辺プロセスも生
かせることで、大幅なコスト増なしに展開でき有利であ
る反面以下の問題点を有す。上記第1の方法は、両特性
において改善が認められるものの、規則的な繰り返しパ
ターンでなければ効果が得られず、また、シフタ端部で
の位相反転によりマスクパターンにないパターンを転写
する場合がある。さらに、実際の回路をレイアウトする
場合は、複雑な回路パターン中に良好な効果が得られる
ようにシフタを配置する必要があり、この作業が非常に
煩雑となるばかりか、回路構成によってはシフタレイア
ウトに矛盾を生じシフタの配置が困難な場合も発生し、
実用化に向けて大きな障害となっている。また、マスク
の作製においてもシフタを不透明パターンの上部、下部
のどの位置に形成する場合でも、従来のマスク作製工程
にはない重ね合わせのプロセスを要し、高精度要求と共
に工程の増加を招く。欠陥の検査・修正に関してもシフ
タについては従来のCr膜とは異なり、透明膜に対して
実施されるため、検査・修正とも実用的な手法が得られ
ていない。On the other hand, a method of improving resolution, depth of focus, and the like by processing a mask or installing a light shielding plate in an optical system of an exposure apparatus can use the same light source wavelength and lens as before, and By utilizing the peripheral processes such as resist, it can be developed without a significant increase in cost, and is advantageous, but has the following problems. In the first method, although improvements are observed in both characteristics, the effect cannot be obtained unless a regular repetitive pattern is obtained. In addition, a pattern not present in the mask pattern may be transferred due to phase inversion at the shifter end. is there. Furthermore, when laying out an actual circuit, it is necessary to arrange shifters so that a good effect can be obtained in a complicated circuit pattern, and this work becomes extremely complicated, and depending on the circuit configuration, the shifter layout may be required. Inconsistency and it is difficult to arrange shifters.
This is a major obstacle for practical use. In addition, even when the shifter is formed at any position above or below the opaque pattern in the production of the mask, a superposition process which is not included in the conventional mask production process is required, which requires high precision and increases the number of processes. In contrast to the conventional Cr film, the inspection and correction of defects are performed on the transparent film, unlike the conventional Cr film, so that a practical method for inspection and correction has not been obtained.
【0007】第2の方法は、単一部の解像度向上に有益
であるが、両側に形成する透過光の位相を180°反転
した光透過部(補助パターンと呼ぶ)を要すためやはり
パターンレイアウトの制約が大きく、また、補助パター
ンのサイズによっては転写されてしまう場合もあり問題
となる。第3の方法は、シフタ等を形成しない従来通り
の通常マスクを用い、照明系へ遮光板を配置するだけで
特性の向上が図れ有益であるが、適応できるパターンは
規則的な繰り返しパターンに限られ、また、限定された
レイアウト方向でしか良好な効果が得られないパターン
のレイアウト方向依存も有し、すべてのパターン,レイ
アウト条件に対して効果が有効となるわけでなく、実用
上問題である。The second method is useful for improving the resolution of a single portion. However, the second method requires a light transmitting portion (referred to as an auxiliary pattern) in which the phase of the transmitted light formed on both sides is inverted by 180 °, so that the pattern layout is also required. Is large, and depending on the size of the auxiliary pattern, the pattern may be transferred, which is a problem. The third method is advantageous in that the characteristics can be improved simply by arranging a light-shielding plate in the illumination system using a conventional ordinary mask without forming a shifter or the like, but the applicable pattern is limited to a regular repetitive pattern. In addition, the pattern has a layout direction dependence in which a good effect can be obtained only in a limited layout direction, and the effect is not effective for all patterns and layout conditions, which is a practical problem. .
【0008】本発明は、上記に示した問題を鑑み、投影
型露光装置の波長及びレンズのNAの改善なしに、露光
光の焦点深度を向上させ微細パターンの解像性を向上す
ることのできるフォトマスク及びそれを用いた露光方法
を提供しようとするものである。In view of the above problems, the present invention can improve the depth of focus of exposure light and the resolution of a fine pattern without improving the wavelength of a projection type exposure apparatus and the NA of a lens. An object of the present invention is to provide a photomask and an exposure method using the same.
【0009】この発明によれば、透明基板上に、単一ま
たは複数の開口部を有する遮光膜と、遮光膜上を含む全
面に形成された透明膜と、さらにこの上に形成された半
透明膜とからなり、透明膜が、透明基板から遮光膜の開
口部を通って透明膜を通過した後、半透明膜で反射し透
明膜内を1往復した光と半透明膜で反射しない光との位
相差を180°にしうる膜厚を有するフォトマスクが提
供される。即ち、従来の回折を用いたフォトマスクでは
パターンの解像度に眼界があるが、本発明では、従来よ
りも更に微細な開口を有するフォトマスクを使用し、か
つパターンの解像度を上げることができる技術を提供す
ることができる。 According to the present invention, a light-shielding film having one or a plurality of openings on a transparent substrate, a transparent film formed on the entire surface including the light-shielding film, and a semi-transparent film formed thereon After the transparent film passes through the transparent film from the transparent substrate through the opening of the light-shielding film, the light is reflected by the semi-transparent film and travels back and forth in the transparent film and light that is not reflected by the semi-transparent film. Provided is a photomask having a film thickness capable of making the phase difference of 180 °. That is, in a conventional photomask using diffraction,
Although the resolution of the pattern has an eye field, in the present invention,
Use a photomask with even finer openings
Technology that can increase the resolution of one pattern
Can be
【0010】上記透明基板は、例えばガラス、石英、溶
融石英、合成石英、螢石等から形成することができる。
上記遮光膜は、基板側から入射した光を開口部以外で遮
光すると共に開口部から入射し透明膜を通過して半透明
膜で反射し再び透明膜を通過した光を反射するためのも
のであって、例えばCr、Ta、Mo、W、Ti等の所
定の膜厚の膜を用いることができる。この膜厚は、遮光
に必要な大きさであって、通常0.05〜0.25μm
である。The transparent substrate can be formed of, for example, glass, quartz, fused quartz, synthetic quartz, fluorite, or the like.
The light-shielding film is for shielding the light incident from the substrate side other than the opening and for reflecting the light incident from the opening, passing through the transparent film, reflecting on the translucent film, and again passing through the transparent film. Therefore, a film having a predetermined thickness such as Cr, Ta, Mo, W, and Ti can be used. This film thickness is a size necessary for light shielding, and is usually 0.05 to 0.25 μm.
It is.
【0011】上記透明膜は、下方の半透明膜で反射され
ずこの膜を通過する光と、下方の半透明膜で1回反射さ
れさらに上方の遮光膜で反射されてこの膜を通過する光
とが位相差180°で干渉する膜厚に設定するのがよ
い。この膜厚は、実質的に式IThe transparent film is a light that passes through this film without being reflected by the lower translucent film, and a light that is reflected once by the lower translucent film and is reflected by the upper light shielding film and passes through this film. It is preferable to set the film thickness so as to interfere with the phase difference of 180 °. This film thickness is substantially equal to the formula I
【0012】[0012]
【数1】 (ただし、tは膜厚、mは正の奇数、λは光(露光光)
の波長、nは透明膜の屈折率、θは光の透明膜への入射
角である)で示される距離に相当するように設定され
る。光は、開口部の透明膜面に対して斜めから入射され
た場合一層効果的であり、i線の波長で0.3μm以下
の解像パターンサイズを考えると、入射角θが、通常2
〜11°に設定されるが0°〜2°の直入射においても
有効である。(Equation 1) (Where t is the film thickness, m is a positive odd number, and λ is light (exposure light)
, N is the refractive index of the transparent film, and θ is the angle of incidence of light on the transparent film). The light is more effective when the light is obliquely incident on the transparent film surface of the opening. Considering the resolution pattern size of 0.3 μm or less at the wavelength of the i-line, the incident angle θ is usually 2 μm.
Although it is set to 1111 °, it is also effective at a direct incidence of 0 ° to 2 °.
【0013】この発明においては、複数の開口部を有す
る遮光膜を用いる場合、透明基板上に遮光膜を形成する
前にもう一つ半透明膜を形成するのが好ましい。この半
透明膜(上方)は、遮光膜の開口部から入射し透明膜を
通過して半透明(下方)で反射し再び透明膜を通過した
光を反射するためのものであって、例えばCr、Ta、
Mo、Al等の所定の膜厚のものを用いることができ
る。この膜厚は通常0.03〜0.12μmである。In the present invention, when a light-shielding film having a plurality of openings is used, it is preferable to form another translucent film before forming the light-shielding film on the transparent substrate. The semi-transparent film (upper) is for reflecting light that enters from the opening of the light-shielding film, passes through the transparent film, is reflected translucently (below), and again passes through the transparent film. , Ta,
Mo, Al or the like having a predetermined thickness can be used. This film thickness is usually 0.03 to 0.12 μm.
【0014】この発明のフォトマスクは、例えば次のよ
うにして投影型露光装置に配設して用いることができ
る。すなわち、投影型露光装置の光源側の光を、順に遮
光板、コンデンサレンズ、請求項1又は2のいずれかの
フォトマスク、および投影レンズに通して基板上の感光
性材料に露光する。The photomask of the present invention can be used, for example, by disposing it in a projection exposure apparatus as follows. That is, the light on the light source side of the projection type exposure apparatus is sequentially exposed to the photosensitive material on the substrate through the light shielding plate, the condenser lens, the photomask according to claim 1 and the projection lens.
【0015】上記遮光板は、光源側の光を受け、コンデ
ンサレンズの中央部への光を遮光し周辺部への光を透光
させ、コンデンサレンズが主に周辺部に受けた光をフォ
トマスクへ斜方から入射させることができる。また上記
遮光板は、投影型露光装置に用いるコヒーレントファク
タσで表現すると通常遮光部を形成する中央領域が0.
2〜0.5の半径であり、透光部を形成する周辺領域が
0.2〜0.5の内径で≧0.3の外径である。更に、
遮光板は、コンデンサレンズの瞳面に光源からの光の一
部のみを透過する少なくとも一組以上の開口を有しても
よい。 The light-shielding plate receives light from the light source side, blocks light toward the center of the condenser lens and transmits light toward the periphery, and transmits light mainly received by the condenser lens to the periphery. it can be incident obliquely to the click. When the light-shielding plate is expressed by a coherent factor σ used in a projection type exposure apparatus, the central region where a light-shielding portion is normally formed is 0.1 mm.
The radius is 2 to 0.5, and the peripheral region forming the light transmitting portion has an inner diameter of 0.2 to 0.5 and an outer diameter of ≧ 0.3. Furthermore,
The light-shielding plate is provided on the pupil plane of the condenser lens so that light from the light source
Even if it has at least one set of openings that only transmit
Good.
【0016】[0016]
【作用】単一パターンの場合パターンが微細となり転写
マスクパターンのウェハ面上での光強度差(コントラス
ト)が低下すると当然のことながら、マスク通りのパタ
ーンは解像できない。この点は、前にも述べたように、
マスクの隣あう透明部にシフタを形成し、露光光の位相
を180°反転させる手法、あるいは、光源系に遮光板
を設置する手法にても改善できない。そこで本発明マス
クによる単一パターンに対する解像度の向上を説明す
る。In the case of a single pattern, if the pattern becomes fine and the light intensity difference (contrast) of the transfer mask pattern on the wafer surface decreases, the pattern according to the mask cannot be resolved as a matter of course. This point, as mentioned earlier,
Even if a shifter is formed in the transparent portion adjacent to the mask and the phase of the exposure light is inverted by 180 °, or a method in which a light-shielding plate is provided in the light source system cannot be improved. Therefore, improvement of the resolution for a single pattern by the mask of the present invention will be described.
【0017】図4(a)に従来のフォトマスクの断面図
を示す。1はガラス基板、2は遮光膜のCr膜で、露光
光は光透過部の3で回折され図4(b)に示すように、
0次光と±1次光の3光束で投影レンズによりウェハ5
上に結像される(1次回折光を図中破線で示した)。ま
た、1次以上の高次回折光も生じるがそれらはほとんで
結像に寄与しない。これがより一層微細パターンとなっ
た場合図4(c)に示す。光透過部3で回折された±1
次光が投影レンズを透過できず(投影光学系の瞳にケラ
レ)、この微細パターンを解像することができない。そ
こで、露光光学系のコヒーレントファクタ(σ)を調整
し露光光のコヒーレンシィを低下させる、あるいは、照
明光学系に適当な遮光板を配置するなどしてマスクに入
射する露光光の斜入射成分を増大することで図4(d)
に示すように0次光と片方の1次回折光を用いた2光束
結像(もう一方の1次回折光は瞳にケラレる)により通
常の直入射では解像できない微細パターンの解像が試み
られたが、図4(e)に示す規則的な繰り返しパターン
のように隣あう光透過部で露光光の位相が180°反転
している場合は、0次光どうしと+1次回折光(仮に、
+1次回折光とする)どうしがそれぞれ干渉して微細パ
ターンのピッチで決まる回折角を実効的に低減し斜入射
の効果が得られるものの、単一パターンでは隣あうパタ
ーンがないためこの効果を達成できない。FIG. 4A is a sectional view of a conventional photomask. 1 is a glass substrate, 2 is a Cr film as a light shielding film, and the exposure light is diffracted by a light transmitting portion 3 as shown in FIG.
Wafer 5 by a projection lens with three light beams of 0-order light and ± 1st-order light
It is imaged on the upper side (the first-order diffracted light is shown by a broken line in the figure). In addition, first-order and higher-order diffracted lights also occur, but they hardly contribute to imaging. FIG. 4C shows a case where the pattern becomes a finer pattern. ± 1 diffracted by the light transmitting part 3
The next light cannot pass through the projection lens (vignetting on the pupil of the projection optical system), and this fine pattern cannot be resolved. Therefore, the coherence factor (σ) of the exposure optical system is adjusted to reduce the coherency of the exposure light, or the oblique incidence component of the exposure light entering the mask is reduced by disposing an appropriate light shielding plate in the illumination optical system. Fig. 4 (d)
As shown in (2), the resolution of a fine pattern that cannot be resolved by normal direct incidence is attempted by two-beam image formation using the 0-order light and one of the first-order diffracted lights (the other first-order diffracted light is vignetting on the pupil). However, when the phase of the exposure light is inverted by 180 ° in the adjacent light transmitting portions as in the regular repeating pattern shown in FIG. 4E, the 0th-order light and the + 1st-order diffracted light (for example,
(Referred to as + 1st-order diffracted light). Each of them interferes with each other to effectively reduce the diffraction angle determined by the pitch of the fine pattern, thereby obtaining the effect of oblique incidence. However, this effect cannot be achieved with a single pattern because there is no adjacent pattern. .
【0018】図1(a)に本発明のマスク断面図を示
す。単一パターンにおいても微細パターンに対する解像
度向上を図るため、図4に示した通常のフォトマスク構
成に加え、Cr膜上、かつ、ガラス基板全面にもう1層
透明膜6を形成し、さらにその上部に半透明膜7を設け
る。このため図1(b)に示すように、単一の光透過部
3で回折された0次光と+1次光はそれぞれガラス基板
上に形成された透明領域内で、Cr膜と半透明膜の間を
多重反射し、擬似的な繰り返しパターンとみなすことが
できる。しかも、1往復で位相が180°反転するよう
な膜厚で透明領域を作製しておけば、図4(e)の繰り
返しパターンの説明と同様に、干渉した光は実効的な回
折角の低減を招き、単一パターンにおいても良好な微細
パターンの解像効果を得ることができる。FIG. 1A is a sectional view of a mask according to the present invention. In order to improve the resolution of a fine pattern even in a single pattern, in addition to the usual photomask structure shown in FIG. 4, another layer is formed on the Cr film and on the entire surface of the glass substrate.
A transparent film 6 is formed, and a translucent film 7 is further provided thereon. For this reason, as shown in FIG. 1B, the 0th-order light and the + 1st-order light diffracted by the single light transmitting portion 3 are each a Cr film and a translucent film within a transparent region formed on the glass substrate. Can be regarded as a pseudo-repeated pattern by multiple reflections between. Further, if the transparent region is formed with a film thickness such that the phase is inverted by 180 ° in one reciprocation, the interfering light reduces the effective diffraction angle similarly to the description of the repetitive pattern in FIG. And a good fine pattern resolution effect can be obtained even in a single pattern.
【0019】次に、この内容をウェハ面上の光強度分布
で説明すると、通常のフォトマスクに対して斜入射の効
果を適用しようとした場合を図2に示し、図2(a)に
マスク断面図、図2(b)にウェハ面上での振幅分布の
概略図、図2(c)にウェハ面上の光強度分布の概念図
を示す。このように斜入射だけでは遮光部まで広がった
光硬度分布となり、微細パターンを解像できない。一
方、図3に本発明の多重反射を利用した方式を示す(図
2と同様の構成で図示してある)。隣あう光束の位相が
180°反転し、また、反射の度に透過率が低下するた
め概念的には図3(b)に示す振幅分布となり、位相の
反転を利用する事で、通常のフォトマスクに比較して広
がりが大幅に抑制された図3(c)の光強度分布が得ら
れ、超微細パターンの良好な解像を可能とする(ただ
し、光強度は若干低下するもののコントラストに問題は
ない)。なお、図3(b)中、aは1回反射した光、b
は一度も反射していない光、cは2回反射した光の振幅
分布をそれぞれ示している。また、図3(c)中、dは
半透明膜のない場合(従来)、eは半透明膜を有する場
合(本発明)の強度分布を示している。 Next, the contents will be described with reference to the light intensity distribution on the wafer surface. FIG. 2 shows a case where an oblique incidence effect is applied to a normal photomask, and FIG. FIG. 2B is a schematic view of the amplitude distribution on the wafer surface, and FIG. 2C is a conceptual diagram of the light intensity distribution on the wafer surface. As described above, only oblique incidence results in a light hardness distribution that extends to the light-shielding portion, and a fine pattern cannot be resolved. On the other hand, FIG. 3 shows a system utilizing multiple reflection according to the present invention ( shown in the same configuration as FIG. 2 ) . The phase of the adjacent light beam is inverted by 180 °, and the transmittance is reduced at every reflection, so that the amplitude distribution conceptually becomes as shown in FIG. 3B. The light intensity distribution shown in FIG. 3C in which the spread is significantly suppressed as compared with the mask is obtained, and good resolution of the ultrafine pattern can be achieved. (However, although the light intensity is slightly reduced, there is a problem in contrast.) No). In FIG. 3B, a is the light reflected once, b
Is the light that has never been reflected, and c is the amplitude of the light that has been reflected twice.
Each distribution is shown. In FIG. 3C, d is
In the case where there is no translucent film (conventional), e indicates the case where a translucent film is provided.
3 shows an intensity distribution of the present invention (the present invention).
【0020】規則的な繰り返しパターンの場合を図5
(a)に示す。繰り返しパターンの場合は前述の図4
(e)に示したように通常フォトマスクにおいても、斜
入射成分の増大により、隣あう光透過部3からの光の位
相を180°反転させて向上できるが、本発明の基板上
への透明膜6と半透明7、8を形成し多重反射を利用す
る方法は、1往復の反射で位相を180°反転させるた
め、隣あう光透過部で多重反射光と入力光あるいは1次
回折光の位相は整合しており、同位相の多重反射光が重
ね合わされ(模式図を図5(b)に示す)、図4(e)
で説明したと同様の解像性の向上が図れる。したがっ
て、繰り返しパターンと単一パターンが共存する場合に
も本手法のマスクは解像性の向上に対して有益である。
ただし、繰り返しパターンの場合は図5(a)に示した
ように遮光膜のCrの下部にもあらかじめ半透明膜8を
形成しておいた方が望ましい。FIG. 5 shows a case of a regular repeating pattern.
(A). In the case of a repetitive pattern, see FIG.
As shown in (e), even in the ordinary photomask, the phase of the light from the adjacent light transmitting part 3 can be improved by inverting the phase by 180 ° by increasing the oblique incident component. In the method of forming the film 6 and the translucent layers 7 and 8 and using multiple reflections, the phase is inverted by 180 ° by one round trip reflection, so that the multiple reflection light and the phase of the input light or the first-order diffraction light are adjacently transmitted. Are matched, and the multiple reflection lights of the same phase are superimposed (a schematic diagram is shown in FIG. 5B), and FIG.
The resolution can be improved in the same manner as described above. Therefore, even when a repeated pattern and a single pattern coexist, the mask of this method is useful for improving the resolution.
However, in the case of a repetitive pattern, it is desirable that the translucent film 8 be formed in advance also below Cr of the light shielding film as shown in FIG.
【0021】焦点深度(DOF)は、図4(b)に模式
的に示したように通常のフォトマスクでは0次光と±1
次光の3光束結像となり、0次光と±1次光では光路差
を生じるため焦点深度は低下する。これに対し、例えば
図4(d)に模式的に示したように、本発明を含む斜入
射成分を利用した手法では、0次光と片方の1次回折光
の2光束結像(もう一方の1次回折光は瞳にケラレる)
となり、2光束の間にほとんど光路差を生じる事なく良
好な焦点深度が得られる。As shown schematically in FIG. 4 (b), the depth of focus (DOF) is 0. +-.
An image of three light beams of the next light is formed, and an optical path difference occurs between the 0th light and the ± 1st light, so that the depth of focus is reduced. On the other hand, for example, as schematically shown in FIG. 4D, in the method using the oblique incident component including the present invention, the two-beam image formation of the zero-order light and one of the first-order diffracted lights (the other one). The first-order diffracted light is vignetting on the pupil)
Thus, a good depth of focus can be obtained with almost no optical path difference between the two light beams.
【0022】以上の説明は露光光の斜入射成分による特
性を中心に進めたが、本発明のマスクによる特性向上効
果は、斜入射露光光に限定されるものではなく、通常の
投影型露光装置におけるように、直入射が支配的な光学
系であっても開口パターンにより所定の角度に回折され
た±1次回折光の多重反射を利用して良好な解像度、焦
点深度の改善が得られる。Although the above description has focused on the characteristics of the exposure light due to the oblique incidence component, the effect of improving the characteristics of the mask of the present invention is not limited to the oblique incidence exposure light. As described above, even in an optical system in which direct incidence is dominant, good resolution and an improved depth of focus can be obtained by utilizing multiple reflection of ± 1st-order diffracted light diffracted at a predetermined angle by an aperture pattern.
【0023】[0023]
【実施例】以下に本発明の実施例を述べる。 実施例1 本発明の第1の実施例として単一パターンを有すマスク
の断面構造を図1(a)に示す。1はガラス基板、2は
遮光膜のCrであり、作製は1のガラス基板上に2のC
r膜形成後Cr膜を所定の形状にEB露光・エッチング
して3の光透過部を得る。この後6の透明膜をガラス基
板全面に形成するが、透明膜の形成材料としてはこの実
施例ではSOG(スピンオングラス)を用い、570nm
の厚みに形成した。また、露光光にはi線(波長
(λ):365nm)を用い、露光光に対する屈折率
(n)は1.45であった。最後に透明膜の上部に半透
明膜7をこの実施例では50nm厚のCrで形成した。透
明膜6の材料としてはこのほかに、スパッタ形成による
SiO2 等も有効である。半透明膜の厚みは特性向上と
適切な光強度(露光量)によって適正化されるが、10
0nm以下程度が望ましい。また、半透明膜8は解像パタ
ーンサイズによっては、図5(a)に繰り返しパターン
の例で示したように遮光膜6の上方にも形成される。透
明膜6の膜厚(t)は多重反射光の位相が反射せずに直
進する光に対して1往復で180°変化するように設定
する必要があり、図7に模式図を示す様にこの時の片側
の光路長をLとすると、Embodiments of the present invention will be described below. Embodiment 1 FIG. 1A shows a sectional structure of a mask having a single pattern as a first embodiment of the present invention. 1 is a glass substrate, 2 is a light-shielding film of Cr, and the production is 2 C on 1 glass substrate.
After the formation of the r film, the Cr film is subjected to EB exposure and etching into a predetermined shape to obtain 3 light transmitting portions. Thereafter, a transparent film 6 is formed on the entire surface of the glass substrate. In this embodiment, SOG (spin-on-glass) is used as a material for forming the transparent film, and the transparent film is formed at 570 nm.
Formed to a thickness of Further, i-line (wavelength (λ): 365 nm) was used as the exposure light, and the refractive index (n) for the exposure light was 1.45. Finally, a translucent film 7 was formed on the transparent film with Cr having a thickness of 50 nm in this embodiment. In addition, as a material of the transparent film 6, SiO 2 or the like formed by sputtering is also effective. The thickness of the translucent film is optimized by improving characteristics and appropriate light intensity (exposure amount).
It is desirable to be about 0 nm or less. Depending on the resolution pattern size, the translucent film 8 is also formed above the light shielding film 6 as shown in the example of the repetitive pattern in FIG. The thickness (t) of the transparent film 6 needs to be set so that the phase of the multiple reflected light changes 180 ° in one reciprocation with respect to the light traveling straight without being reflected, as shown in the schematic diagram of FIG. If the optical path length on one side at this time is L,
【0024】[0024]
【数2】 の関係を満たすように形成されなければならなく、この
実施例では9λ/2とし、L=約575nmの設計値を得
た。このLは図1(b)等に示すように斜入射成分によ
る光路であり、正確な適正膜厚は光路Lと入射角から求
められる。この実施例では≦0.3μmパターンへの適
用を考へマスク上でのパターンサイズと露光波長によ
り、入射角θ=約8.5°を得た。ここで、膜厚(t)
は t=Lcosθ (4) により定められ、t=約570nmを得た。(Equation 2) In this example, the design value was set to 9λ / 2, and a design value of L = about 575 nm was obtained. This L is an optical path based on an oblique incident component as shown in FIG. 1B and the like, and an accurate appropriate film thickness can be obtained from the optical path L and the incident angle. In this example, an incident angle θ of about 8.5 ° was obtained based on the pattern size on the mask and the exposure wavelength in consideration of application to a pattern of ≦ 0.3 μm. Here, the film thickness (t)
Is determined by t = Lcos θ (4), and t = about 570 nm was obtained.
【0025】以上の工程により作製した本発明のマスク
を、この実施例では露光光学系のコヒーレントファクタ
(σ)がσ=0.6である投影型露光装置に適用し、図
3(c)に示したような優れたコントラスト特性を達成
し、良好な解像パターンを得ると共に焦点深度の改善も
図られた。また、露光光学系のσ値については0.3以
上程度が望ましい。In this embodiment, the mask of the present invention manufactured by the above steps is applied to a projection type exposure apparatus in which the coherent factor (σ) of the exposure optical system is σ = 0.6. The excellent contrast characteristics as shown were achieved, a good resolution pattern was obtained, and the depth of focus was improved. Further, the σ value of the exposure optical system is desirably about 0.3 or more.
【0026】実施例2 本発明の第2の実施例として、規則的な繰り返しパター
ンへの適応例を説明する。マスクの断面図を図5(a)
に示したが、マスクの作製法、露光用とも第1の実施例
とほぼ同様であるが、繰り返しパターンの場合は透明膜
6の形成前にも半透明膜8が必要であり、形成後の半透
明膜と同様に約50nmのCr膜が形成されている。さら
に、この下部Cr膜8の膜厚制御性・再現性の向上を図
るために図5(c)に示す、ITO等の材料からなるエ
ッチングストップ層9の形成も有効である。Embodiment 2 As a second embodiment of the present invention, an example of application to a regular repeating pattern will be described. FIG. 5A is a cross-sectional view of the mask.
Although the method of manufacturing the mask and the method for exposure are almost the same as those of the first embodiment, in the case of a repetitive pattern, the translucent film 8 is necessary even before the formation of the transparent film 6, and A Cr film of about 50 nm is formed similarly to the translucent film. Further, in order to improve the controllability and reproducibility of the thickness of the lower Cr film 8, it is effective to form an etching stop layer 9 made of a material such as ITO as shown in FIG.
【0027】実施例3 本発明の第3の実施例として、図6に示すように照明光
学系のほぼ瞳面に、遮光板10を配置してマスクに対す
る露光光の斜入射成分の増大を図った露光光学系を有す
る投影型露光装置に本発明のマスクを適応した露光方法
を示す。遮光領域としては、a=0.6の開口領域に対
して中心から2/3の半径に相当するa領域を円形に遮
光した光学系と中心からx,y方向ともa=0.4付近
にa半径約0.2の2組の開口を設けた光学系を用い
た。斜入射成分の増大により、一層コントラストの向上
が図れ良好な解像性、焦点深度の改善がなされた。Embodiment 3 As a third embodiment of the present invention, as shown in FIG. 6, a light shielding plate 10 is arranged almost on the pupil plane of the illumination optical system to increase the oblique incidence component of the exposure light to the mask. An exposure method in which the mask of the present invention is applied to a projection type exposure apparatus having an exposure optical system. As the light-shielding area, an optical system that circularly shields the area a corresponding to a radius of 2/3 from the center with respect to the opening area of a = 0.6 and the area near a = 0.4 in both x and y directions from the center. An optical system provided with two sets of apertures having a radius of about 0.2 was used. By increasing the oblique incidence component, the contrast was further improved, and the resolution and the depth of focus were improved.
【0028】また、本発明の効果は露光波長によらず、
上記実施例では露光波長にi線(365nm)を用いた例
を中心に述べたが、この波長に限らずg線(436n
m)、KrFエキシマレーザ光(248nm)、ArFエ
キシマレーザ光(193nm)等でも同様の結果が得られ
る。The effect of the present invention is independent of the exposure wavelength.
In the above embodiment, an example in which the i-line (365 nm) is used as the exposure wavelength has been mainly described. However, the present invention is not limited to this wavelength and the g-line (436n) is used.
m), KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), and the like can provide similar results.
【0029】[0029]
【発明の効果】本発明によるフォトマスク及び露光法
は、従来のフォトマスクに比較して、パターンの解像性
並びに焦点深度で大幅な改善効果が得られ、他の、シフ
タにより露光光の位相を制御する位相シフトマスクによ
る改善手法、露光光学系に遮光板等を配置し、2光束結
像による改善手法等と比較しても、特に単一パターンに
ついては解像性、焦点深度共優れた改善効果を達成して
いる。また、マスクの作製工程も比較的簡便で、従来の
フォトマスクの作製工程に近く、上記位相シフトマスク
に比較するとシフタ配置の煩雑さがなく大幅な工程簡略
化が図れると共に、作製工程上マスク欠陥の発生率も従
来のフォトマスク並であり、実用上極めて有益である。According to the photomask and the exposure method of the present invention, a significant improvement in pattern resolution and depth of focus can be obtained as compared with the conventional photomask. In comparison with the improvement method using a phase shift mask that controls the temperature and the improvement method using a two-beam image by disposing a light-shielding plate etc. in the exposure optical system, especially for a single pattern, both resolution and depth of focus are excellent. The improvement effect has been achieved. In addition, the mask manufacturing process is relatively simple, is close to the conventional photomask manufacturing process, and can simplify the process greatly without the complexity of the shifter arrangement as compared with the phase shift mask. Is as high as a conventional photomask, and is extremely useful in practice.
【図1】この発明の実施例で作製したフォトマスクの説
明図である。FIG. 1 is an explanatory diagram of a photomask manufactured in an embodiment of the present invention.
【図2】従来のフォトマスクを用いた結像の説明図であ
る。FIG. 2 is an explanatory diagram of image formation using a conventional photomask.
【図3】この発明の実施例で作製したフォトマスクを用
いた結像の説明図である。FIG. 3 is an explanatory diagram of image formation using a photomask manufactured in an embodiment of the present invention.
【図4】従来のフォトマスクの説明図である。FIG. 4 is an explanatory diagram of a conventional photomask.
【図5】この発明の実施例で作製したフォトマスクの説
明図である。FIG. 5 is an explanatory diagram of a photomask manufactured in an example of the present invention.
【図6】この発明の実施例で行った露光方法の説明図で
ある。FIG. 6 is an explanatory diagram of an exposure method performed in an embodiment of the present invention.
【図7】この発明の実施例で作製したフォトマスクの透
明膜内の多重反射の説明図である。FIG. 7 is an explanatory diagram of multiple reflection in a transparent film of a photomask manufactured in an embodiment of the present invention.
1 ガラス基板(透明基板) 2 遮光膜 3 開口部(光透過部) 4 投影レンズ 5 ウェハ 6 透明膜 7,8 半透明膜 9 エッチングストップ膜 10 遮光板 11 コンデンサレンズ 12 フォトマスク DESCRIPTION OF SYMBOLS 1 Glass substrate (transparent substrate) 2 Light shielding film 3 Opening (light transmission part) 4 Projection lens 5 Wafer 6 Transparent film 7,8 Translucent film 9 Etching stop film 10 Light shielding plate 11 Condenser lens 12 Photo mask
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−101148(JP,A) 特開 平6−161092(JP,A) 特開 平2−248949(JP,A) 特開 昭62−67547(JP,A) 特開 平4−40455(JP,A) 特開 平4−80756(JP,A) (58)調査した分野(Int.Cl.6,DB名) G03F 1/08 - 1/16 H01L 21/027 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-101148 (JP, A) JP-A-6-161092 (JP, A) JP-A-2-248949 (JP, A) JP-A-62-162 67547 (JP, A) JP-A-4-40455 (JP, A) JP-A-4-80756 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G03F 1/08-1 / 16 H01L 21/027
Claims (3)
を有する遮光膜と、遮光膜上を含む全面に形成された透
明膜と、少なくともこの透明膜の上面に形成された半透
明膜とからなり、透明膜が、透明基板から遮光膜の開口
部を通って透明膜を通過した後、半透明膜で反射し透明
膜内を1往復した光と半透明膜で反射しない光との位相
差を180°にしうる膜厚を有するフォトマスク。1. A light-shielding film having one or a plurality of openings on a transparent substrate, a transparent film formed on the entire surface including the light-shielding film, and a translucent film formed on at least an upper surface of the transparent film. After the transparent film passes through the transparent film from the transparent substrate through the opening of the light-shielding film, the light reflected by the translucent film and reciprocated in the transparent film once and the light not reflected by the translucent film. A photomask having a film thickness capable of setting a phase difference to 180 °.
ト、スペース、ラインあるいは不定形パターンであるこ
とを特徴とする請求項1記載のフォトマスク。2. The photomask according to claim 1, wherein the opening of the light shielding film is a single hole, dot, space, line, or irregular pattern.
光板、コンデンサレンズ、請求項1又は2のいずれかの
フォトマスク、および投影レンズに通して基板上の感光
性材料に露光する露光方法であって、 上記遮光板が、光源からの光をコンデンサレンズの中央
部において遮光し周辺部において透光させる構成を有す
るか、あるいは、コンデンサレンズの瞳面に光源からの
光の一部のみを透過する少なくとも一組以上の開口を有
し、 上記遮光板を介して 主にコンデンサレンズの周辺部に受
けた光をフォトマスクへ斜方から入射させることを特徴
とする露光方法。The 3. A light source side of the projection exposure apparatus, the light shielding plate in order, a condenser lens, one of photomasks of claim 1 or 2, and the photosensitive material on the substrate through a projection lens exposure An exposure method, wherein the light shielding plate transmits light from a light source to a center of a condenser lens.
It has a configuration to block light in the part and transmit light in the peripheral part
Or from the light source on the pupil plane of the condenser lens.
At least one set of apertures that transmit only part of the light
Exposure method is characterized in that it is incident light received in the peripheral portion of the main condenser lens through the light shielding plate obliquely to the photomask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7712193A JP2980479B2 (en) | 1993-04-02 | 1993-04-02 | Photomask and exposure method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7712193A JP2980479B2 (en) | 1993-04-02 | 1993-04-02 | Photomask and exposure method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06289590A JPH06289590A (en) | 1994-10-18 |
JP2980479B2 true JP2980479B2 (en) | 1999-11-22 |
Family
ID=13624970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7712193A Expired - Fee Related JP2980479B2 (en) | 1993-04-02 | 1993-04-02 | Photomask and exposure method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2980479B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990079781A (en) * | 1998-04-09 | 1999-11-05 | 윤종용 | Photomasks and Photo Equipment |
JP4328922B2 (en) * | 1999-09-21 | 2009-09-09 | 信越化学工業株式会社 | Phase shift photomask |
US7524593B2 (en) * | 2005-08-12 | 2009-04-28 | Semiconductor Energy Laboratory Co., Ltd. | Exposure mask |
JP5724509B2 (en) * | 2011-03-28 | 2015-05-27 | 大日本印刷株式会社 | Photomask and photomask blanks |
JP5949877B2 (en) * | 2014-11-14 | 2016-07-13 | 大日本印刷株式会社 | Mask pattern transfer method |
-
1993
- 1993-04-02 JP JP7712193A patent/JP2980479B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06289590A (en) | 1994-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2864915B2 (en) | Method for manufacturing semiconductor device | |
US6004699A (en) | Photomask used for projection exposure with phase shifted auxiliary pattern | |
US5723235A (en) | Method of producing photomask and exposing | |
US5863677A (en) | Aligner and patterning method using phase shift mask | |
JP3368265B2 (en) | Exposure method, exposure apparatus, and device manufacturing method | |
JP4646367B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
KR19990045024A (en) | Double exposure method and device manufacturing method using the same | |
JPH09199390A (en) | Pattern forming method, projection exposure apparatus, and semiconductor device manufacturing method | |
US5642183A (en) | Spatial filter used in a reduction-type projection printing apparatus | |
JPH05326370A (en) | Projection aligner | |
JPH06123963A (en) | Exposure mask and exposing method | |
JP2877200B2 (en) | Photomask for exposure and method of manufacturing the same | |
JP3347670B2 (en) | Mask and exposure method using the same | |
US6709794B2 (en) | Exposure method based on multiple exposure process | |
JP2980479B2 (en) | Photomask and exposure method | |
JP3323815B2 (en) | Exposure method and exposure apparatus | |
JPH0968790A (en) | Photomask | |
JP3133618B2 (en) | Spatial filter used in reduction projection exposure apparatus | |
US6544721B1 (en) | Multiple exposure method | |
JP3571397B2 (en) | Light source filter, projection exposure apparatus and projection exposure method using the same | |
JP3554246B2 (en) | Exposure method, exposure apparatus, and device manufacturing method | |
KR0135355B1 (en) | Projection exposure apparatus | |
JPH08152707A (en) | Photomask, exposure method using the photomask and production of the photomask | |
JPH10115932A (en) | Exposure method using phase shift mask | |
JPH09236904A (en) | Photomask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |