JP2976724B2 - Semiconductor device having MOS capacitor - Google Patents
Semiconductor device having MOS capacitorInfo
- Publication number
- JP2976724B2 JP2976724B2 JP4276302A JP27630292A JP2976724B2 JP 2976724 B2 JP2976724 B2 JP 2976724B2 JP 4276302 A JP4276302 A JP 4276302A JP 27630292 A JP27630292 A JP 27630292A JP 2976724 B2 JP2976724 B2 JP 2976724B2
- Authority
- JP
- Japan
- Prior art keywords
- mos
- semiconductor
- region
- semiconductor region
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、MOSコンデンサを有
する半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a MOS capacitor.
【0002】[0002]
【従来の技術】車両エンジン制御用マイコンなどの車載
半導体装置には高いサージ電圧又は電源電圧が印加され
る。したがって、これらの半導体装置に集積するMOS
コンデンサは通常の使用電圧よりも高い絶縁耐圧をもつ
ことが望ましい。2. Description of the Related Art A high surge voltage or power supply voltage is applied to a vehicle-mounted semiconductor device such as a microcomputer for controlling a vehicle engine. Therefore, MOS integrated in these semiconductor devices
It is desirable that the capacitor has a higher withstand voltage than a normal working voltage.
【0003】この問題を改善するために従来、図8に示
すように、高濃度の半導体領域表面を熱酸化によるMO
Sトランジスタ9のゲート電極91を形成する工程で同
時に熱酸化して、MOSコンデンサ用の絶縁膜92を形
成し、絶縁膜92をMOSトランジスタ9のゲート絶縁
膜93より厚く形成することが行われている。また、更
に高い絶縁耐圧が要求される場合には、ゲート絶縁膜9
3とは別個に絶縁膜92を作製していた。Conventionally in order to improve this problem, as shown in FIG. 8, MO high concentration semiconductor region surface by thermal oxidation
In the step of forming the gate electrode 91 of the S transistor 9, thermal oxidation is simultaneously performed to form an insulating film 92 for a MOS capacitor, and the insulating film 92 is formed to be thicker than the gate insulating film 93 of the MOS transistor 9. I have. If a higher dielectric strength is required, the gate insulating film 9 may be used.
The insulating film 92 was formed separately from the insulating film 92.
【0004】[0004]
【発明が解決しようとする課題】しかしながら上記した
図8の方法では、ゲート絶縁膜93が薄膜化されつつあ
る現状において、絶縁耐圧向上効果に限界がある。ま
た、両絶縁膜を別個の工程で作製する場合、工程増加、
歩留り低下といった問題があった。However, in the method of FIG. 8 described above, there is a limit to the effect of improving the withstand voltage under the current situation where the gate insulating film 93 is becoming thinner. In addition, when both insulating films are manufactured in separate steps, the number of steps increases,
There was a problem such as a decrease in yield.
【0005】本発明は上記した問題に鑑みなされたもの
であり、工程増加、歩留り低下といいた不具合を回避し
つつ絶縁耐圧向上が可能なMOSコンデンサを有する半
導体装置を提供することを、その目的としている。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a semiconductor device having a MOS capacitor capable of improving withstand voltage while avoiding problems such as an increase in steps and a decrease in yield. And
【0006】[0006]
【課題を解決するための手段】第1発明のMOSコンデ
ンサを有する半導体装置は、 半導体基板上に絶縁層を
介して形成された半導体層を絶縁物により分離して形成
された半導体領域と、前記半導体領域表面に絶縁膜を介
してそれぞれ配設される複数のMOS電極と、各前記半
導体領域表面にそれぞれ形成されたコンタクト電極とを
有するMOSコンデンサ、及び、前記MOSコンデンサ
が形成される前記各半導体領域以外の前記半導体領域に
形成されたMOSトランジスタを備えるMOSコンデン
サを有する半導体装置において、第1の前記半導体領域
から独立して形成された第2の前記半導体領域表面の第
2の前記コンタクト電極を前記第1の半導体領域上の第
1の前記MOS電極に接続する接続導体と、前記第1の
半導体領域表面の第1の前記コンタクト電極及び前記第
2の半導体領域上の第2の前記MOS電極間に形成され
た直列接続MOS容量とを備え、前記半導体領域のう
ち、前記絶縁層に隣接する領域は、前記絶縁膜を挟んで
前記MOS電極に対面する領域よりも高い不純物濃度を
有することを特徴としている。According to a first aspect of the present invention, there is provided a semiconductor device having a MOS capacitor, comprising an insulating layer on a semiconductor substrate.
Separated semiconductor layer formed by insulator with insulator
A semiconductor region which is, a plurality of MOS electrodes disposed respectively through said semiconductor region surface insulating film, and a contact electrode formed on each said half <br/> conductor region surface
MOS capacitor having the same and the MOS capacitor
Are formed in the semiconductor regions other than the respective semiconductor regions in which
In a semiconductor device having a MOS capacitor including a formed MOS transistor , the first semiconductor region
A connecting conductor of the second of the contact electrode of the second of said semiconductor region surface connected to the first of said MOS electrode on the first semiconductor region formed independently of said first semiconductor region surface wherein formed between the contact electrode and the second of said MOS electrode on the second semiconductor region first of
Provided and the series connection MOS capacitor, said semiconductor region
That is, a region adjacent to the insulating layer is sandwiched between the insulating films.
It is characterized by having a higher impurity concentration than a region facing the MOS electrode .
【0007】[0007]
【0008】[0008]
【0009】[0009]
【作用及び発明の効果】第1発明では、第1半導体領域
のコンタクト電極をコンデンサの第1電極とし、第2半
導体領域のMOS電極をコンデンサの第2電極とする。
そして、第1半導体領域上のMOS電極と第2半導体領
域のコンタクト電極とを接続導体により接続する。In the first invention, the contact electrode of the first semiconductor region is used as the first electrode of the capacitor, and the MOS electrode of the second semiconductor region is used as the second electrode of the capacitor.
Then, the MOS electrode on the first semiconductor region and the contact electrode on the second semiconductor region are connected by a connection conductor.
【0010】このようにすれば、両MOS容量が直列接
続されることとなり、耐圧を2倍とすることができる。
もちろん、3以上のMOS容量を上記と同一接続形式で
直列接続でき、更に絶縁耐圧を向上することができる。
特に、この発明の接続形式では、両MOS電極直下の導
電形式が同一となるので(すなわち、片方が蓄積モード
の場合は他方も蓄積モードとなり、片方が反転モードの
場合はもう片方も反転モードとなるので)、両MOS容
量を同一構造とすることができ、抵抗値の増加が生じる
こともなく、両MOS容量の容量設計も容易となる。更
に、半導体領域のうち、絶縁層に隣接する領域は、絶縁
膜を挟んでMOS電極に対面する領域よりも高い不純物
濃度を有するので、半導体領域のうち、絶縁層に隣接す
る領域での重金属による結晶欠陥の発生を抑止すること
ができ、この結晶欠陥がそれに近接する絶縁膜の耐圧を
低下させることを抑止することができる。 In this case, both MOS capacitors are connected in series, and the withstand voltage can be doubled.
Of course, three or more MOS capacitors can be connected in series in the same connection form as described above, and the withstand voltage can be further improved.
In particular, in the connection type according to the present invention, the conduction type immediately below both MOS electrodes is the same (that is, when one is in the accumulation mode, the other is in the accumulation mode, and when one is in the inversion mode, the other is in the inversion mode. Therefore, both MOS capacitors can have the same structure, the resistance value does not increase, and the capacity design of both MOS capacitors becomes easy. Change
In the semiconductor region, the region adjacent to the insulating layer
Higher impurity than the region facing the MOS electrode across the film
Concentration, the semiconductor region is adjacent to the insulating layer.
The occurrence of crystal defects caused by heavy metals in the region
This crystal defect reduces the breakdown voltage of the insulating film adjacent to it.
It is possible to suppress the reduction.
【0011】その結果として、各MOS容量がほぼ均等
に絶縁耐圧を負担するので全体として高い絶縁耐圧を奏
することができ、かつ、プロセスが複雑化することがな
いMOSコンデンサを有する半導体装置を実現すること
ができる。 As a result, since each MOS capacitor bears the breakdown voltage almost equally, a high breakdown voltage can be achieved as a whole, and a semiconductor device having a MOS capacitor without complicating the process can be realized. Can be .
【0012】ただしこのようなMOS電極同士を接続す
ると、片方のMOS電極直下が蓄積モードとなる場合、
他方のMOS電極直下が反転モードとなるので、他方の
容量の構造が異なり、その結果として絶縁耐圧の負担が
両MOS電極間で均等とならず、全体としての絶縁耐圧
が低下するという不具合がある。この発明では、MOS
電極直下の半導体領域を、反転層が発生しにくい高濃度
領域としているので、上記問題が解決され、その結果と
して、各MOS容量がほぼ均等に絶縁耐圧を負担するの
で全体として高い絶縁耐圧を奏することができ、かつ、
プロセスが複雑化することがないMOSコンデンサを有
する半導体装置を実現することができる。However, when such MOS electrodes are connected to each other, the storage mode is set immediately below one MOS electrode.
Since the area immediately below the other MOS electrode is in the inversion mode, the structure of the other capacitor is different, and as a result, the burden on the dielectric strength is not equal between the two MOS electrodes, and the overall dielectric strength is reduced. . In the present invention, the MOS
Since the semiconductor region immediately below the electrode is a high-concentration region in which an inversion layer is unlikely to be generated, the above problem is solved. As a result, each MOS capacitor bears the breakdown voltage almost uniformly, so that the overall breakdown voltage is high. Can and
A semiconductor device having a MOS capacitor without complicating the process can be realized.
【0013】[0013]
【実施例】(実施例1)以下、第1発明の半導体装置の
一実施例を図1に示す。この半導体装置は、車両用とし
て用いられる誘電体分離BiCMOS集積回路装置であ
って、1はP- シリコン基板(半導体基板)、A、B、
Cは島状半導体領域(本発明でいう半導体領域)、3は
埋め込みN+ 層、8はP+ ソース領域、9はP+ ドレイ
ン域域、51、52はMOS電極、21はシリコン酸化
膜(内部絶縁膜)、22は島状半導体領域を分離するた
めの溝を埋め込んだ多結晶シリコン膜、23はLOCO
S酸化膜(フィールド絶縁膜)、24はゲート絶縁膜、
25は側壁酸化膜、26、27はMOS容量絶縁膜、4
0、41、42はN- 領域である。(Embodiment 1) An embodiment of a semiconductor device according to the first invention is shown in FIG. This semiconductor device is a dielectric isolation BiCMOS integrated circuit device used for vehicles, where 1 is a P - silicon substrate (semiconductor substrate), A, B,
C is an island-shaped semiconductor region (semiconductor region in the present invention), 3 is a buried N + layer, 8 is a P + source region, 9 is a P + drain region, 51 and 52 are MOS electrodes, and 21 is a silicon oxide film ( 22 is a polycrystalline silicon film in which trenches for isolating island-shaped semiconductor regions are embedded, and 23 is LOCO
S oxide film (field insulating film), 24 is a gate insulating film,
25 is a side wall oxide film, 26 and 27 are MOS capacitance insulating films,
0, 41, and 42 are N - regions.
【0014】島状半導体領域(第1半導体領域という)
Aには第1MOS容量が形成され、島状半導体領域(第
2半導体領域という)Bには第2MOS容量が形成され
ている。更に、島状半導体領域(第3半導体領域とい
う)CにはPMOSトランジスタが形成されている。な
お、層間絶縁膜、パッシベーション膜等の図示は省略し
ている。An island-shaped semiconductor region (referred to as a first semiconductor region)
A has a first MOS capacitor, and an island-shaped semiconductor region (second semiconductor region) B has a second MOS capacitor. Further, a PMOS transistor is formed in the island-shaped semiconductor region (referred to as a third semiconductor region) C. Illustration of an interlayer insulating film, a passivation film, and the like is omitted.
【0015】この装置では、MOS電極51、絶縁膜2
6、N- 半導体領域41が第1のMOS容量を構成し、
MOS電極52、絶縁膜27、N- 半導体領域42が第
2のMOS容量を構成している。N- 半導体領域41は
N+ コンタクト領域61、接続導体53を通じて第2の
MOS容量のMOS電極52に接続され、これにより、
両MOS容量は直列接続されている。In this device, the MOS electrode 51, the insulating film 2
6, the N − semiconductor region 41 constitutes a first MOS capacitance,
The MOS electrode 52, the insulating film 27, and the N − semiconductor region constitute a second MOS capacitor. The N − semiconductor region 41 is connected to the MOS electrode 52 of the second MOS capacitor through the N + contact region 61 and the connection conductor 53,
Both MOS capacitors are connected in series.
【0016】したがって、この直列接続MOSコンデン
サでは、MOS電極51とN+ コンタクト領域62がそ
の両端子を構成する。この実施例の直列接続MOSコン
デンサは、MOS電極51を+側、N+ コレクタ領域6
2を−側として使用される。このようにすれば、MOS
電極51、52直下の半導体領域41、42の表面が反
転モードではなく、蓄積モードで使用することができる
ためである。もし、MOS電極51、52直下の半導体
領域41、42の表面が反転モードとなると、このP型
反転層は擬似的にフローティング状態又は空乏状態とな
ってしまい、容量不定、抵抗増大により使用に不適切と
なる。Therefore, in this series-connected MOS capacitor, MOS electrode 51 and N + contact region 62 form both terminals. In the serially connected MOS capacitor of this embodiment, the MOS electrode 51 is set to the + side, and the N +
2 is used as the negative side. In this way, MOS
This is because the surfaces of the semiconductor regions 41 and 42 immediately below the electrodes 51 and 52 can be used not in the inversion mode but in the accumulation mode. If the surfaces of the semiconductor regions 41 and 42 immediately below the MOS electrodes 51 and 52 are in the inversion mode, the P-type inversion layer is in a pseudo floating state or a depletion state, and is unusable due to indefinite capacitance and increased resistance. Will be appropriate.
【0017】しかし上記構造及び使用条件を満足すれ
ば、両MOS容量を両方とも蓄積モードで使用すること
ができ、両MOS電極51、52の面積を等しくすれ
ば、両者の容量は等しくなるので、両MOS容量は半分
づつ印加電圧を負担することができ、その結果としてな
んら製造プロセスを複雑化することなく、絶縁耐圧を2
倍にすることができる。However, if the above structure and operating conditions are satisfied, both MOS capacitors can be used in the accumulation mode. If the areas of both MOS electrodes 51 and 52 are made equal, the capacity of both MOS electrodes becomes equal. Both MOS capacitors can bear the applied voltage by half, and as a result, the breakdown voltage can be reduced by 2 without complicating the manufacturing process.
Can be doubled.
【0018】もちろん、図1と同じ接続方式により、3
個以上のMOS容量を直列接続すれば更に高絶縁耐圧を
得ることができる。なお、この実施例では、絶縁耐圧2
6、27はゲート絶縁膜24と同一プロセスで作製した
が、別工程で作製することは当然可能である。以下、上
記装置の製造工程を図1から図7を参照して詳述する。Of course, with the same connection method as in FIG.
If more than two MOS capacitors are connected in series, a higher withstand voltage can be obtained. In this embodiment, the withstand voltage 2
Although 6 and 27 were manufactured in the same process as the gate insulating film 24, they can be manufactured in separate steps. Hereinafter, the manufacturing process of the above device will be described in detail with reference to FIGS.
【0019】まず図1に示すように、N+ 拡散層3を形
成した1.0〜1.6×1015原子/cm3 のN- 型
(100)単結晶シリコン基板4を用意する。またP-
基板1の表面に熱酸化シリコン酸化膜2を1.0μmの
厚さに形成した。これらシリコン基板1及びシリコン基
板4をH2 02 −H2 SO4 混合液中で加熱し、親水性
処理を行い、室温でこれら基板4、1を合わせ、摂氏1
100度で2時間N2 雰囲気で熱処理し、接合させた。First, as shown in FIG. 1, a 1.0-1.6 × 10 15 atoms / cm 3 N − type (100) single crystal silicon substrate 4 on which an N + diffusion layer 3 is formed is prepared. The P -
On the surface of the substrate 1, a thermally oxidized silicon oxide film 2 was formed to a thickness of 1.0 μm. The silicon substrate 1 and the silicon substrate 4 are heated in a mixed solution of H 2 O 2 -H 2 SO 4 to perform a hydrophilic treatment, and the substrates 4 and 1 are combined at room temperature.
Heat treatment was performed in an N 2 atmosphere at 100 ° C. for 2 hours to join.
【0020】つづいて図2に示すように、所定の厚さに
基板4を鏡面研磨してSOI基板を作製し、このSOI
基板の表面にトレンチエッチング用のマスク酸化膜(図
示せず)を形成した。次に図3に示すように、通常のホ
トリソ工程により所定の酸化膜マスクパタン95を形成
し、ドライエッチングによりシリコン酸化膜2に達する
トレンチ領域Tを形成した。このトレンチにより互いに
空間分離された単結晶の島状半導体領域A、B、Cが形
成される。Subsequently, as shown in FIG. 2, the substrate 4 is mirror-polished to a predetermined thickness to produce an SOI substrate.
A mask oxide film (not shown) for trench etching was formed on the surface of the substrate. Next, as shown in FIG. 3, a predetermined oxide film mask pattern 95 was formed by a normal photolithography process, and a trench region T reaching the silicon oxide film 2 was formed by dry etching. The trenches form single crystal island-shaped semiconductor regions A, B, and C spatially separated from each other.
【0021】つづいて図4に示すように、熱酸化により
シリコン酸化膜(図示せず)を0.5〜1μm形成し、
各島状半導体領域A、B、Cの上面及び側面を絶縁保護
する。つづいて、ポリシリコンのデポジションを実施
し、トレンチ領域を埋設する。次に、島状半導体領域
A、B、C表面のシリコンがむき出しになるまで研磨し
て表面を平滑にし、島状半導体領域を分離する絶縁分離
領域22を形成した。Subsequently, as shown in FIG. 4, a silicon oxide film (not shown) is formed to a thickness of 0.5 to 1 μm by thermal oxidation.
The upper and side surfaces of each of the island-shaped semiconductor regions A, B, and C are insulated and protected. Subsequently, polysilicon is deposited to bury the trench region. Next, the surface of the island-shaped semiconductor regions A, B, and C was polished until the silicon on the surface was exposed, the surface was smoothed, and an insulating isolation region 22 for separating the island-shaped semiconductor regions was formed.
【0022】次に図5に示すように、LOCOS工程に
入り、まず、パッド用シリコン酸化膜81を形成し、そ
の上にSi3 N4 膜82を形成し、Si3 N4 膜82を
パターニングする。次に図6に示すように、LOCOS
酸化を1050℃、ウエットHCl雰囲気で約5時間実
施して厚さ約1μmのフィールド絶縁膜23を形成す
る。その後Si3 N4 膜82及びパッド用シリコン酸化
膜81を除去する。Next, as shown in FIG. 5, a LOCOS process is performed. First, a pad silicon oxide film 81 is formed, a Si 3 N 4 film 82 is formed thereon, and the Si 3 N 4 film 82 is patterned. I do. Next, as shown in FIG.
Oxidation is performed at 1050 ° C. in a wet HCl atmosphere for about 5 hours to form a field insulating film 23 having a thickness of about 1 μm. After that, the Si 3 N 4 film 82 and the pad silicon oxide film 81 are removed.
【0023】次に図7に示すように、半導体領域40〜
42の表面に熱酸化により約600オングストロームの
酸化膜24、26、27を形成し、その上に厚さ約0.
4μmのノンドープのポリシリコンを堆積しリンデポに
より高濃度ポリシリコンを形成する。それをパターニン
グして、MOSゲート電極50〜52を形成し、次にそ
れを酸化して表面に酸化膜(図示せず)を形成する。Next, as shown in FIG.
Oxide films 24, 26, and 27 having a thickness of about 600 angstroms are formed on the surface of P.42 by thermal oxidation.
Non-doped polysilicon of 4 μm is deposited, and high concentration polysilicon is formed by phosphorus deposition. It is patterned to form MOS gate electrodes 50-52, which are then oxidized to form an oxide film (not shown) on the surface.
【0024】次に図1に示すように、P+ 領域8、9と
なる予定の領域以外の領域をレジストで覆い、ボロンを
約8.0×1014dose/cm2 、30keVでイオ
ン注入し、次に、N+ 領域60〜62となる予定の領域
以外の領域をレジストで覆い、リンを約7.0×1015
dose/cm2 、130keVでイオン注入し、次
に、レジストを除去した後、熱処理して深さ約0.8μ
mのP+ 領域8、9及びN+ 領域60〜62を形成す
る。次に、N+ 領域61、62上の層間絶縁膜及びMO
S電極51、52表面の層間絶縁膜を所定形状に開口し
コンタクトを形成する。次にアルミを全面に堆積したの
ちパターニングして、接続導体53、+電極端子57、
−電極端子58を形成し、主要な工程を完了する。 Next, as shown in FIG. 1, the regions other than the regions to be the P + regions 8 and 9 are covered with a resist, and boron ions are implanted at about 8.0 × 10 14 dose / cm 2 at 30 keV. Next, the area other than the area expected to be the N + areas 60 to 62 is covered with a resist, and phosphorus is added to about 7.0 × 10 15.
Ion implantation at 130 keV at dose / cm 2 , then, after removing the resist, heat-treating to a depth of about 0.8 μm.
m + P + regions 8, 9 and N + regions 60-62 are formed. Next, the interlayer insulating film on the N + regions 61 and 62 and the MO
The interlayer insulating film on the surface of the S electrodes 51 and 52 is opened in a predetermined shape to form a contact. Next, aluminum is deposited on the entire surface and then patterned to form a connection conductor 53, a positive electrode terminal 57,
-Form electrode terminals 58 and complete major steps .
【0025】[0025]
【0026】[0026]
【0027】[0027]
【0028】[0028]
【0029】[0029]
【0030】[0030]
【図1】実施例1の断面図である。FIG. 1 is a cross-sectional view of a first embodiment.
【図2】実施例1の工程を示す断面図である。FIG. 2 is a cross-sectional view showing a process of Example 1.
【図3】実施例1の工程を示す断面図である。FIG. 3 is a cross-sectional view showing a process of the first embodiment.
【図4】実施例1の工程を示す断面図である。FIG. 4 is a cross-sectional view showing a process in the first embodiment.
【図5】実施例1の工程を示す断面図である。FIG. 5 is a cross-sectional view showing a process of the first embodiment.
【図6】実施例1の工程を示す断面図である。FIG. 6 is a cross-sectional view showing a process of the first embodiment.
【図7】実施例1の工程を示す断面図である。FIG. 7 is a cross-sectional view illustrating a process of the first embodiment.
【図8】従来装置の断面図である。FIG. 8 is a sectional view of a conventional device.
1はシリコン基板(半導体基板) 3は埋め込みN+ 層(半導体領域のうち、高い不純物濃
度をもつ領域) 21はシリコン酸化膜(絶縁層) 41、42はN- 領域(半導体領域) 51、52はMOS電極 61、62はコンタクト電極 53は接続導体1 is a silicon substrate (semiconductor substrate ) 3 is a buried N + layer (a region having a high impurity concentration in a semiconductor region) 21 is a silicon oxide film (insulating layer) 41 and 42 is an N − region (semiconductor region) 51 and 52 Is a MOS electrode 61, 62 is a contact electrode 53 is a connection conductor
フロントページの続き (56)参考文献 特開 平4−283958(JP,A) 特開 平4−323860(JP,A) 特開 平1−283861(JP,A) 特開 平1−283863(JP,A) 特開 平3−83319(JP,A) 特開 平3−46267(JP,A) 特開 昭54−54588(JP,A) 特開 昭57−54360(JP,A) 特開 平4−196583(JP,A) 特開 平4−134844(JP,A) 特開 昭61−51841(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 27/04 H01L 21/822 Continuation of the front page (56) References JP-A-4-283958 (JP, A) JP-A-4-323860 (JP, A) JP-A-1-283861 (JP, A) JP-A-1-283863 (JP) JP-A-3-83319 (JP, A) JP-A-3-46267 (JP, A) JP-A-54-54588 (JP, A) JP-A-57-54360 (JP, A) 4-196583 (JP, A) JP-A-4-134844 (JP, A) JP-A-61-51841 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 27/04 H01L 21/822
Claims (1)
半導体層を絶縁物により分離して形成された半導体領域
と、前記半導体領域表面に絶縁膜を介してそれぞれ配設
される複数のMOS電極と、各前記半導体領域表面にそ
れぞれ形成されたコンタクト電極とを有するMOSコン
デンサ、及び、 前記MOSコンデンサが形成される前記各半導体領域以
外の前記半導体領域に形成されたMOSトランジスタ、 を 備えるMOSコンデンサを有する半導体装置におい
て、 第1の前記半導体領域から独立して形成された第2の前
記半導体領域表面の第2の前記コンタクト電極を前記第
1の半導体領域上の第1の前記MOS電極に接続する接
続導体と、前記第1の半導体領域表面の第1の前記コン
タクト電極及び前記第2の半導体領域上の第2の前記M
OS電極間に形成された直列接続MOS容量とを備え、 前記半導体領域のうち、前記絶縁層に隣接する領域は、
前記絶縁膜を挟んで前記MOS電極に対面する領域より
も高い不純物濃度 を有することを特徴とするMOSコン
デンサを有する半導体装置。1. A semiconductor device having an insulating layer formed on a semiconductor substrate .
A semiconductor region formed by separating the semiconductor layer insulator, a plurality of MOS electrodes disposed respectively through an insulating film on the semiconductor region surface, its each said semi conductor region surface
MOS Con <br/> capacitor having a respectively formed contact electrodes, and, wherein the semiconductor regions than said MOS capacitor is formed
In a semiconductor device having a MOS capacitor having a MOS transistor, formed in said semiconductor region of the outer, the second of the contact electrode of the second of said semiconductor region surface formed independently of the first of said semiconductor region a connection conductor connected to the first of said MOS electrode on the first semiconductor region, a first of said con <br/> tact electrode and the second semiconductor region of the first semiconductor region surface 2 of the above M
And a series connection MOS capacitor formed between the OS electrodes, among the semiconductor regions, a region adjacent to the insulating layer,
From the region facing the MOS electrode with the insulating film interposed
A semiconductor device having a MOS capacitor characterized by having a high impurity concentration .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4276302A JP2976724B2 (en) | 1992-10-14 | 1992-10-14 | Semiconductor device having MOS capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4276302A JP2976724B2 (en) | 1992-10-14 | 1992-10-14 | Semiconductor device having MOS capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06132477A JPH06132477A (en) | 1994-05-13 |
JP2976724B2 true JP2976724B2 (en) | 1999-11-10 |
Family
ID=17567561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4276302A Expired - Fee Related JP2976724B2 (en) | 1992-10-14 | 1992-10-14 | Semiconductor device having MOS capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2976724B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009032792A (en) * | 2007-07-25 | 2009-02-12 | Toyota Motor Corp | Capacitor, manufacturing method thereof, and SOI substrate including capacitor |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3900542B2 (en) * | 1997-03-24 | 2007-04-04 | セイコーエプソン株式会社 | Semiconductor capacitance device and semiconductor device using the same |
KR19990072936A (en) | 1998-02-27 | 1999-09-27 | 가나이 쓰도무 | Isolator and modem unit using the same |
JP4136452B2 (en) * | 2002-05-23 | 2008-08-20 | 株式会社ルネサステクノロジ | Semiconductor device and manufacturing method thereof |
JP2007299860A (en) * | 2006-04-28 | 2007-11-15 | Nec Electronics Corp | Semiconductor device |
-
1992
- 1992-10-14 JP JP4276302A patent/JP2976724B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009032792A (en) * | 2007-07-25 | 2009-02-12 | Toyota Motor Corp | Capacitor, manufacturing method thereof, and SOI substrate including capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPH06132477A (en) | 1994-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5442223A (en) | Semiconductor device with stress relief | |
JP2761685B2 (en) | Method for manufacturing semiconductor device | |
JPH039631B2 (en) | ||
JP2000196103A (en) | SOI element and manufacturing method thereof | |
JPH02166762A (en) | Compact CMOS device and its manufacturing method | |
JPH04102317A (en) | Manufacture of semiconductor device | |
JPH01164064A (en) | Semiconductor device | |
JPH07249770A (en) | Semiconductor device and its fabrication | |
JP2976724B2 (en) | Semiconductor device having MOS capacitor | |
JPH07109861B2 (en) | Semiconductor device including charge transfer device and manufacturing method thereof | |
JP4148615B2 (en) | Manufacturing method of semiconductor device | |
JP3196229B2 (en) | Semiconductor device | |
JP2850527B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS5856263B2 (en) | Manufacturing method of semiconductor device | |
JP3070501B2 (en) | Semiconductor device | |
JP2739965B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JP2996694B2 (en) | Method for manufacturing semiconductor stacked CMOS device | |
JP3312683B2 (en) | MOS type semiconductor device and manufacturing method thereof | |
JP2691258B2 (en) | Manufacturing method of MIS field effect transistor | |
JP2826239B2 (en) | Capacitor | |
JP3064003B2 (en) | Method for manufacturing semiconductor device | |
JP2638685B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH09129884A (en) | Soi thin film field-effect transistor and its manufacture | |
JP3123598B2 (en) | LSI and manufacturing method thereof | |
JPH0864820A (en) | Semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080910 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110910 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |