[go: up one dir, main page]

JP2968290B2 - A ▲ High-strength Al ▲ alloy fin material for heat exchange - Google Patents

A ▲ High-strength Al ▲ alloy fin material for heat exchange

Info

Publication number
JP2968290B2
JP2968290B2 JP29295489A JP29295489A JP2968290B2 JP 2968290 B2 JP2968290 B2 JP 2968290B2 JP 29295489 A JP29295489 A JP 29295489A JP 29295489 A JP29295489 A JP 29295489A JP 2968290 B2 JP2968290 B2 JP 2968290B2
Authority
JP
Japan
Prior art keywords
strength
fin material
fin
alloy
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29295489A
Other languages
Japanese (ja)
Other versions
JPH03153835A (en
Inventor
建 当摩
武志 板垣
章二 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP29295489A priority Critical patent/JP2968290B2/en
Publication of JPH03153835A publication Critical patent/JPH03153835A/en
Application granted granted Critical
Publication of JP2968290B2 publication Critical patent/JP2968290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高強度を有し、したがって薄肉化が可能
なA熱交換器用高強度A合金製フィン材に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength A-alloy fin material for an A-heat exchanger, which has a high strength and can be made thinner.

〔従来の技術〕[Conventional technology]

従来、一般に自動車のラジエータや、エアコンなどと
して用いられているA熱交換器が、例えばA−Mn系
合金の芯材の表面にA−Si系合金のろう材をクラッド
することにより形成されたブレージングシートで構成さ
れた管材と、同様にA−Mn系合金で構成されたフィン
材とを所定の形状に組立て、この組立て体を真空雰囲気
中で加熱して前記管材に前記フィン材をろう付けするこ
とにより製造され、また上記フィン材には、数多くのA
合金が適用されていることも良く知られるところであ
り、この中で、同一出願人は、先に特願昭56−105350号
(特開昭58−6956号)として、 Mn:0.1〜1.5%、Si:0.1〜1.5%、 Zr:0.02〜0.2%、 を含有し、さらに、 Fe:0.1〜1.%、Ni:0.05〜0.3%、 のうちの1種または2種、 を含有し、残りがAと不可避不純物からなる組成(以
上重量%、以下%は重量%を示す)を有するA合金で
構成されたA熱交換器用フィン材を提案した。
Conventionally, an A heat exchanger generally used as a radiator of an automobile or an air conditioner is formed by cladding a brazing material of an A-Si alloy on a surface of a core material of an A-Mn alloy, for example. Assembling a tube member made of a sheet and a fin member also made of an A-Mn alloy into a predetermined shape, heating the assembly in a vacuum atmosphere, and brazing the fin member to the tube member. And the fin material has many A
It is also well known that alloys are applied. Among them, the same applicant has previously filed Japanese Patent Application No. 56-105350 (Japanese Patent Application Laid-Open No. 58-6956) with Mn: 0.1-1.5%, Si: 0.1 to 1.5%, Zr: 0.02 to 0.2%, Fe: 0.1 to 1.%, Ni: 0.05 to 0.3%, one or two of the following, with the balance being We have proposed a fin material for an A heat exchanger composed of an A alloy having a composition of A and inevitable impurities (more than% by weight, the following% indicates% by weight).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

一方、近年の各種車輌の高速化、小型化、および軽量
化に対する要求は厳しく、これに伴いA熱交換器の構
造部材、特にフィン材には一段の薄肉化が要求される傾
向にあるが、上記の従来合金製フィン材はじめ、多くの
フィン材は強度不足が原因で薄肉化の要求に満足して対
応することができないのが現状である。
On the other hand, in recent years, demands for speeding up, miniaturization, and weight reduction of various vehicles are severe, and accordingly, there is a tendency that structural members of the A heat exchanger, particularly fin materials, are required to be further reduced in thickness, At present, many fin materials, including the above-mentioned conventional alloy fin materials, cannot satisfy the demand for thinning due to insufficient strength.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、発明者等は、上述のような観点から、高強度
を有し、薄肉化を可能とするA熱交換器用フィン材を
開発すべく研究を行った結果、 フィン材を、 Fe:1.1〜1.5%、Si:0.35〜0.51%、 Mn:0.1〜0.26%、 を含有し、残りがAと不可避不純物からなる組成を有
するA合金で構成すると、このA合金は高強度をも
つことから、フィン材の薄肉化をはかることができるよ
うになるという研究結果を得たのである。
In view of the above, the inventors conducted research to develop a fin material for A heat exchanger which has high strength and enables thinning, and as a result, the fin material was changed from Fe: 1.1 to 1.5%, Si: 0.35 to 0.51%, Mn: 0.1 to 0.26%, and the remainder is composed of an A alloy having a composition consisting of A and unavoidable impurities. The research results showed that the material could be made thinner.

この発明は、上記研究結果にもとづいてなされたもの
であって、以下にフィン材を構成するA合金の成分組
成を上記の通りに限定した理由を説明する。
The present invention has been made based on the above research results, and the reason for limiting the component composition of the A alloy constituting the fin material as described above will be described below.

(a) SiおよびMn これらの成分には、素地に固溶するよりはむしろ、素
地中に微細に分散するA−Mn−Si系化合物を形成し
て、フィン材の高温強度を向上させ、もってろう付け時
の加熱に際し、フィン材が薄肉状態でも、これの変形を
阻止して、良好なろう付けを行わしめる作用があり、こ
の場合これらの成分は上記の化合物を積極的に形成する
ので、素地中への固溶が抑制されることから、フィン材
には高熱伝導性と低電位が保持されるが、その含有量
が、それぞれSi:0.35%未満、Mn:0.1%未満では、上記
の作用に所望の効果が得られず、一方、その含有量が、
それぞれSi:0.51%およびMn:0.26%を越えると、素地中
へのSiおよびMnの固溶量が多くなって、熱伝導性が低下
し、かつ電位が上昇し、51.0%(IACS)以上の電気伝導
度および−750mV vs SCE以下の電位を確保することがで
きず、管材に対する犠牲陽極効果が低下するようになる
ことから、その含有量をそれぞれ、Si:0.35〜0.51%、M
n:0.1〜0.26%と定めた。
(A) Si and Mn These components form an A-Mn-Si-based compound that is finely dispersed in the substrate rather than forming a solid solution in the substrate, thereby improving the high-temperature strength of the fin material. Upon heating at the time of brazing, even if the fin material is in a thin state, it has an effect of preventing deformation of the fin material and performing good brazing, and in this case, since these components actively form the above compound, Since the solid solution in the base material is suppressed, the fin material retains high thermal conductivity and low potential, but when the content is less than 0.35% for Si: and less than 0.1% for Mn, respectively, The desired effect is not obtained, while the content is
If Si: 0.51% and Mn: 0.26%, respectively, the solid solution amount of Si and Mn in the base material increases, the thermal conductivity decreases, and the potential increases, and 51.0% (IACS) or more Since the electric conductivity and the potential of -750 mV vs. SCE or less cannot be secured, and the sacrificial anode effect on the tube material is reduced, the contents are respectively set to Si: 0.35 to 0.51%, M
n: 0.1 to 0.26%.

(b) Fe Fe成分には、主として溶解鋳造時にAと優先的に結
合して、素地中に微細に分散するA−Fe系化合物を形
成し、室温強度を向上させる作用があり、この場合上記
のA−Mn−Si系化合物形成の場合のSiおよびMnと同様
に、Fe成分の素地中への固溶が抑制されることから、熱
伝導性向上効果と電位低下効果が保持されるが、その含
有量がそれぞれ1.1%未満では前記作用に所望の効果が
得られず、一方その含有量が1.5%、を越えると、Siお
よびMnと同様に素地中に固溶するFe成分の割合が多くな
って熱伝導性が低下し、電位が上昇するようになるほ
か、A−Fe系化合物が粗大化し、高温強度が低下する
ほか、加工性も低下することから、その含有量を、1.1
〜1.5%と定めた。
(B) Fe The Fe component mainly has a function of improving the room-temperature strength by forming an A-Fe-based compound which is preferentially bonded to A at the time of melting and casting and forms finely dispersed in the base material. As in the case of Si and Mn in the case of the formation of the A-Mn-Si based compound, since the solid solution of the Fe component is suppressed in the base material, the effect of improving the thermal conductivity and the effect of lowering the potential are maintained. If the content is less than 1.1%, desired effects cannot be obtained in the above-mentioned action, while if the content exceeds 1.5%, the proportion of the Fe component dissolved in the matrix similarly to Si and Mn is large. Thermal conductivity decreases, the potential increases, the A-Fe-based compound coarsens, the high-temperature strength decreases, and the processability also decreases.
1.51.5%.

〔実施例〕〔Example〕

つぎに、この発明のフィン材を実施例により具体的に
説明する。
Next, the fin material of the present invention will be specifically described with reference to examples.

それぞれ第1表に示される成分組成をもったA合金
溶湯を調製し、30mm×150mmの平面内面寸法をもった水
冷鋳型を用いて半連続的に鋳塊とし、この鋳魂に通常の
条件で熱間圧延を施し、さらに同じく通常の条件で中間
焼鈍を必要に応じて加えながら冷間圧延を施し、最終冷
間圧延率を30%とすることにより、いずれも70μmの厚
さをもった本発明フィン材1〜5および比較フィン材1
〜6をそれぞれ製造した。
Each of the A alloy melts having the component compositions shown in Table 1 was prepared and semi-continuously cast into ingots using a water-cooled mold having a plane inner surface dimension of 30 mm x 150 mm. Hot-rolled, and then cold-rolled under the same conditions, with intermediate annealing applied as necessary, and the final cold-rolling rate is set to 30%. Inventive fin materials 1 to 5 and comparative fin material 1
To 6 were each manufactured.

なお、比較フィン材1〜6は、これを構成するA合
金の構成成分のうちのいずれかの成分含有量(第1表に
*印を付す)がこの発明の範囲から外れたものである。
The comparative fin materials 1 to 6 have a component content (marked with * in Table 1) of any of the constituent components of the A alloy constituting the comparative fin materials 1 to 6 is outside the scope of the present invention.

ついで、この結果得られた本発明フィン材1〜5およ
び比較フィン材1〜6について、熱伝導性を評価する目
的で電気伝導度、管材に対する犠牲陽極効果を評価する
目的で電位、そして室温強度を評価する目的で引張強さ
をそれぞれ測定し、さらに高温強度を評価する目的で、
幅:30mm×長さ:140mmの試験片を用い、 この試験片の一方側35mmをフリーとした状態で、ろう付
け条件に相当する条件、すなわち15-5torrの真空中、60
0℃に5分間保持の条件で加熱処理し、試験片の突出部
の最先端における垂下高さを測定した。これらの測定結
果を第1表に示した。
Then, the fin materials 1 to 5 of the present invention and the comparative fin materials 1 to 6 obtained as described above were evaluated for electric conductivity for evaluating thermal conductivity, electric potential for evaluating sacrificial anode effect on tube material, and room temperature strength. In order to evaluate the tensile strength, respectively, and to evaluate the high-temperature strength,
Using a test piece of width: 30 mm × length: 140 mm, With one side of the test piece 35 mm free, under conditions equivalent to brazing conditions, i.e., in a vacuum of 15 -5 torr, 60
Heat treatment was performed at 0 ° C. for 5 minutes, and the hanging height at the tip of the protruding portion of the test piece was measured. The results of these measurements are shown in Table 1.

〔発明の効果〕〔The invention's effect〕

第1表に示される結果から、本発明フィン材1〜5
は、いずれも51.0%(IACS)以上の電気伝導性および−
750mV vs SCE以下の電位を示し、したがってすぐれた熱
伝導性および低電位を保持した状態で、すぐれた常温お
よび高温強度を示すのに対して、比較フィン材1〜6に
見られるように、これを構成するA合金のうちのいず
れかの成分含有量がこの発明の範囲から外れると、上記
の特性のうちの少なくともいずれかの特性が劣ったもの
になることが明らかである。
From the results shown in Table 1, the fin materials of the present invention 1 to 5
Means that the electrical conductivity is 51.0% (IACS) or more and-
750 mV vs. SCE or lower, and thus exhibiting excellent room temperature and high temperature strength while maintaining excellent thermal conductivity and low potential, as shown in Comparative Fin Materials 1-6. It is clear that if the content of any one of the A alloys constituting the above deviates from the range of the present invention, at least one of the above-mentioned properties becomes inferior.

上述のように、この発明のフィン材は、すぐれた熱伝
導性および低電位を保持した状態で、高い室温および高
温強度を有するので、フィン材の薄肉化を可能とするば
かりでなく、A熱交換器製造に際してのろう付け工程
でフィン材が変形することがなく、良好なろう付けを行
なうことができ、また管材に対する犠牲陽極効果にもす
ぐれているので、管材をよく防食し、良好な熱伝導性を
具備することと合まって、すぐれた性能を発揮し、A
熱交換器の長期に亘る使用を可能とするなど工業上有用
な特性を有するのである。
As described above, the fin material of the present invention has high room temperature and high temperature strength while maintaining excellent thermal conductivity and low potential. Since the fin material is not deformed in the brazing process during the manufacture of the exchanger, good brazing can be performed, and the sacrifice anode effect on the tubing is excellent, so that the tubing is well protected against corrosion and has good heat. Combined with having conductivity, it exhibits excellent performance,
It has industrially useful properties, such as allowing the heat exchanger to be used for a long time.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe:1.1〜1.5%、Si:0.35〜0.51%、 Mn:0.1〜0.26%、 を含有し、残りがAと不可避不純物からなる組成(以
上重量%)を有するA合金で構成したことを特徴とす
るA熱交換器用高強度A合金製フィン材。
(1) Fe: 1.1 to 1.5%, Si: 0.35 to 0.51%, Mn: 0.1 to 0.26%, and the balance is composed of an A alloy having a composition of A and unavoidable impurities (at least% by weight). A fin material made of a high-strength A alloy for an A heat exchanger.
JP29295489A 1989-11-10 1989-11-10 A ▲ High-strength Al ▲ alloy fin material for heat exchange Expired - Fee Related JP2968290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29295489A JP2968290B2 (en) 1989-11-10 1989-11-10 A ▲ High-strength Al ▲ alloy fin material for heat exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29295489A JP2968290B2 (en) 1989-11-10 1989-11-10 A ▲ High-strength Al ▲ alloy fin material for heat exchange

Publications (2)

Publication Number Publication Date
JPH03153835A JPH03153835A (en) 1991-07-01
JP2968290B2 true JP2968290B2 (en) 1999-10-25

Family

ID=17788577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29295489A Expired - Fee Related JP2968290B2 (en) 1989-11-10 1989-11-10 A ▲ High-strength Al ▲ alloy fin material for heat exchange

Country Status (1)

Country Link
JP (1) JP2968290B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592688B2 (en) * 1998-07-23 2003-07-15 Alcan International Limited High conductivity aluminum fin alloy
US6531006B2 (en) * 2001-02-13 2003-03-11 Alcan International Limited Production of high strength aluminum alloy foils
ES2318764T5 (en) 2005-06-29 2019-12-13 Eurofoil Luxembourg S A Production procedure of an Al-Fe-Si type aluminum alloy sheet and sheet of the same
RU2015115688A (en) * 2014-04-30 2016-11-20 Эннио КОРРАДО A film made of an alloy of aluminum and iron, the use of such a material in combination with an alternating magnetic field and kitchen equipment suitable for heating on induction cooking devices, including such a film

Also Published As

Publication number Publication date
JPH03153835A (en) 1991-07-01

Similar Documents

Publication Publication Date Title
JP2005504890A (en) Aluminum alloy for fin material production
JP2968290B2 (en) A ▲ High-strength Al ▲ alloy fin material for heat exchange
JP5743642B2 (en) Aluminum alloy brazing sheet
JP3222577B2 (en) Aluminum alloy fin material for heat exchanger
KR100329686B1 (en) Aluminum Alloy Fin Material for Heat Exchanger
JP3256907B2 (en) Manufacturing method of aluminum alloy fin material for heat exchanger
JPH06322494A (en) Production of aluminum alloy fin material for heat exchanger
JP2968304B2 (en) Structural members of heat exchanger made of Al alloy
JPS62158850A (en) Al-alloy fin material for heat exchanger
JPS60138037A (en) Al alloy composite fin material for heat exchanger having excellent high-temperature strength and sacrificial anode effect
JP3085964B2 (en) Method of manufacturing high strength sacrificial anode fin material made of aluminum alloy for heat exchanger manufactured by brazing
JP2607245B2 (en) High strength aluminum alloy composite thin fin material with excellent sacrificial anode effect for heat exchangers
JPH03153836A (en) Fin material made of high strength al alloy for al heat exchanger
JPH07102337A (en) Production of aluminum alloy fin material for brazing and heat exchanger made of aluminum alloy
JPH0797652A (en) Production of aluminum alloy brazing sheet fin material and heat exchanger made of aluminum alloy
JPH03153834A (en) Fin material made of high strength al alloy for al heat exchanger
JPH0718358A (en) High strength aluminum alloy fin material for heat exchanger
JPS58171546A (en) Al alloy as fin material for heat exchanger with superior drooping resistance and sacrificial anode effect
JPH05311304A (en) Fin material made of high strength al alloy for aluminum heat exchanger
JP3256910B2 (en) Aluminum alloy fin material for heat exchanger
JPS586956A (en) Al alloy for fin material of heat exchanger with superior heat conductivity and superior drooping resistance
JP2024081351A (en) Aluminum alloy material and method for producing the same
JPH07243006A (en) Composite metal material with large anisotropy of thermal conductivity
JPH0790446A (en) Aluminum alloy fin material and manufacture of aluminum alloy-made heat exchanger
JPH046237A (en) Heat exchanger fin material made of al alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees