[go: up one dir, main page]

JP2968557B2 - Substrate for oxide superconducting conductor - Google Patents

Substrate for oxide superconducting conductor

Info

Publication number
JP2968557B2
JP2968557B2 JP2123679A JP12367990A JP2968557B2 JP 2968557 B2 JP2968557 B2 JP 2968557B2 JP 2123679 A JP2123679 A JP 2123679A JP 12367990 A JP12367990 A JP 12367990A JP 2968557 B2 JP2968557 B2 JP 2968557B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
substrate
thin film
superconducting thin
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2123679A
Other languages
Japanese (ja)
Other versions
JPH0421597A (en
Inventor
伸行 定方
和憲 尾鍋
康裕 飯島
一臣 柿本
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2123679A priority Critical patent/JP2968557B2/en
Publication of JPH0421597A publication Critical patent/JPH0421597A/en
Application granted granted Critical
Publication of JP2968557B2 publication Critical patent/JP2968557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導磁石、超電導発電機、超電導エネ
ルギー貯蔵、超電導素子用などとして応用開発が進めら
れている酸化物超電導導体用の基材に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for an oxide superconducting conductor whose application is being developed for a superconducting magnet, a superconducting generator, a superconducting energy storage, a superconducting element, and the like. .

「従来の技術」 Y−Ba−Cu−O系、Bi−Sr−Ca−Cu−O系、Tl−Ba−
Ca−Cu−O系などに代表される酸化物超電導体を用いて
長尺の超電導導体を開発することがなされている。
"Conventional technology" Y-Ba-Cu-O system, Bi-Sr-Ca-Cu-O system, Tl-Ba-
2. Description of the Related Art A long superconductor has been developed using an oxide superconductor represented by a Ca—Cu—O system or the like.

この種の酸化物超電導体を用いて長尺の超電導導体を
実用化することを考えると、テープ状の金属などのよう
に可撓性に優れ、しかも加工性の良好な材料からなる基
材を用意し、この基材上に、酸化物超電導薄膜を形成し
て酸化物超電導導体を製造することが望まれる。
Considering the practical use of a long superconducting conductor using this type of oxide superconductor, a substrate made of a material with excellent flexibility and good workability, such as tape-shaped metal, is considered. It is desired to prepare and form an oxide superconducting thin film on this substrate to produce an oxide superconducting conductor.

ところが、現在までに報告されている酸化物超電導導
体用の金属基材は、金、白金、銀、ハステロイなどに限
られており、これらの材料からなる基材上に酸化物超電
導薄膜を形成して得られた酸化物超電導導体は、チタン
酸ストロンチウム(SrTiO3)あるいはマグネシア(Mg
O)等の単結晶体からなる基板上に酸化物超電導薄膜を
形成して得られた酸化物超電導導体に対し、臨界電流密
度が2〜3桁小さいのが現状である。
However, metal substrates for oxide superconducting conductors that have been reported to date are limited to gold, platinum, silver, hastelloy, etc., and an oxide superconducting thin film is formed on a substrate made of these materials. The obtained oxide superconductor is made of strontium titanate (SrTiO 3 ) or magnesia (Mg
At present, the critical current density is two to three orders of magnitude lower than that of an oxide superconducting conductor obtained by forming an oxide superconducting thin film on a substrate made of a single crystal such as O).

このように金属製の基材上に形成した酸化物超電導薄
膜の臨界電流密度が小さくなる主な原因として知られて
いるのは、酸化物超電導体の結晶の配向性の問題であ
る。即ち、この種の酸化物超電導体は、結晶の特定の方
向に電流を流し易く、特定の方向に電流を流しにくい電
気的異方生を有している。
A major cause of the decrease in the critical current density of the oxide superconducting thin film formed on the metal substrate is the problem of the crystal orientation of the oxide superconductor. That is, this kind of oxide superconductor has an anisotropic electrical current that allows current to flow easily in a specific direction of the crystal and makes it difficult to flow current in a specific direction.

従って酸化物超電導体を用いて超電導導体を製造しよ
うとする場合、結晶の配向性を制御することが重要な課
題となる。
Therefore, when manufacturing a superconductor using an oxide superconductor, it is important to control the crystal orientation.

ここでペロブスカイト構造を基本構造とする酸化物超
電導体の結晶構造においては、結晶軸のa軸方向とb軸
方向とに銅原子と酸素原子とが配列して結合され、この
結合部分が結晶軸のc軸方向に層状に積層された構造を
なしている。
Here, in the crystal structure of the oxide superconductor having a perovskite structure as a basic structure, copper atoms and oxygen atoms are arranged and bonded in the a-axis direction and the b-axis direction of the crystal axis. In the c-axis direction.

従って、この系の酸化物超電導体は、結晶のa−b面
内の臨界電流密度が高くなるので、臨界電流密度を高め
るためには、結晶のa−b面を基材表面に平行に配置す
るように、即ち、結晶軸のc軸を基材表面に垂直に向く
ように酸化物超電導体を成膜することが好ましい。更
に、酸化物超電導薄膜を基材表面に成膜する必要がある
背景から、用いる基材の表面の結晶格子の大きさは、酸
化物超電導体のab軸方向の結晶格子の大きさに等しいこ
とが望ましい。
Accordingly, the oxide superconductor of this system has a high critical current density in the ab plane of the crystal. Therefore, in order to increase the critical current density, the ab plane of the crystal is arranged in parallel to the base material surface. It is preferable to form the oxide superconductor so that the c-axis of the crystal axis is perpendicular to the substrate surface. Furthermore, from the background that the oxide superconducting thin film needs to be formed on the substrate surface, the size of the crystal lattice on the surface of the substrate to be used is equal to the size of the crystal lattice in the ab-axis direction of the oxide superconductor. Is desirable.

以上のような観点から前述の単結晶体の基板を検討し
てみると、(100)面で配向しているSrTiO3の結晶にお
いては、a=3.91Åであり、(100)面で配向しているM
gOの結晶においては、a=4.21Åであるのに対し、Y1Ba
2Cu3O7−δなる組成のY系酸化物超電導体にあって
は、a=3.89Å、b=3.82Åであって前記の値に極めて
近い値となっている。
Considering the above-mentioned single crystal substrate from the above viewpoint, in the case of SrTiO 3 crystal oriented in the (100) plane, a = 3.91 °, and M
In the crystal of gO, while a = 4.21 °, Y 1 Ba
In the Y-based oxide superconductor having the composition of 2 Cu 3 O 7-δ , a = 3.89 ° and b = 3.82 °, which are very close to the above values.

これに対し、Agからなる基材は、a=4.09Åの面心立
方の結晶構造を有してはいるものの、従来から酸化物超
電導導体の製造用として用いられてきたものは、多結晶
構造で結晶の向きも揃っていないものであった。このた
め、Agの基材上に酸化物超電導薄膜を作製した場合に、
基材の表面と酸化物超電導薄膜のab軸の格子定数の不整
合により、酸化物超電導薄膜をc軸配向させることが難
しい問題があった。
On the other hand, a substrate made of Ag has a face-centered cubic crystal structure of a = 4.09 °, but a substrate that has been conventionally used for manufacturing an oxide superconductor has a polycrystalline structure. The orientation of the crystals was not uniform. For this reason, when an oxide superconducting thin film is produced on an Ag substrate,
Due to a mismatch between the lattice constant of the ab axis of the oxide superconducting thin film and the surface of the base material, there was a problem that it was difficult to orient the oxide superconducting thin film along the c axis.

また、Agからなる基材は、酸化物超電導体を形成した
後に行う熱処理によって軟化する傾向があり、超電導磁
石の電磁力に起因する外力が作用する装置への応用とし
ては強度不足となる問題がある。また、基材自体が強度
不足であると、応力付加によって基材上の超電導薄膜に
クラックが入ったり、基材と超電導薄膜が剥離するおそ
れがあった。
In addition, a substrate made of Ag tends to be softened by a heat treatment performed after forming an oxide superconductor, so that there is a problem that the strength becomes insufficient as an application to a device in which an external force caused by an electromagnetic force of a superconducting magnet acts. is there. Further, if the substrate itself has insufficient strength, there is a possibility that the superconducting thin film on the substrate is cracked by the application of stress or the superconducting thin film is separated from the substrate.

本発明は前記課題を解決するためになされたもので、
酸化物超電導薄膜を良好な結晶配向状態で形成できると
ともに、機械強度が高く、応力付加に強い酸化物超電導
導体を得ることができる基材を提供することを目的とす
る。
The present invention has been made to solve the above problems,
It is an object of the present invention to provide a substrate capable of forming an oxide superconducting thin film in a favorable crystal orientation state, and having a high mechanical strength and capable of obtaining an oxide superconducting conductor strong in applying stress.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するため
に、基材の外面に酸化物超電導薄膜を形成してなる酸化
物超電導導体用の基材であって、前記基材を、貴金属よ
りも高強度の可撓性の耐熱性の金属基材部と、この金属
基材部の外面に被覆された結晶質の面心立方構造の貴金
属材料からなる被覆層とから構成し、前記被覆層の外面
において、少なくとも酸化物超電導薄膜を形成する部分
を、(100)面の方向に結晶配向されてなるものであ
る。
Means for Solving the Problems The invention described in claim 1 is a base material for an oxide superconducting conductor formed by forming an oxide superconducting thin film on an outer surface of a base material in order to solve the problem. The base material is a flexible heat-resistant metal base part having a higher strength than the noble metal, and a coating layer made of a crystalline face-centered cubic noble metal material coated on the outer surface of the metal base part. Wherein at least the portion on the outer surface of the coating layer where the oxide superconducting thin film is to be formed is crystallographically oriented in the direction of the (100) plane.

「作用」 酸化物超電導体の格子定数に近い格子定数を有する貴
金属からなる被覆層を備えた基材を用い、この被覆層の
結晶を(100)面の方向に配向しているので、この被覆
層上に酸化物超電導薄膜を成膜するならば、酸化物超電
導薄膜が被覆層の表面の結晶構造に整合しつつ成長す
る。従って基材表面にc軸配向した酸化物超電導薄膜が
生成する。また、貴金属製の被覆層を強度の高い金属基
材部で補強しているので、貴金属単独からなる基材より
も機械強度に優れ、応力付加に対して強い構造となる。
[Function] A substrate provided with a coating layer made of a noble metal having a lattice constant close to the lattice constant of the oxide superconductor is used, and the crystals of the coating layer are oriented in the direction of the (100) plane. If an oxide superconducting thin film is formed on the layer, the oxide superconducting thin film grows while matching the crystal structure on the surface of the coating layer. Therefore, a c-axis oriented oxide superconducting thin film is formed on the surface of the base material. In addition, since the noble metal coating layer is reinforced with a metal base having high strength, the structure is superior in mechanical strength to a substrate made of noble metal alone and has a structure that is strong against stress.

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明の基材を形成し、更に酸化物超電導導体を製造
するには、まず、圧延加工などの塑性加工により、厚さ
0.1〜0.5mm程度の長尺のテープ状の可撓性のある第1図
に示す金属基材部1を形成する。この金属基材部1は、
ハステロイなどの耐熱Ni基合金から形成する。また、金
属基材部1を形成する耐熱金属は、貴金属よりも機械強
度が高い高強度の金属材料を用いる。
In order to form the base material of the present invention and further produce an oxide superconducting conductor, first, by plastic working such as rolling, thickness,
A long tape-shaped flexible metal base portion 1 shown in FIG. 1 of about 0.1 to 0.5 mm is formed. This metal base 1
It is formed from a heat-resistant Ni-based alloy such as Hastelloy. In addition, a high-strength metal material having higher mechanical strength than a noble metal is used as the heat-resistant metal forming the metal base 1.

次に前記金属基材部1の表面に第2図に示すようにA
g,Au,Ptあるいはこれらの合金などの貴金属からなる被
覆層2を形成し、2層構造の基材3を形成する。ここ
で、前記被覆層2の厚さは、10〜100μm程度が好まし
い。この理由は、被覆層2が10μmより薄いと、金属基
材部1の構成元素の拡散や被覆層2の連続性が欠如する
ので好ましくなく、100μmより厚いとコストが上昇す
るので好ましくない。また、前記被覆層2を形成する方
法は、メッキ法、クラッド法、圧着法、CVD法あるいは
溶着法などの公知の方法のいずれを用いても良く、要は
必要な厚さの被覆層を形成できる手段を用いれば良い。
Next, as shown in FIG.
A coating layer 2 made of a noble metal such as g, Au, Pt or an alloy thereof is formed, and a base material 3 having a two-layer structure is formed. Here, the thickness of the coating layer 2 is preferably about 10 to 100 μm. The reason for this is that if the coating layer 2 is thinner than 10 μm, the diffusion of the constituent elements of the metal substrate 1 and the continuity of the coating layer 2 are lacking. The method for forming the coating layer 2 may be any of known methods such as a plating method, a cladding method, a pressure bonding method, a CVD method, and a welding method. In short, a coating layer having a necessary thickness is formed. Any means that can be used may be used.

これらの貴金属からなる被覆層2は、結晶構造が酸化
物超電導体の結晶構造と類似であって、格子定数も近い
ものである。例えば、Y1Ba2Cu3O7−δなる組成の酸化
物超電導体の結晶においては、ペロブスカイトを基本と
する結晶構造であって、a=3.89、b=3.82である。こ
れに対し、Ag,Au,Ptはいずれも面心立方構造であって、
Agはa=4.09Å、Auはa=4.08Å、Ptはa=3.92Åであ
る。
The coating layer 2 made of these noble metals has a crystal structure similar to that of the oxide superconductor and has a similar lattice constant. For example, a crystal of an oxide superconductor having a composition of Y 1 Ba 2 Cu 3 O 7-δ has a crystal structure based on perovskite, and a = 3.89 and b = 3.82. In contrast, Ag, Au, and Pt all have a face-centered cubic structure,
Ag is a = 4.09 °, Au is a = 4.08 °, and Pt is a = 3.92 °.

前記テープ状の2層構造の基材3を形成したならば、
好ましくは1気圧以下の酸素分圧下において、300℃を
越える温度で700℃より低い温度、より好ましくは500〜
600℃の温度で、100時間以下、より好ましくは1〜6時
間程度熱処理を行って被覆層2の表面の結晶を配向させ
る。
If the tape-shaped base material 3 having a two-layer structure is formed,
Preferably, under an oxygen partial pressure of 1 atm or less, a temperature exceeding 300 ° C and a temperature lower than 700 ° C, more preferably 500 to
Heat treatment is performed at a temperature of 600 ° C. for 100 hours or less, more preferably for about 1 to 6 hours to orient the crystals on the surface of the coating layer 2.

ここで、銀などの金属は、強圧延加工などの強い塑性
加工を受けると、加工組織、即ち優先方位を持った集合
組織になって、特殊な方位に結晶が揃うことが知られて
いる。従って、前述の圧延加工によりテープ状に形成し
て集合組織を発達させたものに熱処理を施すことにより
結晶粒の結晶方位を特定方位に優先的に揃えることがで
き、この際の方位が(100)方向であって、酸化物超電
導体の格子定数ならびにc軸配向性に寄与する。
Here, it is known that when a metal such as silver is subjected to a strong plastic working such as a strong rolling work, it becomes a processed structure, that is, a texture having a preferred orientation, and crystals are aligned in a special orientation. Therefore, by applying a heat treatment to the tape formed by the above-mentioned rolling process to form a tape and develop a texture, the crystal orientation of the crystal grains can be preferentially aligned to a specific orientation. ) Direction, which contributes to the lattice constant and c-axis orientation of the oxide superconductor.

前記の熱処理によって被覆層2の表面の結晶は、(10
0)面が配向する。なお、基材3を熱処理する際の雰囲
気は、大気圧中でも差し支えない。ここで金属基材部1
はハステロイなどの耐熱金属から形成されるので、熱処
理によって強度低下を引き起こしたり損傷することもな
い。
By the heat treatment described above, the crystals on the surface of the coating layer 2 become (10
0) The plane is oriented. In addition, the atmosphere when heat-treating the base material 3 may be at atmospheric pressure. Here, the metal substrate 1
Is formed from a heat-resistant metal such as Hastelloy, so that heat treatment does not cause a decrease in strength or damage.

次に前記基材3上に、スパッタリング、分子線エピタ
キシー法、レーザPVD法、CVD法などの成膜手段を用いて
第3図に示すように酸化物超電導薄膜4を形成する。こ
こでの酸化物超電導薄膜4は、Y−Ba−Cu−O系、Bi−
Sr−Ca−Cu−O系、Tl−Ba−Ca−Cu−O系などに代表さ
れる酸化物である。具体的に例えば、Y1Ba2Cu3O7−δ
なる組成、Bi2Sr2Ca2Cu3OXなる組成、Tl2Ba2Ca2Cu3OX
組成のものなどである。
Next, an oxide superconducting thin film 4 is formed on the substrate 3 as shown in FIG. 3 by using film forming means such as sputtering, molecular beam epitaxy, laser PVD, and CVD. Here, the oxide superconducting thin film 4 is made of a Y-Ba-Cu-O-based, Bi-
It is an oxide represented by Sr-Ca-Cu-O system, Tl-Ba-Ca-Cu-O system and the like. Specifically, for example, Y 1 Ba 2 Cu 3 O 7−δ
, A composition of Bi 2 Sr 2 Ca 2 Cu 3 O X, and a composition of Tl 2 Ba 2 Ca 2 Cu 3 O X.

前記基材3上に酸化物超電導薄膜4を形成する場合、
基材表面の結晶が(100)面に配向しているので、基材
表面上に形成される酸化物超電導薄膜4の結晶の配向性
も整った状態となる。即ち、酸化物超電導薄膜4の結晶
のa−b面が被覆層2の上面に平行に向き、同結晶のc
軸が被覆層2の表面に対して垂直になるように結晶配向
する。
When forming the oxide superconducting thin film 4 on the base material 3,
Since the crystals on the surface of the substrate are oriented in the (100) plane, the crystal orientation of the oxide superconducting thin film 4 formed on the surface of the substrate is also in a well-aligned state. That is, the a-b plane of the crystal of the oxide superconducting thin film 4 is oriented parallel to the upper surface of the coating layer 2 and the c-
The crystal is oriented so that the axis is perpendicular to the surface of the coating layer 2.

基材3上に酸化物超電導薄膜4を形成したならば、酸
化物超電導薄膜4の均質化を目的として500〜800℃に1
分〜数時間程度加熱した後に徐冷する熱処理を施しても
良い。この熱処理によって酸化物超電導薄膜4の結晶構
造が整えられて超電導特性が向上し、酸化物超電導導体
5が得られる。
Once the oxide superconducting thin film 4 is formed on the substrate 3, the temperature is raised to 500 to 800 ° C. for the purpose of homogenizing the oxide superconducting thin film 4.
A heat treatment of gradually cooling after heating for about a few minutes to several hours may be performed. By this heat treatment, the crystal structure of the oxide superconducting thin film 4 is adjusted, the superconducting properties are improved, and the oxide superconducting conductor 5 is obtained.

前述のように表面結晶が配向した被覆層2上に更に酸
化物超電導薄膜4を成膜するならば、被覆層2の結晶軸
に酸化物超電導薄膜4の結晶軸を一致させながら成膜で
きるので、酸化物超電導薄膜4を基材上に配向状態で成
膜することができる。従って臨界電流密度の高い優れた
酸化物超電導導体5を得ることができる。
If the oxide superconducting thin film 4 is further formed on the coating layer 2 in which the surface crystals are oriented as described above, the film can be formed while the crystal axis of the oxide superconducting thin film 4 matches the crystal axis of the coating layer 2. The oxide superconducting thin film 4 can be formed on the substrate in an oriented state. Therefore, an excellent oxide superconductor 5 having a high critical current density can be obtained.

また、得られた酸化物超電導導体5は、耐熱性に優
れ、高強度の金属基材部1で補強されるために、超電導
磁石用として使用されて電磁石に起因する応力が付加さ
れた場合であっても、超電導薄膜4にクラックを生じる
おそれが少なく、外力に強い特徴を有する。
Further, the obtained oxide superconducting conductor 5 has excellent heat resistance and is reinforced with the high-strength metal base portion 1, so that it is used for a superconducting magnet and is subjected to a stress caused by the electromagnet. Even if it is present, there is little possibility that cracks will occur in the superconducting thin film 4, and the superconducting thin film 4 has a feature that is strong against external force.

「実施例」 ハステロイC−276からなる厚さ0.3mm、幅5mmのテー
プ状の金属基材部を圧延加工により形成し、これらの表
面に、Agからなる厚さ0.1mmの被覆層を形成し、全体を
0.5〜1.0気圧の酸素分圧下において、500℃で1時間熱
処理を加えることで、被覆層表面のAgの結晶を(100)
面に沿うように配向させた。
"Example" A 0.3 mm thick, 5 mm wide tape-shaped metal base portion made of Hastelloy C-276 was formed by rolling, and a 0.1 mm thick coating layer made of Ag was formed on these surfaces. The whole
By applying a heat treatment at 500 ° C. for 1 hour under an oxygen partial pressure of 0.5 to 1.0 atm, the Ag crystals on the surface of the coating layer are converted to (100)
It was oriented along the plane.

続いてレーザ蒸着装置を用いて被覆層上にY1Ba2Cu3O
7−δなる組成の酸化物超電導薄膜を成膜した。
Then, Y 1 Ba 2 Cu 3 O
An oxide superconducting thin film having a composition of 7-δ was formed.

第5図に、前記のように製造された酸化物超電導薄膜
のX膜回折試験結果を示す。第5図から明らかなよう
に、Y1Ba2Cu3O7−δなる組成の酸化物超電導体に特有
の回折ピークが見られ、配向状態の酸化物超電導薄膜を
被覆層上に形成できることが明らかになった。
FIG. 5 shows an X-ray diffraction test result of the oxide superconducting thin film manufactured as described above. As is apparent from FIG. 5, a diffraction peak peculiar to the oxide superconductor having the composition of Y 1 Ba 2 Cu 3 O 7-δ is observed, indicating that the oxide superconducting thin film in the oriented state can be formed on the coating layer. It was revealed.

また、前記のように製造された酸化物超電導導体の引
張り強度を測定した結果、50kg/mm2の優秀な値を示し
た。これに対し、前記基材と同一寸法のAgテープを用
い、これを熱処理して結晶配向させ、その上に超電導薄
膜を形成して得られた酸化物超電導導体の引張り強度は
14kg/mm2であった。
In addition, the tensile strength of the oxide superconducting conductor manufactured as described above was measured and found to be an excellent value of 50 kg / mm 2 . On the other hand, the tensile strength of the oxide superconducting conductor obtained by using an Ag tape having the same dimensions as the substrate and heat-treating the same to form a crystal orientation and forming a superconducting thin film thereon is as follows:
It was 14 kg / mm 2 .

以上のことから本発明の基材を用いて製造された酸化
物超電導導体は、配向性の良好な酸化物超電導薄膜を備
えるとともに、Agのみのテープ材と比較し、引張り強度
も高いことが明らかになった。従って前記酸化物超電導
導体は、電磁力による応力付加などにさらされる超電導
磁石用などとして好適である。
From the above, it is clear that the oxide superconducting conductor manufactured using the base material of the present invention has an oxide superconducting thin film with good orientation, and also has a higher tensile strength than a tape material of only Ag. Became. Therefore, the oxide superconducting conductor is suitable for a superconducting magnet or the like which is exposed to stress by an electromagnetic force.

「発明の効果」 以上説明したように本発明によれば、酸化物超電導体
の格子定数に近い格子定数を有し、結晶の格子定数の類
似する貴金属からなる被覆層を金属基材上に形成した基
材を用い、この基材の被覆層表面の結晶を(100)面の
方向に配向しているので、この基材を用いて被覆層上に
酸化物超電導薄膜を成膜するならば、酸化物超電導薄膜
が被覆層表面の結晶構造に整合しつつ成長する。従って
基材表面にc軸配向した酸化物超電導薄膜を生成させる
ことができ、結晶配向性の良好な臨界電流特性の高い酸
化物超電導導体を得ることができる。
[Effects of the Invention] As described above, according to the present invention, a coating layer made of a noble metal having a lattice constant close to the lattice constant of an oxide superconductor and having a similar lattice constant to a crystal is formed on a metal substrate. Since the crystal on the surface of the coating layer of this substrate is oriented in the direction of the (100) plane using the base material thus formed, if an oxide superconducting thin film is formed on the coating layer using this base material, The oxide superconducting thin film grows while matching the crystal structure of the surface of the coating layer. Therefore, an oxide superconducting thin film having c-axis orientation can be formed on the substrate surface, and an oxide superconducting conductor having good crystal orientation and high critical current characteristics can be obtained.

また、基材全体を高価な貴金属で構成する場合よりも
貴金属の使用割合を少なくできるので、本発明の基材を
用いることによって得られる酸化物超電導導体のコスト
ダウンができる。
Further, since the use ratio of the noble metal can be reduced as compared with the case where the entire substrate is made of an expensive noble metal, the cost of the oxide superconducting conductor obtained by using the substrate of the present invention can be reduced.

また、耐熱性の高強度の金属基材部の上に被覆層を形
成し、更に酸化物超電導薄膜を形成すると、応力が付加
された場合に金属基材部が強度を発揮し、超電導薄膜の
クラック発生を防止するので、外力に強い酸化物超電導
導体が得られる。
In addition, when a coating layer is formed on a heat-resistant high-strength metal base portion and then an oxide superconducting thin film is formed, the metal base portion exhibits strength when stress is applied, and the superconducting thin film Since the occurrence of cracks is prevented, an oxide superconductor that is strong against external forces can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第4図は本発明の一例を説明するためのも
ので、第1図は金属基材部の断面図、第2図は金属基材
部上に被覆層を形成した状態を示す断面図、第3図は被
覆層上に酸化物超電導薄膜を形成した状態を示す断面
図、第4図は酸化物超電導導体の断面図、第5図は実施
例で基材上に形成したY系超電導薄膜のX線回折ピーク
を示すグラフである。 1……金属基材部、2……被覆層、3……基材、4……
酸化物超電導薄膜、5……酸化物超電導導体。
1 to 4 are views for explaining an example of the present invention. FIG. 1 is a sectional view of a metal base portion, and FIG. 2 shows a state in which a coating layer is formed on the metal base portion. FIG. 3 is a sectional view showing a state in which an oxide superconducting thin film is formed on a coating layer, FIG. 4 is a sectional view of an oxide superconducting conductor, and FIG. FIG. 3 is a graph showing an X-ray diffraction peak of a superconducting thin film. 1 ... metal base part, 2 ... coating layer, 3 ... base material, 4 ...
Oxide superconducting thin film, 5 ... Oxide superconducting conductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柿本 一臣 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 平3−199107(JP,A) 特開 平3−75204(JP,A) 特開 平2−102121(JP,A) 特開 平1−290524(JP,A) 特開 平1−266773(JP,A) 特開 平1−252534(JP,A) (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 C01G 1/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuomi Kakimoto 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (72) Inventor Satoshi Kawano 1-1-5-1 Kiba, Koto-ku, Tokyo Fujikura JP-A-3-199107 (JP, A) JP-A-3-75204 (JP, A) JP-A-2-102121 (JP, A) JP-A-1-290524 (JP) JP-A-1-266773 (JP, A) JP-A-1-252534 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C30B 1/00-35/00 C01G 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基材の外面に酸化物超電導薄膜を形成して
なる酸化物超電導導体に用いられる基材であって、前記
基材が、貴金属よりも高強度の可撓性を有する耐熱性の
金属基材部と、この金属基材部の外面に被覆された結晶
質の面心立方構造の貴金属材料からなる被覆層とからな
り、前記被覆層の外面において、少なくとも酸化物超電
導薄膜を形成する部分が、(100)面の方向に結晶配向
されてなることを特徴とする酸化物超電導導体用基材。
1. A substrate used for an oxide superconducting conductor having an oxide superconducting thin film formed on an outer surface of a substrate, wherein the substrate has a higher heat resistance than a noble metal. And a coating layer made of a noble metal material having a crystalline face-centered cubic structure coated on the outer surface of the metal base portion, and at least an oxide superconducting thin film is formed on the outer surface of the coating layer. A substrate for an oxide superconducting conductor, characterized in that the portion to be crystallized is oriented in the direction of the (100) plane.
JP2123679A 1990-05-14 1990-05-14 Substrate for oxide superconducting conductor Expired - Fee Related JP2968557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123679A JP2968557B2 (en) 1990-05-14 1990-05-14 Substrate for oxide superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123679A JP2968557B2 (en) 1990-05-14 1990-05-14 Substrate for oxide superconducting conductor

Publications (2)

Publication Number Publication Date
JPH0421597A JPH0421597A (en) 1992-01-24
JP2968557B2 true JP2968557B2 (en) 1999-10-25

Family

ID=14866626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123679A Expired - Fee Related JP2968557B2 (en) 1990-05-14 1990-05-14 Substrate for oxide superconducting conductor

Country Status (1)

Country Link
JP (1) JP2968557B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836860A1 (en) * 1998-08-14 2000-02-17 Abb Research Ltd Electrically stabilized thin film high temperature superconductor, useful as a fault current limiter, comprises a superconducting layer in interrupted contact with a metal substrate to avoid hot spots
AU1750901A (en) * 1999-07-23 2001-03-05 American Superconductor Corporation Dust cover/pellicle for a photomask
JP5123462B2 (en) * 2004-10-27 2013-01-23 住友電気工業株式会社 Film-forming alignment substrate, superconducting wire, and method for manufacturing film-forming alignment substrate
JP4732162B2 (en) * 2005-12-27 2011-07-27 株式会社フジクラ Oxide superconducting conductor and manufacturing method thereof
JP5113430B2 (en) * 2007-06-05 2013-01-09 九州電力株式会社 Metal plating composite substrate
JP5435448B2 (en) * 2008-12-24 2014-03-05 古河電気工業株式会社 Tape-like substrate for superconducting wire, method for producing the same, and superconducting wire
JP5432863B2 (en) * 2010-08-25 2014-03-05 住友電気工業株式会社 Alignment substrate for film formation and superconducting wire
JP5379293B2 (en) * 2012-11-15 2013-12-25 住友電気工業株式会社 Alignment substrate for film formation, superconducting wire, and method for manufacturing alignment substrate for film formation

Also Published As

Publication number Publication date
JPH0421597A (en) 1992-01-24

Similar Documents

Publication Publication Date Title
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
US6114287A (en) Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom
EP0312015B1 (en) Oxide superconductor shaped body and method of manufacturing the same
EP0292959B1 (en) Superconducting member
US6375768B1 (en) Method for making biaxially textured articles by plastic deformation
JP2968557B2 (en) Substrate for oxide superconducting conductor
WO2007080876A1 (en) Rare earth-containing tape-shaped oxide superconductor
WO2004088677A1 (en) Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
WO2008048330A2 (en) A superconducting article and method of forming a superconducting article
JP2968556B2 (en) Method for producing substrate for oxide superconducting conductor
JP2911177B2 (en) Manufacturing method of oxide superconducting conductor
JP2649242B2 (en) Superconducting ceramic laminate and its manufacturing method
JP3061634B2 (en) Oxide superconducting tape conductor
JPH07102969B2 (en) Superconductor
EP2284917A1 (en) Coated conductor
JP2813287B2 (en) Superconducting wire
JP2643972B2 (en) Oxide superconducting material
JPH08157213A (en) Oxide superconductive film and its production
JPH01221810A (en) Oxide superconducting molded body and its manufacturing method
JP2721322B2 (en) Oxide superconducting compact
JP2841933B2 (en) Manufacturing method of oxide superconducting wire
JP3061627B2 (en) Manufacturing method of oxide superconducting tape conductor
JP2532986B2 (en) Oxide superconducting wire and coil using the same
KR20000000707A (en) Different sort metal material bound having cube structure and manufacturing method thereof
JP2821885B2 (en) Superconducting thin film forming method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees