JP2977182B2 - Luminescent carrier - Google Patents
Luminescent carrierInfo
- Publication number
- JP2977182B2 JP2977182B2 JP9452995A JP9452995A JP2977182B2 JP 2977182 B2 JP2977182 B2 JP 2977182B2 JP 9452995 A JP9452995 A JP 9452995A JP 9452995 A JP9452995 A JP 9452995A JP 2977182 B2 JP2977182 B2 JP 2977182B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- carrier
- scattering
- luminescent
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/08—Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Planar Illumination Modules (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、液相中に光を送り込む
必要のある反応装置に使用される発光担体、特に、微細
藻類等に光合成を行わせるバイオリアクターに好適に使
用される発光担体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a luminescent carrier used in a reaction apparatus which needs to send light into a liquid phase, and more particularly, a luminescent carrier suitably used in a bioreactor for photosynthesizing microalgae or the like. About.
【0002】[0002]
【従来の技術】近年、化石燃料の大量消費や森林の伐採
に伴って大気中の二酸化炭素(CO2)濃度が上昇し、
いわゆる地球温暖化が国際的問題となってきている。大
気中へのCO2 の放出を減らすひとつの手段として、C
O2 を多量に含む工場などの排ガスを光合成により固定
化する方法が提案されている。例えば、微細藻類を含む
培養液の入ったバイオリアクター中に、排ガスと太陽光
を導き入れて、光合成により微細藻類を増殖させて、C
O2 を有機物として固定化することが提案されている。
このようなバイオリアクターに光を導く方法には、太陽
光を集めて光ファイバーバンドル等により導くことが提
案されている。この方法により増殖した微細藻類は、バ
イオマス資源として利用することができる。2. Description of the Related Art In recent years, the concentration of carbon dioxide (CO 2 ) in the atmosphere has increased due to the massive consumption of fossil fuels and the deforestation of forests.
So-called global warming is becoming an international problem. One way to reduce CO 2 emissions into the atmosphere is to use C 2
There has been proposed a method for immobilizing exhaust gas from a plant containing a large amount of O 2 by photosynthesis. For example, exhaust gas and sunlight are introduced into a bioreactor containing a culture solution containing microalgae, and the microalgae are grown by photosynthesis.
It has been proposed to fix O 2 as an organic substance.
As a method of guiding light to such a bioreactor, it has been proposed to collect sunlight and guide it with an optical fiber bundle or the like. Microalgae grown by this method can be used as biomass resources.
【0003】[0003]
【発明が解決しようとする課題】ところが、従来の光フ
ァイバーバンドル等によりバイオリアクターに光を導く
方法においては、バイオリアクター内の培養液中には微
生物等が無数に浮遊しているため光の減衰が大きいの
で、光ファイバーの端面といった小さい光源から出射さ
れた光の届く範囲はごく狭いものとなっている。従っ
て、光合成が行われる範囲も限られてしまう。光合成を
効率よく行わせるためには、光ファイバーバンドル等か
らの光を培養液中の広い範囲に均一に分散させて放射す
る装置が必要である。以下、このような装置を発光担体
と呼ぶ。However, in the conventional method of guiding light to a bioreactor using an optical fiber bundle or the like, light is attenuated because microorganisms and the like are innumerably suspended in a culture solution in the bioreactor. Because of its large size, the reach of light emitted from a small light source, such as the end face of an optical fiber, is very small. Therefore, the range in which photosynthesis is performed is also limited. In order to efficiently perform photosynthesis, a device that uniformly disperses and emits light from an optical fiber bundle or the like over a wide range in a culture solution is required. Hereinafter, such a device is referred to as a luminescent carrier.
【0004】そこで本発明は、バイオリアクターにおけ
る光合成生物の培養に好適な、培養液中での長時間の使
用に耐える耐水性と耐久性を有し、発光面のサイズを大
きくすることができ、入射光の損失の少ない発光担体を
提供することを目的とする。また本発明は、上記目的に
加えて、発光表面の散乱光強度がほぼ均一の状態で光を
放射することができる発光担体を提供することを目的と
する。 Accordingly, the present invention provides a water-resistant and durable, long-time use in a culture solution suitable for culturing photosynthetic organisms in a bioreactor, and can increase the size of the light-emitting surface . It is an object of the present invention to provide a luminescent carrier with less loss of incident light . Further, the present invention provides
In addition, light is emitted while the scattered light intensity on the light emitting surface is almost uniform.
With the aim of providing a luminescent carrier that can emit
I do.
【0005】[0005]
【課題を解決するための手段】上記した問題点を解決す
るために、本発明の発光担体は、(1)重ね合わせ面が
光散乱面として入射光を散乱させることができる、2枚
の透明板を重ね合わせた密閉構造の発光担体であって、
(2)該発光担体の少なくとも一つの端部は、光源から
の光を受け入れるための光入射部であることを特徴とす
る発光担体である。 また、上記した問題点を解決するた
めに、本発明の別の発光担体は、(1)重ね合わせ面が
光散乱面として入射光を散乱させることができる、2枚
の透明板を重ね合わせた密閉構造の発光担体であって、
(2)該発光担体の少なくとも一つの端部は、光源から
の光を受け入れるための光入射部であり、(3)前記透
明板の光散乱面は、前記光入射部付近では散乱能力が小
さく、前記光入射部から離れるに従い散乱能力が大きく
形成されていることを特徴とする発光担体である。In order to solve the problems mentioned above SUMMARY OF THE INVENTION, emission carrier of the present invention, (1) mating surfaces
Two sheets that can scatter incident light as a light scattering surface
Luminescent carrier of a sealed structure in which transparent plates are stacked,
(2) at least one end of the luminescent carrier is connected to a light source;
It is a light incident part for receiving light of
Luminescent carrier. Also, to solve the above problems
Another light-emitting carrier of the present invention is: (1) a light-emitting carrier having a closed structure in which two transparent plates are superimposed such that the superposed surface can scatter incident light as a light scattering surface,
(2) At least one end of the luminescent carrier is a light incident portion for receiving light from a light source. (3) The light scattering surface of the transparent plate has a small scattering ability near the light incident portion. The luminescent carrier is characterized in that the scattering ability increases as the distance from the light incident portion increases.
【0006】本発明の発光担体における透明板の光散乱
面は、その光散乱部分の割合を光入射部側でP、光入射
部より最も遠い面でQとするとき、次の式(1)、The light scattering surface of the transparent plate in the luminescent carrier of the present invention is represented by the following equation (1), where the ratio of the light scattering portion is P on the light incident side and Q is the surface farthest from the light incident portion. ,
【0007】[0007]
【数2】 を満たすことが、散乱光強度をほぼ均一の状態で、透明
板全体から光を放射させるために必要である。(Equation 2) It is necessary to satisfy the condition in order to emit light from the entire transparent plate with the scattered light intensity being substantially uniform.
【0008】本発明の発光担体は、その一方の端面が光
入射端面であり、もう一方の端面が光反射板が設置され
た光反射端面とすることが、透明板全体から均一に光を
散乱するために好ましい態様である。しかしながら、発
光担体の両端面を光入射端面とすることも可能である。In the luminescent carrier of the present invention, one end face is a light incident end face and the other end face is a light reflecting end face on which a light reflecting plate is provided, whereby light is uniformly scattered from the entire transparent plate. This is a preferred embodiment. However, it is also possible to use both end faces of the luminescent carrier as light incident end faces.
【0009】本発明の発光担体は、接続可能なユニット
から構成されていてもよく、該ユニットが複数個接続さ
れて単一の発光担体を形成することができる。The luminescent carrier of the present invention may be composed of a connectable unit, and a plurality of the units can be connected to form a single luminescent carrier.
【0010】本発明の発光担体の基本構造の1例を、図
1の発光担体の斜視図及び図2のその断面図に基づき説
明する。本発明の発光担体3は、2枚の略長方形の透明
板1を重ね合わせてその周囲が密閉構造となるように形
成されている。2枚の透明板1の合わせ目部分の側面周
囲は、防水の目的のために封止材、接着剤等により接着
あるいは溶着されている。図1の発光担体3の一方の端
面は光入射端面4、他の端面は光反射端面5となってお
り、光入射端面4からの光がこの光反射端面5迄到達し
た場合に、到達した光を反射させて、発光担体3内に戻
す作用をし、入射光を効率よく利用することができる。
なお、この光反射端面5を廃止し、両端面とも光入射端
面4とすることもできる。また、光入射を行う部分は、
発光担体3の端面に限らず、発光担体3の端部付近の全
周囲に形成してもよい。One example of the basic structure of the luminescent carrier of the present invention will be described with reference to a perspective view of the luminescent carrier of FIG. 1 and a sectional view of FIG. The luminescent carrier 3 of the present invention is formed such that two substantially rectangular transparent plates 1 are superimposed on each other to form a hermetically sealed structure. The periphery of the side surface of the joint portion between the two transparent plates 1 is bonded or welded with a sealing material, an adhesive, or the like for the purpose of waterproofing. One end face of the light emitting carrier 3 in FIG. 1 is a light incident end face 4 and the other end face is a light reflecting end face 5. When light from the light incident end face 4 reaches this light reflecting end face 5, the light reaches the light reflecting end face 5. The light is reflected and returned to the inside of the light emitting carrier 3, and the incident light can be used efficiently.
Note that the light reflection end face 5 may be omitted, and both end faces may be the light incidence end faces 4. Also, the part where light is incident
Not limited to the end face of the light emitting carrier 3, the light emitting carrier 3 may be formed all around the end portion.
【0011】本発明の発光担体において、透明窓から入
射された入射光は、発光担体の透明板1内を伝播する。
ここで、2枚の透明板1の重なり合う面は、共に砂スリ
面等の光散乱面2となっているので、入射光を少しずつ
散乱させて発光担体3の裏表の両表面から散乱光を放射
することができる。In the luminous carrier of the present invention, the incident light incident from the transparent window propagates through the transparent plate 1 of the luminous carrier.
Here, since the overlapping surfaces of the two transparent plates 1 are both light scattering surfaces 2 such as sand-grinding surfaces, the incident light is scattered little by little so that the scattered light from both the front and back surfaces of the luminescent carrier 3 is reduced. Can radiate.
【0012】本発明の発光担体は、2枚の透明板1の合
わせ目部分の側面周囲が、防水の目的のために封止材等
により接着あるいは溶着されて密封構造となっているた
め、本発明の発光担体3を液相中で使用しても、2枚の
透明板1の合わせ目部分に形成されている光散乱面に液
体が侵入しないので、透明板1の光散乱面2が濡れて半
透明となるような光散乱機能が低下する事態を防ぐこと
ができる。したがって、液相中での使用でも光を均一に
散乱することが可能である。The luminous carrier of the present invention has a hermetically sealed structure in which the periphery of the joint between the two transparent plates 1 is bonded or welded with a sealing material or the like for the purpose of waterproofing. Even if the luminescent carrier 3 of the present invention is used in a liquid phase, the liquid does not enter the light scattering surface formed at the joint portion of the two transparent plates 1, so that the light scattering surface 2 of the transparent plate 1 is wet. Thus, it is possible to prevent a situation in which the light scattering function is reduced such that the light scattering function becomes translucent. Therefore, it is possible to uniformly scatter light even when used in a liquid phase.
【0013】本発明の発光担体3に用いる透明板1の材
質としては、光透過率の良好な光学ガラスやアクリル樹
脂等が適している。透明板1の合わせ面に光散乱加工す
るためには、研磨砂によるスリ面としたり、あるいは白
色塗料を塗るといった方法が挙げられる。また、透明板
1として材料の大きさに制限のあるもの(例えば、光学
ガラス等)を使用する場合には、小さい発光担体3をユ
ニットとして製作してから、いくつかのユニットを透明
な接着剤等で接続して大きな発光担体3とすることもで
きる。As a material of the transparent plate 1 used for the luminescent carrier 3 of the present invention, an optical glass or an acrylic resin having a good light transmittance is suitable. In order to perform the light scattering process on the mating surface of the transparent plate 1, a method of forming a sand surface with abrasive sand or applying a white paint may be used. When a material having a limited material size (for example, optical glass) is used as the transparent plate 1, a small light emitting carrier 3 is manufactured as a unit, and then some units are connected to a transparent adhesive. It is also possible to form a large luminous carrier 3 by connecting them.
【0014】本発明者らの実験によると、発光担体3の
透明板1の光散乱面2の光散乱能力を一様にすると、後
述するように散乱光強度は光源からの距離によって指数
関数的に単調減少するので、散乱光の不均一が極めて大
きくなってしまうことが明らかとなった。したがって、
散乱光強度を均一化するためには、光散乱面2の光散乱
能力を光入射端面4付近では小さく、光入射端面4から
離れるにしたがって大きくする必要がある。According to experiments by the present inventors, if the light scattering ability of the light scattering surface 2 of the transparent plate 1 of the luminescent carrier 3 is made uniform, the intensity of the scattered light varies exponentially with the distance from the light source as described later. It has been clarified that the non-uniformity of the scattered light becomes extremely large since it monotonically decreases. Therefore,
In order to make the scattered light intensity uniform, the light scattering ability of the light scattering surface 2 needs to be small near the light incident end face 4 and increased as the distance from the light incident end face 4 increases.
【0015】ここで、光散乱面2の光散乱能力を表す数
値として、以下のように「散乱係数」を定義する。長さ
Lの発光担体3の片側端面に光源を設置した場合の模式
図を図3に示す。光源からの距離をz、入射光強度をI
0 、発光担体3内部を伝播する光の光強度をI(z)と
する。光が距離z〜z+Δzを伝播する間に、 I(z)・Δz・t の光が散乱される場合、tを散乱係数と定義する。散乱
係数tが光源からの距離zによらず一定値であるなら
ば、散乱による散乱光強度分布は下記の式(2)、Here, a "scattering coefficient" is defined as a numerical value indicating the light scattering ability of the light scattering surface 2 as follows. FIG. 3 is a schematic diagram showing a case where a light source is installed on one end surface of the luminescent carrier 3 having a length L. The distance from the light source is z, and the incident light intensity is I
0 , the light intensity of the light propagating inside the luminescent carrier 3 is defined as I (z). If light of I (z) · Δz · t is scattered while the light propagates the distance z to z + Δz, t is defined as a scattering coefficient. If the scattering coefficient t is a constant value irrespective of the distance z from the light source, the scattered light intensity distribution due to scattering is given by the following equation (2):
【0016】[0016]
【数3】 により表される。上記式(2)のままでは散乱光強度が
指数関数的に減少するので、散乱光強度の均一性を良く
するためには散乱係数tをzによって変化させる必要が
ある。(Equation 3) Is represented by Since the scattered light intensity decreases exponentially with the above equation (2), it is necessary to change the scattering coefficient t by z in order to improve the uniformity of the scattered light intensity.
【0017】散乱係数tのzによる変化を適当な数式で
表し、以下の定数 発光担体の長さ: Lmm 透明板内部における、厚さ10mmあたりの光の透過
率:Tr (0<Tr ≦1) 光反射端面の反射効率: R0 (0<R0≦1) を決めれば、発光担体のz方向の散乱光強度分布は数値
計算することができる。本発明者らは、散乱係数tのz
による変化を下記の式(3)の二次式The change of the scattering coefficient t due to z is represented by an appropriate formula, and the following constants: Length of the luminescent carrier: Lmm Light transmittance per 10 mm thickness inside the transparent plate: T r (0 <T r ≦ 1) Reflection efficiency of light reflecting end face: If R 0 (0 <R 0 ≦ 1) is determined, the scattered light intensity distribution of the luminescent carrier in the z direction can be calculated numerically. We consider the scattering coefficient t as z
Is a quadratic expression of the following equation (3).
【0018】[0018]
【数4】 (但し、x=z/L,A,B,Cは定数)で表し、L=
1000mm、Tr=0.9985、R0 =1.0及び
0.8の場合について、散乱光強度分布の計算を行っ
た。散乱光強度分布が均一に近くなるように定数A,
B,Cの値を最適化した計算結果を図4、図5にそれぞ
れ示す。tの変化を表す式は、下記の式(4)、式
(5)(Equation 4) (Where x = z / L, A, B and C are constants), and L =
The scattered light intensity distribution was calculated for the case of 1000 mm, Tr = 0.9985, R0 = 1.0 and 0.8. The constants A, so that the scattered light intensity distribution is nearly uniform
Calculation results obtained by optimizing the values of B and C are shown in FIGS. 4 and 5, respectively. Equations representing the change of t are given by the following equations (4) and (5).
【0019】[0019]
【数5】 (Equation 5)
【0020】[0020]
【数6】 である。散乱係数tの、光入射端面4(x=0)と光反
射端面5(x=1)での値は、R0 =1.0の場合、光
入射端面でt=0.9053/L、光反射端面でt=
3.6539/Lとなり、R0 =0.8の場合、光入射
端面でt=0.9068/L、光反射端面でt=3.8
350/Lとなる。(Equation 6) It is. The value of the scattering coefficient t at the light incident end face 4 (x = 0) and the light reflecting end face 5 (x = 1) is t = 0.9053 / L at the light incident end face when R 0 = 1.0, T =
3.639 / L, and when R 0 = 0.8, t = 0.9068 / L at the light incident end face and t = 3.8 at the light reflective end face.
350 / L.
【0021】本発明の発光担体において、透明板の光散
乱面の光散乱能力を変化させるためには、以下に示す方
法が挙げられる。In the luminescent carrier of the present invention, the following method can be used to change the light scattering ability of the light scattering surface of the transparent plate.
【0022】透明板に形成する光散乱面の性質を変化
させる。例えば、光散乱面を砂スリ面とする場合であれ
ば、砂目の粗さを連続的あるいは段階的に変化させて散
乱係数(光散乱能力)を変える。The nature of the light scattering surface formed on the transparent plate is changed. For example, if the light scattering surface is a sand surface, the roughness is changed continuously or stepwise to change the scattering coefficient (light scattering ability).
【0023】透明板に形成する光散乱面を、光散乱部
分と平滑部分が混在する状態として、光散乱部分の割合
を連続的あるいは段階的に変化させる。例えば、透明板
の表面に穴のあいたマスクをかけてから研磨砂を吹き付
けたり、あるいは白色塗料を塗るといった方法をとれ
ば、容易に所望の光散乱部分のパターンをつくることが
できる。この方法は、前記の方法に比べ比較的簡単に
実施することができる利点がある。The light-scattering surface formed on the transparent plate is in a state where light-scattering portions and smooth portions are mixed, and the ratio of the light-scattering portions is changed continuously or stepwise. For example, a method of spraying abrasive sand or applying a white paint on a surface of a transparent plate with a mask having holes formed thereon can easily form a desired light scattering portion pattern. This method has an advantage that it can be implemented relatively easily as compared with the above method.
【0024】前記の光散乱能力を変化させる方法の光
散乱部分のパターンの例を、図6及び図7に示す。図6
は、光源からの距離zに応じて、光散乱部分6のストラ
イプ幅を次第に増加させると同時に平滑部分7のストラ
イプ幅を次第に減少させている。図7は、光源からの距
離zに応じて、光散乱部分6の円形パターンの面積を次
第に増加させると同時に、相対的に平滑部分7の面積を
次第に減少させている。FIGS. 6 and 7 show examples of the pattern of the light scattering portion in the method of changing the light scattering ability. FIG.
In this method, the stripe width of the light scattering portion 6 is gradually increased in accordance with the distance z from the light source, and at the same time, the stripe width of the smooth portion 7 is gradually reduced. FIG. 7 shows that the area of the circular pattern of the light scattering portion 6 is gradually increased in accordance with the distance z from the light source, while the area of the smooth portion 7 is gradually reduced.
【0025】上述の計算によって得られた散乱係数tの
変化式を前記の方法で実現するには、以下の方法によ
る。まず最初に、光散乱部分6の割合が100%のとき
の散乱係数を実験的に求めて、その値をt0 とする。図
6の縞状パターンをピッチ10mmで形成する場合につ
いて考えると、光散乱部分6の幅と散乱係数tは比例す
ると考えて、光源からの距離zにおける散乱係数をtと
するためには光散乱部分6の幅を(t/t0 )×10m
mとすればよい。光散乱部分6の割合を入射端面でP、
光反射端面でQとするとき、Q/Pの値を求めると、下
記の式(6)、式(7)The following method is used to realize the change equation of the scattering coefficient t obtained by the above calculation by the above method. First, the scattering coefficient when the ratio of the light scattering portion 6 is 100% is experimentally obtained, and the value is set to t 0 . Considering the case where the striped pattern of FIG. 6 is formed at a pitch of 10 mm, it is considered that the width of the light scattering portion 6 is proportional to the scattering coefficient t. The width of the portion 6 is (t / t 0 ) × 10 m
m. The ratio of the light scattering portion 6 is P,
Assuming that Q is the light reflection end face, when the value of Q / P is obtained, the following equations (6) and (7) are obtained.
【0026】[0026]
【数7】 (Equation 7)
【0027】[0027]
【数8】 となる。したがって、Q/Pは、ほぼ4程度であればよ
いことになる。(Equation 8) Becomes Therefore, Q / P is only required to be approximately four.
【0028】ところが、本発明者らの研究によると、上
記t0 (光散乱部分の割合が100%のときの散乱係
数)の値は光源からの距離zによって大きく変化するこ
とが明らかになった。光学ガラス製の発光担体(大きさ
80×400mm、透明板の片面の厚さは5,10,1
5mmの3種類、光散乱面はスリ面とした)を実際に作
製して散乱光強度分布を測定してみたところ(なお、測
定方法の詳細は後記する実施例1と同じで、その測定装
置は図12に示す)、得られた数値を横軸に光源からの
距離z、縦軸に散乱係数tをとったグラフとして図8に
示す。図8中、●印は片面の厚さ5mmの2枚の透明板
からなる発光担体、□印は同じく10mmの発光担体、
▲印は同じく15mmの発光担体を示す。However, according to the study of the present inventors, it has been found that the value of the above-mentioned t 0 (the scattering coefficient when the ratio of the light scattering portion is 100%) greatly changes depending on the distance z from the light source. . Light-emitting carrier made of optical glass (size 80 x 400 mm, thickness of one side of transparent plate is 5, 10, 1)
When actually producing three types of 5 mm and the light scattering surface was a sand surface and measuring the scattered light intensity distribution (the details of the measuring method are the same as in Example 1 described later, Is shown in FIG. 12), and the obtained numerical value is shown in FIG. 8 as a graph in which the horizontal axis represents the distance z from the light source and the vertical axis represents the scattering coefficient t. In FIG. 8, the mark ● represents a luminescent carrier composed of two transparent plates having a thickness of 5 mm on one side,
▲ indicates a luminescent carrier of 15 mm in the same manner.
【0029】図8に示すように、光源からの距離zに対
するt0 (光散乱部分の割合が100%のときの散乱係
数)の値は単調に減少する傾向を示した。したがって、
縞状パターンの設計にあたっては、t0 はzの関数とす
る補正が必要である。図8より、光源近傍ではt0 の値
を、300mm≦zの領域よりも、1.5倍(発光担体
の厚さが15×2mmの場合)ないし、5.0倍(発光
担体の厚さが5×2mmの場合)ほど大きく見積もる必
要があることが分かる。したがって、光入射端面におけ
る光散乱部分の割合Pをより小さくする必要があり、Q
/Pは上記計算値(4倍程度)の1.5倍〜5倍が必要
である。これを第1の補正と呼ぶ。As shown in FIG. 8, the value of t 0 (the scattering coefficient when the ratio of the light scattering portion is 100%) with respect to the distance z from the light source tends to decrease monotonously. Therefore,
In designing a striped pattern, it is necessary to correct t 0 as a function of z. As shown in FIG. 8, the value of t 0 near the light source is 1.5 times (when the thickness of the luminescent carrier is 15 × 2 mm) to 5.0 times (when the thickness of the luminescent carrier is larger than the range of 300 mm ≦ z). It is understood that it is necessary to estimate the value as large as (when the size is 5 × 2 mm). Therefore, it is necessary to further reduce the ratio P of the light scattering portion on the light incident end face, and Q
/ P needs to be 1.5 to 5 times the calculated value (about 4 times). This is called a first correction.
【0030】さらに、本発明者らの実験によると、光散
乱部分の割合と散乱係数tは比例しない。すなわち、縞
状パターンの光散乱部分の割合がsのときの散乱係数を
tとすると、t/t0 とsは一致せず、常にt/t0 >
sの関係にある。ピッチ10mmの縞状パターンを有す
る光学ガラス製の発光担体(大きさ80×400mm、
片面の厚さは5,10,15mm、スリ部分の幅0.3
〜5mm)を実際に作製して散乱光強度分布を測定した
結果を図9に示す。図9中、●印、□印、▲印は前記と
同じ発光担体を示す。Further, according to experiments by the present inventors, the ratio of the light scattering portion and the scattering coefficient t are not proportional. That is, assuming that the scattering coefficient when the ratio of the light scattering portions of the striped pattern is s is t, t / t 0 does not coincide with s, and always t / t 0 >
s. A luminous carrier made of optical glass having a stripe pattern with a pitch of 10 mm (a size of 80 × 400 mm,
The thickness of one side is 5,10,15mm and the width of the pick is 0.3
FIG. 9 shows the result of measuring the scattered light intensity distribution by actually producing the scattered light intensity distribution. In FIG. 9, the symbols ●, □, and ▲ indicate the same luminescent carriers as described above.
【0031】図9によれば、t/t0 とsの比例関係か
らのずれは、透明体が薄くなるほど、またスリ部分の幅
が小さくなるほど大きくなることがわかる。したがっ
て、透明体の厚みが小さい場合は、光源近傍(もともと
スリ部分の割合が小さい領域)でのスリ幅をさらに狭く
する補正を加える必要がある。この補正もQ/Pの値を
大きくする方向にはたらく。その補正量は、1.0倍
(発光担体の厚さが15×2mmの場合)ないし、2.
0倍(発光担体の厚さが5×2mmの場合)程度が必要
である。これを第2の補正と呼ぶ。FIG. 9 shows that the deviation from the proportional relationship between t / t 0 and s increases as the thickness of the transparent body decreases and as the width of the pick-up portion decreases. Therefore, when the thickness of the transparent body is small, it is necessary to make a correction to further reduce the width of the pick-up in the vicinity of the light source (the area where the ratio of the pick-up portion is small). This correction also works in the direction of increasing the value of Q / P. The correction amount is 1.0 times (when the thickness of the luminescent carrier is 15 × 2 mm) to 2.
About 0 times (when the thickness of the luminescent carrier is 5 × 2 mm) is required. This is called a second correction.
【0032】以上の結果をまとめると、発光担体が厚い
場合のQ/P値は計算で求めたQ/P=4あたりが最適
値であるが、発光担体が薄い場合のQ/P値は、 第1の補正 : 1.5〜5.0倍 第2の補正 : 1.0〜2.0倍 を考慮して最大Q/P=40〜50程度が必要である。Summarizing the above results, the Q / P value when the luminescent carrier is thick is the optimum value around Q / P = 4 calculated, but the Q / P value when the luminescent carrier is thin is: First correction: 1.5 to 5.0 times Second correction: 1.0 to 2.0 times The maximum Q / P needs to be about 40 to 50 in consideration of the following.
【0033】[0033]
〔実施例1〕本実施例1の発光担体の構造の平面図を図
10に、その断面図を図11に示す。図12は、本発明
の発光担体全体を透明アクリル製の水槽に沈めて、光入
射端面に光源からの光を入射させて、透明板の光散乱表
面における散乱光強度分布を測定する装置を示す。[Embodiment 1] FIG. 10 shows a plan view of the structure of the luminescent carrier of Embodiment 1, and FIG. 11 shows a cross-sectional view thereof. FIG. 12 shows an apparatus for immersing the entire luminescent carrier of the present invention in a transparent acrylic water tank, allowing light from a light source to enter the light incident end face, and measuring the scattered light intensity distribution on the light scattering surface of the transparent plate. .
【0034】図10、図11の発光担体において、透明
板1としては、10×80×400mmの光学ガラス板
を用い、その光学ガラス板2枚の光散乱面2を合わせて
周囲を接着して発光担体ユニットを作製した。次に、ユ
ニットを図10のように3個接続して、長さ1200m
mの発光担体3とした。発光担体3の側面には2mm厚
のアルミ製の側板8を接着して補強した。各ユニットの
光散乱面2周辺の接着、ユニットの接続、および側板8
の接着にはエポキシ系接着剤(セメダイン(株)製セメ
ダイン1565)を用いた。In the luminous carrier shown in FIGS. 10 and 11, an optical glass plate of 10 × 80 × 400 mm is used as the transparent plate 1, and the light scattering surfaces 2 of the two optical glass plates are put together to bond the periphery. A luminescent carrier unit was produced. Next, three units are connected as shown in FIG.
m of the luminescent carrier 3. A side plate 8 made of aluminum and having a thickness of 2 mm was adhered to the side surface of the luminescent carrier 3 to reinforce it. Adhesion around the light scattering surface 2 of each unit, connection of units, and side plates 8
An epoxy adhesive (Cemedine 1565, manufactured by Cemedine Co., Ltd.) was used for bonding.
【0035】第3ユニットの終端には反射板9としてア
ルミニウムの薄板(厚さ0.1mm)を上記接着剤で貼
りつけて光反射端面5とした。At the end of the third unit, a thin aluminum plate (thickness: 0.1 mm) was adhered as the reflection plate 9 with the above-mentioned adhesive to form the light reflection end face 5.
【0036】光学ガラス板の光散乱面2には、図6に示
す縞状パターンを形成した。縞のピッチは10mmとし
て、紙製マスクをガラス板に被せてから研磨砂(カーボ
ランダム#400番)を吹き付けることによりパターン
をつくった。縞状パターンにおけるスリ部分の幅は、第
1ユニットについて下記の表1に、第2ユニットについ
ては下記の表2に、第3ユニットについては下記の表3
にそれぞれ示す。Q/Pの値は、9.38/0.38=
24.68である。A stripe pattern shown in FIG. 6 was formed on the light scattering surface 2 of the optical glass plate. The stripe pitch was 10 mm, and a paper mask was placed on the glass plate, and then a pattern was formed by spraying abrasive sand (Carborundum # 400). The width of the pick-up portion in the striped pattern is shown in Table 1 below for the first unit, in Table 2 below for the second unit, and in Table 3 below for the third unit.
Are shown below. The value of Q / P is 9.38 / 0.38 =
24.68.
【0037】発光担体3の光源11としては、光ファイ
バーバンドルによる線状光源(発光部の大きさ0.8×
60mm)を使用した。発光担体全体を透明アクリル製
の水槽10に沈めて、光入射端面に上記光源11からの
光を入射させて、散乱光強度分布を測定した。なお、線
状光源と発光担体の間に挟まれる水槽壁面の厚さは5m
mである。The light source 11 of the light emitting carrier 3 is a linear light source (a light emitting portion having a size of 0.8 ×
60 mm). The entire luminescent carrier was immersed in a transparent acrylic water tank 10, and the light from the light source 11 was incident on the light incident end face, and the scattered light intensity distribution was measured. In addition, the thickness of the water tank wall surface sandwiched between the linear light source and the luminescent carrier is 5 m.
m.
【0038】図12の光散乱表面における散乱光強度分
布を測定する装置において、発光担体3の散乱光強度分
布の測定用のセンサ12としては、(株)アドバンテス
ト製TQ82014型(商品名、受光部の大きさφ8.
4mm)を使用した。光強度はW(ワット)単位で表示
される。センサ12をガラス表面に密着させて長さ方向
に測定した場合の散乱光強度分布を図13のグラフに示
す。図13によれば、本実施例1の発光担体の光強度の
均一性は、接続部分での強い散乱光を除くと、ほぼ±2
5%の範囲におさまっていることが分かる。In the apparatus for measuring the scattered light intensity distribution on the light scattering surface shown in FIG. 12, the sensor 12 for measuring the scattered light intensity distribution of the luminous carrier 3 is TQ82014 type (trade name, light receiving part, manufactured by Advantest Corporation). Size φ8.
4 mm) was used. Light intensity is displayed in W (watts). FIG. 13 is a graph showing the scattered light intensity distribution when the sensor 12 is closely attached to the glass surface and measured in the length direction. According to FIG. 13, the uniformity of the light intensity of the luminescent carrier of Example 1 is almost ± 2 excluding the strong scattered light at the connection part.
It can be seen that it is within the range of 5%.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【表2】 [Table 2]
【0041】[0041]
【表3】 〔実施例2〕本実施例2で使用する発光担体の構造は、
前記実施例1に使用したもの(図7)とほぼ同じである
が、側板は使用しなかった。透明板としては、15×8
0×1200mmの透明アクリル板を2枚合わせて、そ
の周囲をアクリル用接着剤アクリルダインB(商品名、
新興プラスチック製)により接着した。2枚の透明アク
リル板が接着された30×80mmの1端面を光入射端
面とし、その反対側の端面にアルミニウムの薄板(厚さ
0.1mm)を上記接着剤で貼りつけて光反射端面とし
た。[Table 3] Example 2 The structure of the luminescent carrier used in Example 2 was
This is almost the same as that used in Example 1 (FIG. 7), but without the side plate. 15 × 8 as a transparent plate
Two transparent acrylic plates of 0 × 1200 mm are combined, and the periphery thereof is an acrylic adhesive Dyne B (trade name,
(Made of emerging plastic). One end face of 30 × 80 mm to which the two transparent acrylic plates are bonded is used as a light incident end face, and a thin aluminum sheet (0.1 mm thick) is attached to the other end face with the above adhesive to form a light reflecting end face. did.
【0042】透明アクリル板の光散乱面には、図6に示
す縞状パターンを形成した。縞のピッチは10mmとし
て、紙製マスクをガラス板にかぶせてから研磨砂(カー
ボランダム#100番)を吹き付けることによりパター
ンをつくった。パターンにおけるスリ部分の幅は、下記
の表4〜6に記す。Q/Pの値は、9.83/1.15
=8.55である。発光担体の光源と、散乱光強度分布
の測定方法は前記実施例1と同じにした。センサをガラ
ス表面に密着させて長さ方向に測定した場合の散乱光強
度分布を図14のグラフに示す。図14によれば、本実
施例2の発光担体の光強度の均一性は、ほぼ±20%の
範囲におさまっていることが分かる。The stripe pattern shown in FIG. 6 was formed on the light scattering surface of the transparent acrylic plate. The pattern of the stripes was set to 10 mm by placing a paper mask on a glass plate and then spraying abrasive sand (Carborundum # 100). Tables 4 to 6 below show the widths of the picks in the pattern. The value of Q / P is 9.83 / 1.15
= 8.55. The light source of the luminescent carrier and the method of measuring the scattered light intensity distribution were the same as in Example 1 above. FIG. 14 is a graph showing the scattered light intensity distribution when the sensor is closely attached to the glass surface and measured in the length direction. According to FIG. 14, it can be seen that the uniformity of the light intensity of the luminescent carrier of the second embodiment falls within a range of approximately ± 20%.
【0043】[0043]
【表4】 [Table 4]
【0044】[0044]
【表5】 [Table 5]
【0045】[0045]
【表6】 [Table 6]
【0046】[0046]
【発明の効果】以上のように本発明の発光担体によれ
ば、比較的小さな光源からの光を、発光表面から水中に
放出することができ、長時間の使用に耐える耐水性と耐
久性を有し、発光面のサイズを大きくすることができ、
入射光の損失の少ない発光担体を提供することができ
る。また本発明の別の発光担体は上記効果に加え、発光
表面の散乱光強度がほぼ均一な状態で、放出することが
できる。 As described above, according to the luminous carrier of the present invention, light from a relatively small light source can be released into water from the luminous surface, and the water- resistant material can withstand long-term use. It has durability and can increase the size of the light emitting surface,
A luminescent carrier with less loss of incident light can be provided. Further, another luminescent carrier of the present invention has
It can be emitted with almost uniform surface scattered light intensity.
it can.
【0047】したがって、本発明の発光担体は、光を培
養液中の広い範囲に均一に分散させて放射する光合成生
物の培養に好適なバイオリアクターに使用できるのみな
らず、液相中に光を送り込む必要のある反応装置一般
(例えば、光触媒を用いる反応装置等)に広く応用でき
る。Therefore, the luminescent carrier of the present invention can be used not only in a bioreactor suitable for culturing photosynthetic organisms that emit light by uniformly dispersing light in a wide range in a culture solution, but also emit light in a liquid phase. It can be widely applied to general reactors which need to be fed (for example, a reactor using a photocatalyst).
【図1】本発明の発光担体の基本構造の1例の斜視図で
ある。FIG. 1 is a perspective view of an example of a basic structure of a luminescent carrier of the present invention.
【図2】本発明の発光担体の基本構造の1例の断面図で
ある。FIG. 2 is a cross-sectional view of one example of a basic structure of a luminescent carrier of the present invention.
【図3】長さLの発光担体の片側端面に光源を設置した
場合の模式図を示す。FIG. 3 is a schematic diagram showing a case where a light source is installed on one end surface of a luminescent carrier having a length L.
【図4】散乱係数tのzによる変化を上記式(3)(但
し、x=z/L,A,B,Cは定数)で示し、L=10
00mm、Tr=0.9985、R0 =1.0の場合に
ついて、散乱光強度分布の計算を行い、散乱光強度分布
が均一に近くなるように定数A,B,Cの値を最適化し
た計算結果を示す。FIG. 4 shows the change of the scattering coefficient t due to z by the above equation (3) (where x = z / L, A, B and C are constants), and L = 10
For the case of 00 mm, Tr = 0.9985, and R 0 = 1.0, the scattered light intensity distribution was calculated, and the values of the constants A, B, and C were optimized so that the scattered light intensity distribution was nearly uniform. The calculation results are shown.
【図5】散乱係数tのzによる変化を上記式(3)(但
し、x=z/L,A,B,Cは定数)で示し、L=10
00mm、Tr=0.9985、R0 =0.8の場合に
ついて、散乱光強度分布の計算を行い、散乱光強度分布
が均一に近くなるように定数A,B,Cの値を最適化し
た計算結果を示す。FIG. 5 shows the change of the scattering coefficient t due to z by the above equation (3) (where x = z / L, A, B and C are constants), and L = 10
For the case of 00 mm, Tr = 0.9985, and R 0 = 0.8, the scattered light intensity distribution was calculated, and the values of the constants A, B, and C were optimized so that the scattered light intensity distribution was nearly uniform. The calculation results are shown.
【図6】光散乱能力を変化させる方法として、光散乱部
分のパターンを光源からの距離zに応じて、光散乱部分
のストライプ幅を次第に増加させると同時に平滑部分の
ストライプ幅を次第に減少させた縞状パターンの例を示
す。FIG. 6 shows a method of changing the light scattering ability by gradually increasing the stripe width of the light scattering portion and the stripe width of the smooth portion in accordance with the distance z from the light source. An example of a striped pattern is shown.
【図7】光散乱能力を変化させる方法として、光散乱部
分のパターンを光源からの距離zに応じて、光散乱部分
の円形パターンの面積を次第に増加させると同時に、相
対的に平滑部分の面積を次第に減少させた円形パターン
の例を示す。FIG. 7 shows a method of changing the light scattering ability by gradually increasing the area of the circular pattern of the light scattering portion according to the distance z from the light source, and at the same time, increasing the area of the relatively smooth portion. An example of a circular pattern in which is gradually reduced is shown.
【図8】光学ガラス製の発光担体を使用した図12に示
す測定装置で散乱光強度分布を測定した結果について、
横軸に光源からの距離z、縦軸に散乱係数tをとったグ
ラフである。FIG. 8 shows a result of measuring a scattered light intensity distribution by a measuring device shown in FIG. 12 using a luminescent carrier made of optical glass;
It is a graph in which the horizontal axis represents the distance z from the light source and the vertical axis represents the scattering coefficient t.
【図9】ピッチ10mmの縞状パターンを有する光学ガ
ラス製の発光担体についての散乱光強度分布を測定した
結果について、縦軸に縞状パターンの光散乱部分の割合
s、横軸にt/t0 をとったグラフである。FIG. 9 shows the results of measuring the scattered light intensity distribution of a light-emitting carrier made of optical glass having a stripe pattern with a pitch of 10 mm, with the vertical axis representing the ratio s of the light scattering portion of the stripe pattern and the horizontal axis representing t / t. It is a graph taking 0 .
【図10】実施例1の発光担体の平面図である。FIG. 10 is a plan view of the luminescent carrier of Example 1.
【図11】実施例1の発光担体の断面図である。FIG. 11 is a cross-sectional view of the luminescent carrier of Example 1.
【図12】本発明の発光担体全体を透明アクリル製の水
槽に沈めて、光入射端面に光源からの光を入射させて、
透明板の光散乱表面における散乱光強度分布を測定する
装置を示す。FIG. 12: The entire luminescent carrier of the present invention is immersed in a transparent acrylic water tank, and light from a light source is incident on the light incident end face.
3 shows an apparatus for measuring a scattered light intensity distribution on a light scattering surface of a transparent plate.
【図13】センサをガラス表面に密着させて長さ方向に
測定した場合の実施例1の散乱光強度分布を示すグラフ
である。FIG. 13 is a graph showing a scattered light intensity distribution of Example 1 when a sensor is closely attached to a glass surface and measured in a length direction.
【図14】センサをガラス表面に密着させて長さ方向に
測定した場合の実施例2の散乱光強度分布を示すグラフ
である。FIG. 14 is a graph showing a scattered light intensity distribution of Example 2 when a sensor is closely attached to a glass surface and measured in a length direction.
1 透明板 2 光散乱面 3 発光担体 4 光入射端面 5 光反射端面 6 光散乱部分 7 平滑部分 8 側板 9 反射板 10 水槽 11 光源 12 センサ DESCRIPTION OF SYMBOLS 1 Transparent plate 2 Light-scattering surface 3 Light-emitting carrier 4 Light-incident end surface 5 Light-reflecting end surface 6 Light-scattering part 7 Smooth part 8 Side plate 9 Reflector 10 Water tank 11 Light source 12 Sensor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山村 健治 東京都港区西新橋2−8−11 第7東洋 海事ビル8階 財団法人 地球環境産業 技術研究機構内 (56)参考文献 特開 平3−9304(JP,A) 特開 平7−120623(JP,A) 実開 平3−114878(JP,U) 実開 平1−143013(JP,U) (58)調査した分野(Int.Cl.6,DB名) G02B 6/00 B01J 19/12 C12M 1/00 F21V 8/00 G09F 9/00 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Kenji Yamamura 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8th Floor Inside the Research Institute for Global Environmental Technology (56) References JP-A-7-120623 (JP, A) JP-A-3-114878 (JP, U) JP-A-1-143013 (JP, U) (58) Fields investigated (Int. Cl) . 6, DB name) G02B 6/00 B01J 19/12 C12M 1/00 F21V 8/00 G09F 9/00
Claims (5)
射光を散乱させることができる、2枚の透明板を重ね合
わせた密閉構造の発光担体であって、 (2)該発光担体の少なくとも一つの端部は、光源から
の光を受け入れるための光入射部であることを特徴とす
る裏表の両表面から光を散乱することが可能な発光担
体。 (1) An overlapping surface is provided as a light scattering surface.
Laminated two transparent plates that can scatter light
(2) at least one end of the luminescent carrier is connected to a light source
It is a light incident part for receiving light of
Light-emitting device that can scatter light from both surfaces
body.
射光を散乱させることができる、2枚の透明板を重ね合
わせた密閉構造の発光担体であって、 (2)該発光担体の少なくとも一つの端部は、光源から
の光を受け入れるための光入射部であり、 (3)前記透明板の光散乱面は、前記光入射部付近では
散乱能力が小さく、前記光入射部から離れるに従い散乱
能力が大きく形成されていることを特徴とする裏表の両
表面から光を散乱することが可能な発光担体。2. A light emitting carrier having a hermetically sealed structure in which two transparent plates are superimposed, wherein (1) the overlapping surface is capable of scattering incident light as a light scattering surface, and (2) the light emitting carrier is At least one end is a light incident portion for receiving light from a light source. (3) The light scattering surface of the transparent plate has a small scattering ability near the light incident portion and is separated from the light incident portion. Both sides are characterized by having a large scattering ability
A luminescent carrier that can scatter light from the surface .
部分の割合を光入射部側でP、光入射部より最も遠い面
でQとするとき、次の式、 【数1】 を満たすことを特徴とする請求項1又は2記載の裏表の
両表面から光を散乱することが可能な発光担体。3. When the ratio of the light scattering portion in the light scattering surface of the transparent plate is P on the light incident portion side and Q is on the surface farthest from the light incident portion, the following expression is obtained. 3. The front and back of claim 1 or 2,
A luminescent carrier that can scatter light from both surfaces .
であり、もう一方の端面が光反射板が設置された光反射
端面であることを特徴とする請求項1、2又は3記載の
裏表の両表面から光を散乱することが可能な発光担体。4. The light-emitting carrier according to claim 1, wherein one end face is a light incident end face, and the other end face is a light reflecting end face on which a light reflecting plate is installed .
A luminescent carrier that can scatter light from both surfaces .
り、該ユニットが複数個接続されていることを特徴とす
る請求項1、2、3又は4記載の裏表の両表面から光を
散乱することが可能な発光担体。5. The light-scattering device according to claim 1 , wherein the light-emitting carrier is a connectable unit, and a plurality of the units are connected. Luminescent carrier capable of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9452995A JP2977182B2 (en) | 1995-03-28 | 1995-03-28 | Luminescent carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9452995A JP2977182B2 (en) | 1995-03-28 | 1995-03-28 | Luminescent carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08262232A JPH08262232A (en) | 1996-10-11 |
JP2977182B2 true JP2977182B2 (en) | 1999-11-10 |
Family
ID=14112867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9452995A Expired - Fee Related JP2977182B2 (en) | 1995-03-28 | 1995-03-28 | Luminescent carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2977182B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002350646A (en) * | 2001-05-25 | 2002-12-04 | Hiroshima Pref Gov | Glass structure for carrying photocatalyst |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2974814B1 (en) * | 2011-05-06 | 2017-06-02 | Acta Alga | FIRMLY PHOTOBIOREACTOR FOR THE CULTURE OF PHOTOSYNTHETIC MICROORGANISMS |
US20170161802A9 (en) * | 2013-03-18 | 2017-06-08 | Intellectual Property Management Pty Ltd | A wip management system |
FR3059334B1 (en) * | 2016-11-25 | 2019-01-25 | Brochier Technologies | PANEL FOR PHOTOBIOREACTOR AND METHOD OF MANUFACTURE |
-
1995
- 1995-03-28 JP JP9452995A patent/JP2977182B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002350646A (en) * | 2001-05-25 | 2002-12-04 | Hiroshima Pref Gov | Glass structure for carrying photocatalyst |
Also Published As
Publication number | Publication date |
---|---|
JPH08262232A (en) | 1996-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3950526B2 (en) | Photosynthesis culture apparatus and collective photosynthesis culture apparatus | |
CN1279393C (en) | Back-light unit | |
WO2000049432A1 (en) | Optical waveguide sheet, surface illuminant device and liquid crystal display | |
JPH1021720A (en) | Backlight device | |
JP2977182B2 (en) | Luminescent carrier | |
JP2001176315A (en) | Surface type luminescence and desktop lighting system using the same | |
JP2977181B2 (en) | Hollow luminescent carrier | |
CN100437154C (en) | Light source diffusion plate and backlight module | |
CN100385273C (en) | Liquid crystal display, backlight module and light guide structure thereof | |
JPH04191704A (en) | Surface luminous device and its manufacture | |
CN201237102Y (en) | Side light type back light module unit | |
CN209649662U (en) | A kind of stone composite board | |
JP3513944B2 (en) | Backlight | |
JPH10293304A (en) | Light transmitting plate and surface light source device using the same | |
JP2839184B2 (en) | Luminescent carrier | |
CN217279006U (en) | Silk-screen printing light guide plate | |
CN218914629U (en) | Side-emitting flat lamp and lighting device | |
JP3524811B2 (en) | Photosynthetic culture device | |
JP3132722B2 (en) | Solar energy induction / diffusion type photobioreactor | |
JPH08136733A (en) | Back light panel | |
JPH03214191A (en) | Plane light emitting device | |
JP4125467B2 (en) | Surface light source element and lens sheet | |
TW200408836A (en) | Light guide plate and lightsource system with it | |
JPH0676935U (en) | Backlight device | |
KR100971956B1 (en) | Direct type backlight unit and liquid crystal display device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080910 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090910 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |