[go: up one dir, main page]

JP2967257B2 - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JP2967257B2
JP2967257B2 JP31330093A JP31330093A JP2967257B2 JP 2967257 B2 JP2967257 B2 JP 2967257B2 JP 31330093 A JP31330093 A JP 31330093A JP 31330093 A JP31330093 A JP 31330093A JP 2967257 B2 JP2967257 B2 JP 2967257B2
Authority
JP
Japan
Prior art keywords
plate
light
optical
birefringent plate
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31330093A
Other languages
Japanese (ja)
Other versions
JPH07168127A (en
Inventor
聡明 渡辺
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP31330093A priority Critical patent/JP2967257B2/en
Publication of JPH07168127A publication Critical patent/JPH07168127A/en
Application granted granted Critical
Publication of JP2967257B2 publication Critical patent/JP2967257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信路中の光学素子
の表面で反射して光源方向に戻ってくる反射光を遮断
し、ノイズの発生を防止する光アイソレータに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator that blocks reflected light that is reflected on the surface of an optical element in an optical communication path and returns toward a light source, thereby preventing noise.

【0002】[0002]

【従来の技術】光通信システムや光計測器などではレー
ザ光源を発振した伝送光が光通信路中の各種の光学素子
の入射面などで反射し、その反射光がレーザ光源にまで
達することがある。反射光は光源の発光作用を乱し、し
ばしばノイズを生じさせる。光アイソレータはこうした
光伝送路に設けられ、予定の伝送方向に進む光だけ透過
させ、光源方向に向かう反射光を選択的に遮断するもの
である。
2. Description of the Related Art In an optical communication system or an optical measuring instrument, transmission light oscillated from a laser light source is reflected on an incident surface of various optical elements in an optical communication path, and the reflected light reaches the laser light source. is there. The reflected light disturbs the light emitting action of the light source and often causes noise. The optical isolator is provided in such an optical transmission path, and transmits only light traveling in a predetermined transmission direction, and selectively blocks reflected light traveling in a light source direction.

【0003】特公昭58−28561 号公報には複屈折板を応
用した光アイソレータが開示されている。その光アイソ
レータは、図1に示すように第一の複屈折板2、磁気回
転光学素子3、位相差板4、第二の複屈折板5が順に配
列されている。第一の複屈折板2と第二の複屈折板5と
は結晶の光軸方向を平行にして設けられている。磁気回
転光学素子3は周囲の磁石10の磁界によって透過光の偏
光面を45度回転させる作用がある。位相差板4は透過す
る光の偏光面を右ねじ方向に45度回転させる作用があ
る。
Japanese Patent Publication No. 58-28561 discloses an optical isolator using a birefringent plate. In the optical isolator, as shown in FIG. 1, a first birefringent plate 2, a gyromagnetic element 3, a retardation plate 4, and a second birefringent plate 5 are sequentially arranged. The first birefringent plate 2 and the second birefringent plate 5 are provided so that the optical axis directions of the crystals are parallel. The magnetic rotating optical element 3 has an effect of rotating the polarization plane of the transmitted light by 45 degrees by the magnetic field of the surrounding magnet 10. The phase difference plate 4 has the function of rotating the polarization plane of the transmitted light by 45 degrees in the right-handed screw direction.

【0004】図1に示した光アイソレータで、光源側に
つながっている信号伝送用光ファイバ111 から円偏光の
伝送光71がレンズ1を透過して第一の複屈折板2に入射
すると、複屈折板2で常光線81と異常光線92とに分かれ
る。この常光線81は磁気回転光学素子3を透過する際、
磁界の作用によって偏光面を右ねじ方向に回転する。次
いで位相差板4を透過する際、同じ方向に更に偏光面を
45度回転する。そのため常光線81は、結晶の光軸方向が
第一の複屈折板2と平行な第二の複屈折板5に対し、偏
光面が90度回転した異常光線82となって入射して屈折
し、出射する。複屈折板2で常光線81と分かれた異常光
線92も、磁気回転光学素子3に入射して偏光面を右ねじ
方向に45度回転し、次いで位相差板4でも更に45度回転
する。そのため、異常光線92は第二の複屈折板5に対し
ては常光線91となって入射する。常光線91と異常光線82
とは第二の複屈折板5から出射する光路が合致し、円偏
光の伝送光71になってレンズ6を透過、光ファイバ112
に向かう。
[0004] In the optical isolator shown in FIG. 1, the transmission light 71 of circular polarization from the signal transmission optical fiber 11 1 is connected to the light source side is incident lens 1 in the first birefringence plate 2 is transmitted through , divided into an ordinary ray 81 in the birefringent plate 2 and the extraordinary ray 9 2. At this time the ordinary ray 81 is transmitted through the magneto-rotating optical element 3,
The plane of polarization is rotated clockwise by the action of the magnetic field. Next, when the light passes through the retardation plate 4, the polarization plane is further changed in the same direction.
Rotate 45 degrees. Therefore ordinary ray 81, the optical axis of the crystal relative to the second birefringent plate 5 parallel to the first birefringence plate 2, the plane of polarization is incident become rotated and extraordinary rays 8 2 90 degrees Refracted and emitted. Birefringent plate 2 with extraordinary rays 9 2 which is divided between the ordinary ray 81 also enters the magnetic rotating optical element 3 is rotated by 45 degrees the polarization plane to the right screw direction and then rotates another 45 degrees, even the phase difference plate 4 . Therefore, the extraordinary ray 9 2 for the second birefringent plate 5 is incident becomes an ordinary ray 9 1. Ordinary ray 9 1 and extraordinary ray 8 2
Transmitted through the lens 6 and the optical path is met, it becomes the transmitted light 71 of the circularly polarized light emitted from the second birefringent plate 5 and the optical fiber 11 2
Head for.

【0005】伝送光71のほとんどは光ファイバ112 内に
入射するが、一部は光ファイバ112の端面などで反射す
る。そこで生じた反射光72 は図2に示すように、レン
ズ6を透過して第二の複屈折板5に入射し、再び異常光
線82と常光線91とに分かれる。異常光線82は位相差板4
に入射して偏光面を右ねじ方向に45度回転し、磁気回転
光学素子3では磁界によって左ねじ方向に45度回転す
る。そのため異常光線82は第二の複屈折板5を出射した
ときと同じ偏光面角度のまま第一の複屈折板2に入射し
て屈折し、出射する。第二の複屈折板5で異常光線82
分かれた常光線91も位相差板4で偏光面を右ねじ方向に
45度回転し、磁気回転光学素子3では反対の左ねじ方向
に45度回転する。常光線91は常光線91の偏光面角度のま
ま第一の複屈折板2に入射する。そのため、第二の複屈
折板5で分かれた異常光線82とは第一の複屈折板2でま
すます互いの距離を大きくする。常光線91と異常光線82
とはレンズ1によっても光ファイバ111 の端面に結像し
ないことから光源まで到達する光の量も少なく、ノイズ
の発生が防止される結果となる。
[0005] Most of the transmitted light 71 incident on the optical fiber 11 in 2, a portion is reflected at such an end face of the optical fiber 11 2. Therefore resulting reflected light 7 2, as shown in FIG. 2, is transmitted through the lens 6 is incident on the second birefringent plate 5, divided again extraordinary ray 82 an ordinary ray 9 1 and. Extraordinary ray 8 2 phase difference plate 4
And the polarization plane is rotated 45 degrees in the right-handed direction, and the magnetic rotating optical element 3 is rotated 45 degrees in the left-handed direction by the magnetic field. Therefore extraordinary ray 82 is refracted incident on the first birefringence plate 2 remains the same polarization plane angle as when exiting the second birefringent plate 5, is emitted. Second ordinary ray divided and extraordinary ray 82 in the birefringent plate 5 9 1 in the right screw direction of the polarization plane by the phase difference plate 4
The optical element 3 rotates 45 degrees in the opposite left-handed screw direction. Ordinary ray 9 1 enters the first birefringent plate 2 remains polarization plane angles of the ordinary ray 9 1. Therefore, the extraordinary ray 82 which is divided by the second birefringent plate 5 is increased more and more a distance from each other in the first birefringence plate 2. Ordinary ray 9 1 and extraordinary ray 8 2
Also the amount of light reaching from the not focused on the end face of the optical fiber 11 1 to the light source is small and results in the generation of noise can be prevented by the lens 1 and.

【0006】従来、位相差板4の素材には水晶が使用さ
れている。水晶板の場合、温度や透過光の波長によって
機能に乱れが生じないよう、結晶体の光軸が交差する向
きで同じものを張り合せるという工夫が採られる。それ
でも水晶板が透過光の偏光面を回転させる消光性能は15
〜20dBと小さく、これを使用した従来の光アイソレータ
は通信トラブルを防ぐのになお不十分であるという問題
点があった。
Conventionally, quartz is used as the material of the phase difference plate 4. In the case of a quartz plate, a contrivance is adopted in which the same plate is bonded in the direction in which the optical axes of the crystals intersect so that the function is not disturbed by the temperature or the wavelength of the transmitted light. Nevertheless, the quenching performance of the quartz plate rotating the plane of polarization of transmitted light is 15
There is a problem that the conventional optical isolator using this is still insufficient to prevent communication trouble.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような課
題を解決するため、複屈折板を応用した光アイソレータ
で反射光の遮断能力が極めて高いものを提供することを
目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an object of the present invention is to provide an optical isolator to which a birefringent plate is applied, which has an extremely high ability to cut off reflected light.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めになされた光アイソレータを、実施例に対応する図1
に従って説明する。
An optical isolator made to achieve the above object is shown in FIG.
It will be described according to.

【0009】本発明の光アイソレータは、結晶の光軸方
向を平行にした第一の複屈折板2と第二の複屈折板5と
の間に磁気回転光学素子3と位相差板4とが配置され、
第一の複屈折板2および第二の複屈折板5のそれぞれと
光源または受光系との間にレンズ1,6が設けられてい
る光アイソレータであって、該位相差板4がガラス板の
表面に金属粒子が配向して形成されている。
In the optical isolator of the present invention, the magneto-rotational optical element 3 and the phase difference plate 4 are provided between the first birefringent plate 2 and the second birefringent plate 5 in which the optical axis of the crystal is parallel. Placed,
An optical isolator in which lenses 1 and 6 are provided between each of a first birefringent plate 2 and a second birefringent plate 5 and a light source or a light receiving system, wherein the phase difference plate 4 is a glass plate. Metal particles are oriented on the surface.

【0010】位相差板4となるガラスの厚さは 0.2〜2m
m がよい。金属粒子は例えば銀粒子でその粒径は縦の長
さが 50 〜1200 nm であり、横幅が10〜150 nmであり、
アスペクト比が 2:1 〜15:1 というように光アイソレ
ータが用いられる波長で消光比が大きくとれるようにな
ったものを使用する。
[0010] The thickness of the glass used as the phase difference plate 4 is 0.2 to 2 m.
m is good. The metal particles are, for example, silver particles, the particle size of which is 50 to 1200 nm in vertical length, 10 to 150 nm in width,
Use an optical isolator that has a large extinction ratio at a wavelength where the optical isolator is used, such as an aspect ratio of 2: 1 to 15: 1.

【0011】磁気回転光学素子3は式(GdBi)3(FeGa)5O
12 で示されるガーネット結晶を液晶エピタキシャル法
で育成して得た結晶体がよい。光路長を約0.3 mmにする
と通信に使用される1550nm光の偏光面を磁界中で45度回
転させる作用を有するようになる。なお、磁気回転光学
素子3と位相差板4同士では互いにその位置に関して前
後を問わない。
The magneto-rotating optical element 3 has the formula (GdBi) 3 (FeGa) 5 O
Crystals obtained by growing the garnet crystal represented by 12 by a liquid crystal epitaxial method are preferable. When the optical path length is set to about 0.3 mm, it has an effect of rotating the polarization plane of 1550 nm light used for communication by 45 degrees in a magnetic field. The positions of the magneto-rotational optical element 3 and the phase difference plate 4 do not matter before or after each other.

【0012】第一の複屈折板2、第二の複屈折板5はい
ずれもルチル結晶(TiO2)を使用するとよい。
It is preferable that both the first birefringent plate 2 and the second birefringent plate 5 use rutile crystal (TiO 2 ).

【0013】[0013]

【作用】伝送光71は、光源側の光ファイバ111 側から第
一の複屈折板2に入射すると常光線81と異常光線92に分
かれる。これらは偏光面が90度回転し、第二の複屈折板
5に対してはそれぞれが異常光線82と常光線91とに入れ
替わった形で入射する。そのため第二の複屈折板5を出
射するときは互いの光路が合致し、円偏光の伝送光71
なって光ファイバ112 に向かう。
[Action] transmission light 71 from the optical fiber 11 1 side of the light source side when incident on the first birefringence plate 2 divided into ordinary ray 81 and extraordinary ray 9 2. These polarization plane is rotated 90 degrees, with respect to the second birefringent plate 5 is incident in the form of each transposed into extraordinary rays 8 2 an ordinary ray 9 1 and. Therefore when emitting the second birefringent plate 5 matches the optical path of each other, toward the optical fiber 11 2 becomes the transmitted light 71 of circular polarization.

【0014】光ファイバ112 の端面などで生じた反射光
72はレンズ6から第二の複屈折板5に入射し、そこでも
異常光線82と常光線91に分かれる。これらの光は途中そ
の偏光面を右ねじ方向、左ねじ方向に45度づつ交互に回
転させ、第一の複屈折板2に対しても異常光線82、常光
線91で入射、屈折し、互いの距離を一層離す。分離され
た異常光線82と常光線91はレンズ1でも光ファイバ111
の端面に結像できず、その結果光源にまで達する量は極
めて減少することとなる。
[0014] reflected light generated by such an end face of the optical fiber 11 2
7 2 enters from the lens 6 in the second birefringent plate 5, divided therefrom even the extraordinary ray 82 in the ordinary ray 9 1. These lights midway its polarization plane to the right screw direction are rotated 45 degrees at a time alternately in the left-hand screw direction, the first extraordinary ray 82 with respect to the birefringent plate 2, incident ordinary ray 9 1, refracted , Further apart from each other. The separated extraordinary ray 8 2 and ordinary ray 9 1 are separated from the lens 1 by the optical fiber 11 1.
Cannot be formed on the end surface of the light source, and as a result, the amount reaching the light source is extremely reduced.

【0015】ガラス製の位相差板4は受光面を広く形成
することが容易である。このガラスは配向金属粒子を含
み、ばらつきが小さくしかも安価に製造できる。ガラス
板に例えば銀のような金属微粒子を配向させると偏光面
を回転させる消光性能は高くなる。その機能は温度や透
過光の波長の違いでもほとんど変動しない。また、ガラ
ス製の位相差板は水晶製のものと比較し、厚さを薄くで
きることより小型化に適している。
The phase difference plate 4 made of glass can easily form a wide light receiving surface. This glass contains oriented metal particles, has small variations, and can be manufactured at low cost. When metal particles such as silver are oriented on a glass plate, the quenching performance of rotating the plane of polarization increases. Its function hardly changes even if the temperature or the wavelength of the transmitted light changes. Further, the phase difference plate made of glass is more suitable for downsizing because the thickness can be made thinner than that made of quartz.

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0017】図1は本発明の光アイソレータの一実施例
である。
FIG. 1 shows an embodiment of the optical isolator according to the present invention.

【0018】一部が切除されて切り離された信号伝送用
光ファイバ11(111,112)の光路上に、光源側から受光側
に向かう方向で第一のコリメータレンズ1、第一の複屈
折板2、磁気回転光学素子3、位相差板4、第二の複屈
折板5、第二のコリメータレンズ6が順に配列されてい
る。第一のコリメータレンズ1は光源側の信号伝送用光
ファイバ111 の端部に焦点を合わせている。第二のコリ
メータレンズ6は受光系側の信号伝送用光ファイバ112
の端部に焦点を合わせている。磁気回転光学素子3の周
囲には信号伝送用光ファイバ111 側から進行してくる光
に対して右ねじ方向に偏光面を回転させる磁界を形成す
るよう、Sm−Co永久磁石10が配置されている。
The first collimator lens 1 and the first compound lens are arranged in the direction from the light source side to the light receiving side on the optical path of the signal transmission optical fiber 11 (11 1 , 11 2 ) which is partially cut away. A refracting plate 2, a magnetic rotating optical element 3, a retardation plate 4, a second birefringent plate 5, and a second collimator lens 6 are arranged in this order. First collimator lens 1 is focused on the end of the signal transmission optical fiber 11 1 in the light source side. The second collimator lens 6 is a signal transmission optical fiber 11 2 on the light receiving system side.
Focus on the end. Around the magnetic rotating optical element 3 so as to form a magnetic field that rotates the plane of polarized light in the right screw direction with respect to light traveling from the signal transmission optical fiber 11 1 side, is disposed Sm-Co permanent magnets 10 ing.

【0019】位相差板4は進行する光の偏光面を右ねじ
方向に回転させるよう、表面に銀粒子を配向させた肉厚
0.5mm のガラス板で形成されている。位相差板4の透過
損失は0.04dB、消光性能は38dBである。
The phase difference plate 4 has a thickness in which silver particles are oriented on the surface so as to rotate the plane of polarization of the traveling light in the right-handed screw direction.
It is formed of a 0.5mm glass plate. The transmission loss of the phase difference plate 4 is 0.04 dB, and the extinction performance is 38 dB.

【0020】第一の複屈折板2、磁気回転光学素子3、
位相差板4、第二の複屈折板5はいずれも受光面が縦横
3mmの大きさに形成され、表面に反射防止膜が施されて
いる。第一の複屈折板2、第二の複屈折板5はいずれも
光路長10mmになっている。透過損失は0.2dB 、常光線81
と異常光線92の2つの光線に分ける分離能は約1mmであ
る。磁気回転光学素子3の透過損失は0.04dB、光路長は
0.3 mmである。
A first birefringent plate 2, a gyroscopic optical element 3,
Each of the retardation plate 4 and the second birefringent plate 5 has a light receiving surface of 3 mm in length and width and an antireflection film on the surface. Both the first birefringent plate 2 and the second birefringent plate 5 have an optical path length of 10 mm. 0.2 dB transmission loss, 8 1 ordinary ray
Resolution divided into the extraordinary ray 9 2 two beams is about 1 mm. The transmission loss of the magneto-rotating optical element 3 is 0.04 dB, and the optical path length is
0.3 mm.

【0021】伝送光71が光源側の光ファイバ111 から発
散し、第一のコリメータレンズ1に入射すると屈折して
平行光に変わり、第一の複屈折板2に入射する。伝送光
71は第一の複屈折板2で常光線81と異常光線92とに分か
れる。図1は主に光軸光線だけを示している。この分か
れた常光線81は磁気回転光学素子3、位相差板4を透過
していく間に偏光面を90度回転し、第二の複屈折板5に
対しては異常光線82の偏光面角度で入射して屈折し、出
射する。第一の複屈折板2で常光線81と分かれた異常光
線92も偏光面を90度回転し、第二の複屈折板5に対して
は常光線91の偏光面角度で入射する。そのため、常光線
91の出射光路は屈折してきた異常光線8の出射光路と
合致し、常光線9と異常光線82とは伝送光71になって
第二のコリメータレンズ6を透過、光ファイバ112 に集
光する。集光した光が光ファイバ112の端面などで反射
すると、反射光72は第二のコリメータレンズ6を透過し
て平行になり、第二の複屈折板5に入射して異常光線82
と常光線91に分かれる。異常光線82は位相差板4に入射
して偏光面が右ねじ方向に45度回転し、次いで磁気回転
光学素子3では反対の左ねじ方向に45度回転する。その
ため異常光線82は第一の複屈折板2に異常光線82の偏光
角度のままで入射し、屈折しながら出射する。第二の複
屈折板5で異常光線82と分かれた常光線91も位相差板4
で偏光面を右ねじ方向に45度回転させ、磁気回転光学素
子3で反対の左ねじ方向に45度回転させ、常光線91の偏
光角度で第一の複屈折板2に入射する。そのため異常光
線82と常光線91とは第一の複屈折板2の中で距離を一層
離し、レンズ1を透過しても光ファイバ112 の端面に結
像しない。そのため、光源に達する光の量は極めて少な
くなる。
The transmission light 71 is emitted from the optical fiber 11 1 in the light source side, turns into parallel light refracted incident on the first collimator lens 1 and incident on the first birefringence plate 2. Transmission light
7 1 is divided into the ordinary ray 81 and the extraordinary ray 9 2 in the first birefringence plate 2. FIG. 1 mainly shows only the optical axis rays. The separate ordinary ray 81 a magnetic rotating optical element 3, the plane of polarization rotated 90 degrees and as it passes through the retardation plate 4, for the second birefringent plate 5 extraordinary ray 82 of the polarized light The light enters at a plane angle, is refracted, and exits. Also the first birefringence plate 2 at ordinary ray 81 and separate extraordinary ray 9 2 the polarization plane rotated by 90 degrees, with respect to the second birefringent plate 5 is incident in the polarization plane angles of the ordinary ray 9 1 . Therefore, the ordinary ray
9 1 of the outgoing optical path matches the emission optical path of the refracted becoming abnormal ray 82, passes through the second collimating lens 6 becomes a transmission light 71 is an ordinary ray 9 1 and extraordinary ray 82, light It focused on the fiber 11 2. When focused light is reflected like the end face of the optical fiber 11 2, the reflected light 7 2 becomes parallel passes through the second collimating lens 6, the second extraordinary ray incident on the birefringent plate 5 8 2
And divided into ordinary ray 9 1. Extraordinary ray 8 2 polarization plane is rotated 45 degrees to the right screw direction and incident on the phase difference plate 4 and then rotated 45 degrees to the left screw direction opposite to the magnetic rotating optical element 3. Therefore extraordinary ray 82 is incident remains polarization angle of the extraordinary ray 8 2 to the first birefringent plate 2, emits while being refracted. Second ordinary ray divided extraordinary ray 82 and a birefringent plate 5 9 1 also retardation plate 4
In is rotated 45 degrees the polarization plane to the right screw direction is rotated 45 degrees to the left screw direction opposite the magnetic rotating optical element 3 is incident on the first birefringence plate 2 by the polarization angle of the ordinary ray 9 1. Therefore the extraordinary ray 82 and the ordinary ray 9 1 further separation between in the first birefringence plate 2, not focused on the end face of the optical fiber 11 2 is also transmitted through the lens 1. Therefore, the amount of light reaching the light source is extremely small.

【0022】このような光アイソレータについて次のよ
うにしてその性能試験を行った。すなわち、光源側とつ
ながっている信号伝送用光ファイバ111 から受光系の信
号伝送用光ファイバ112 方向に波長1550nmのレーザ光
(伝送光)を発振した。0.75dBの光損失が記録された。
受光系の信号伝送用光ファイバ112 から光源側の信号伝
送用光ファイバ111 方向に波長1550nmのレーザ光(反射
光)を発振した。36.5dBの光損失が記録された。このこ
とから本実施例の光アイソレータには反射光に対する高
い消光性能のあることが確認された。
A performance test was performed on such an optical isolator as follows. That is, oscillated laser light having a wavelength of 1550nm to the signal transmission optical fiber 11 in two directions of the light receiving system from the signal transmission optical fiber 11 1 in communication with the light source side (transmission light). An optical loss of 0.75 dB was recorded.
Oscillated laser light having a wavelength of 1550nm (the reflected light) to the signal transmission optical fiber 11 in one direction of the light source side from the signal transmission optical fiber 11 and second light-receiving system. An optical loss of 36.5dB was recorded. From this, it was confirmed that the optical isolator of this example had high extinction performance against reflected light.

【0023】ガラス板製の位相差板の効果と比較するた
め、3mm 角の水晶板について光学軸を直交させて重ね合
わせ、反射防止膜を施した従来タイプの位相差板を形成
し、その透過損失、消光性能を調べた。波長1550nmのレ
ーザ光の透過損失は0.06dB、消光性能は17.5dBだった。
In order to compare with the effect of the phase difference plate made of a glass plate, a conventional type of phase difference plate having an anti-reflection film is formed by superposing 3 mm square quartz plates with their optical axes orthogonal to each other, and transmitting the same. The loss and extinction performance were examined. The transmission loss of the laser light having a wavelength of 1550 nm was 0.06 dB, and the extinction performance was 17.5 dB.

【0024】前記実施例の効果と比較するため、水晶板
を重ね合わせた上記の位相差板で前記実施例と同一の構
成の光アイソレータを形成し、その光損失を調べた。光
源側の信号伝送用光ファイバ111 から受光系信号伝送用
光ファイバ112 に向かう方向の光損失は0.78dBだった。
反対に、受光系の信号伝送用光ファイバ112 から光源側
の信号伝送用光ファイバ111 に向かう方向での光損失は
17.3dBだった。反射光に対する消光性能は弱いことが分
かった。
For comparison with the effects of the above-described embodiment, an optical isolator having the same configuration as that of the above-described embodiment was formed using the above-mentioned retardation plate in which quartz plates were overlapped, and the optical loss thereof was examined. Light loss direction directed from the signal transmission optical fiber 11 1 in the light source side to the light receiving system signal transmission optical fiber 11 2 was 0.78DB.
Conversely, the light loss in the direction from the signal transmission optical fiber 11 and second light-receiving systems to the signal transmission optical fiber 11 1 in the light source side
It was 17.3dB. It was found that the extinction performance for reflected light was weak.

【0025】[0025]

【発明の効果】以上、詳細に説明したように本発明の光
アイソレータは、位相差板として水晶板でなく安価なガ
ラス板を使用するため、工業的にもコスト低下を図るこ
とができる。金属微粒子を配向させてあるから光の偏光
面を回転させる機能は温度や透過光の波長の違いにほと
んど左右されず、反射光の進行を効果的に遮断する。
As described in detail above, the optical isolator of the present invention uses an inexpensive glass plate instead of a quartz plate as a phase difference plate, and thus can reduce the cost industrially. Since the metal fine particles are oriented, the function of rotating the polarization plane of light is hardly affected by the difference in temperature or the wavelength of transmitted light, and effectively blocks the progress of reflected light.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する光アイソレータの伝送方向に
進む光路を図解する構成図である。
FIG. 1 is a configuration diagram illustrating an optical path traveling in a transmission direction of an optical isolator to which the present invention is applied.

【図2】本発明を適用する光アイソレータの逆進方向の
光路を図解する構成図である。
FIG. 2 is a configuration diagram illustrating a backward optical path of an optical isolator to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1はレンズ、2は第一の複屈折板、3は磁気回転光学素
子、4は位相差板、5は第二の複屈折板、6はレンズ、
71は伝送光、72は反射光、81・91は常光線、82・92は異
常光線、10は永久磁石、11(111,112)は信号伝送用光フ
ァイバである。
1 is a lens, 2 is a first birefringent plate, 3 is a magnetic rotating optical element, 4 is a retardation plate, 5 is a second birefringent plate, 6 is a lens,
7 1 is transmitted light, 7 2 is reflected light, 8 1・ 9 1 is ordinary light, 8 2・ 9 2 is extraordinary light, 10 is permanent magnet, 11 (11 1 , 11 2 ) is optical fiber for signal transmission is there.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶の光軸方向を平行にした第一の複屈
折板と第二の複屈折板との間に磁気回転光学素子と位相
差板とが配置され、第一の複屈折板および第二の複屈折
板のそれぞれと光源または受光系との間にレンズが設け
られている光アイソレータであって、該位相差板がガラ
ス板の表面に金属粒子が配向して形成されていることを
特徴とする光アイソレータ。
A first birefringent plate, wherein a magneto-rotational optical element and a phase difference plate are disposed between a first birefringent plate and a second birefringent plate whose optical axis directions of the crystals are parallel to each other; And an optical isolator provided with a lens between each of the second birefringent plate and the light source or the light receiving system, wherein the phase difference plate is formed by orienting metal particles on a surface of a glass plate. An optical isolator characterized in that:
JP31330093A 1993-12-14 1993-12-14 Optical isolator Expired - Fee Related JP2967257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31330093A JP2967257B2 (en) 1993-12-14 1993-12-14 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31330093A JP2967257B2 (en) 1993-12-14 1993-12-14 Optical isolator

Publications (2)

Publication Number Publication Date
JPH07168127A JPH07168127A (en) 1995-07-04
JP2967257B2 true JP2967257B2 (en) 1999-10-25

Family

ID=18039565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31330093A Expired - Fee Related JP2967257B2 (en) 1993-12-14 1993-12-14 Optical isolator

Country Status (1)

Country Link
JP (1) JP2967257B2 (en)

Also Published As

Publication number Publication date
JPH07168127A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
EP0383923B1 (en) Polarizing isolation apparatus and optical isolator using the same
JPH07504992A (en) Improved optical isolator
JP2967257B2 (en) Optical isolator
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JP3161885B2 (en) Optical isolator
JP2000180789A (en) Optical isolator
JP2930431B2 (en) Polarization-independent optical isolator
JPH05313094A (en) Optical isolator
JP2509845B2 (en) Polarization-independent optical isolator
JP2869677B2 (en) Optical isolator
JP3176180B2 (en) Optical isolator
JP2786016B2 (en) Optical isolator
JP3342067B2 (en) Polarizer and method of manufacturing the same
JPS6230607B2 (en)
JPH0743696Y2 (en) Optical isolator
JP2686453B2 (en) Optical isolator
JPH0854579A (en) Optical isolator element, optical isolator, optical isolator with optical fiber and semiconductor laser module
JP2775499B2 (en) Optical isolator
JP3049551B2 (en) Optical isolator
JPS60238813A (en) Optical isolator
JP2789127B2 (en) Optical isolator
JPH06160774A (en) Optical isolator
JPH0990281A (en) Polarization independent type optical isolator
JPH02160213A (en) Plane of polarization rotating device
JPH04140709A (en) Optical isolator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees