JP2966288B2 - Tunable wavelength filter - Google Patents
Tunable wavelength filterInfo
- Publication number
- JP2966288B2 JP2966288B2 JP19930894A JP19930894A JP2966288B2 JP 2966288 B2 JP2966288 B2 JP 2966288B2 JP 19930894 A JP19930894 A JP 19930894A JP 19930894 A JP19930894 A JP 19930894A JP 2966288 B2 JP2966288 B2 JP 2966288B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- wavelength filter
- self
- temperature
- heating resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims description 71
- 238000010438 heat treatment Methods 0.000 claims description 65
- 239000011521 glass Substances 0.000 claims description 39
- 239000000758 substrate Substances 0.000 claims description 39
- 229920003002 synthetic resin Polymers 0.000 claims description 17
- 239000000057 synthetic resin Substances 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 4
- 238000007789 sealing Methods 0.000 description 16
- 230000020169 heat generation Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 3
- 239000004988 Nematic liquid crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、波長多重通信等におい
て多数の波長の光パルスの中から選択的に任意の波長の
光のみを選び出す液晶エタロン形可変波長フィルタに関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal etalon type variable wavelength filter for selectively selecting only light having an arbitrary wavelength from light pulses having a large number of wavelengths in wavelength multiplex communication or the like.
【0002】[0002]
【従来の技術】この種の可変波長フィルタとして、従来
から図4及び図5に示す可変波長フィルタ100が知ら
れている。2. Description of the Related Art A variable wavelength filter 100 shown in FIGS. 4 and 5 is conventionally known as a variable wavelength filter of this kind.
【0003】この可変波長フィルタ100は、一対のガ
ラス基板101の各対向面上に透面電極102をスパッ
タ法で形成し、その上に誘電体反射膜103を蒸着によ
り配置すると共に、さらに誘電体反射膜103の上に液
晶用配向膜104をラビング処理により配置し、かつ一
対のガラス基板101をシール部材105により適宜の
間隔を維持して平行に配置して、液晶用配向膜104,
104間にネマチック形の液晶106を封入し、さらに
一対のガラス基板101の各々の対向面と反対側の外面
上に無反射膜107を配置して主要部が構成されてい
る。In this tunable wavelength filter 100, a transparent electrode 102 is formed on each opposing surface of a pair of glass substrates 101 by a sputtering method, and a dielectric reflection film 103 is disposed thereon by vapor deposition. A liquid crystal alignment film 104 is disposed on the reflective film 103 by rubbing treatment, and a pair of glass substrates 101 are disposed in parallel with a seal member 105 while maintaining an appropriate interval.
A nematic liquid crystal 106 is sealed between 104, and a non-reflective film 107 is disposed on an outer surface of each of the pair of glass substrates 101 opposite to the opposing surface to constitute a main part.
【0004】そしてこの可変波長フィルタ100は、透
明電極102,102に電圧を印加して液晶106の屈
折率を変化させ、ファブリー・ペロ干渉系における誘電
体反射膜103,103間の光路長を変化させることに
より、共振波長(可変波長フィルタ100の透過光の波
長)を選択することができるようになっている。The tunable wavelength filter 100 changes the refractive index of the liquid crystal 106 by applying a voltage to the transparent electrodes 102, 102, and changes the optical path length between the dielectric reflection films 103, 103 in the Fabry-Perot interference system. By doing so, it is possible to select a resonance wavelength (wavelength of light transmitted through the variable wavelength filter 100).
【0005】このときの、液晶106は、図7(a)に
示すように液晶分子Mの分子長軸方向をガラス基板10
1の対向面に対して平行になるように配向させた、正の
誘電異方性を有する液晶分子Mで構成されている。At this time, as shown in FIG. 7A, the liquid crystal 106 is oriented in the direction of the long axis of the liquid crystal molecules M on the glass substrate 10.
The liquid crystal molecules M have a positive dielectric anisotropy and are oriented so as to be parallel to the first opposing surface.
【0006】一般に液晶分子Mは、図6に示すように長
細い形状になっていると考えてよく、その誘電率は分子
長軸方向の誘電率εe と、分子短軸方向の誘電率εo の
2つがあり、その誘電異方性ΔεはΔε=εe −εo と
して表わすことができる。In general, it can be considered that the liquid crystal molecule M has a long and thin shape as shown in FIG. 6, and has a dielectric constant ε e in the molecular long axis direction and a dielectric constant ε e in the molecular short axis direction. o There are two, the dielectric anisotropy [Delta] [epsilon] can be expressed as Δε = ε e -ε o.
【0007】そして液晶106の液晶分子Mは、前述し
たように、正の誘電異方性(Δε>0)を有して分子長
軸方向の誘電率εe が分子短軸方向の誘電率εo よりも
大きくなっており(εe >εo )、図7で示すように電
圧無印加時には液晶分子Mの分子長軸方向をガラス基板
101の対向面に平行となるように配向している(図7
(a))が、電圧印加時には液晶分子Mの誘電率の大き
い分子長軸方向が電界方向に沿うように配向する(図7
(b))。この液晶分子Mの配向の変化により液晶10
6の屈折率が変化し、この結果可変波長フィルタ100
は共振波長を選択することができる。As described above, the liquid crystal molecules M of the liquid crystal 106 have a positive dielectric anisotropy (Δε> 0), and the dielectric constant ε e in the major axis direction is smaller than the dielectric constant ε in the minor axis direction. It is larger than o (ε e > ε o ), and as shown in FIG. 7, when no voltage is applied, the liquid crystal molecules M are oriented so that the molecular major axis direction is parallel to the facing surface of the glass substrate 101. (FIG. 7
(A)), when a voltage is applied, the liquid crystal molecules M are oriented such that the long axis direction of the molecule having a large dielectric constant is along the electric field direction (FIG. 7).
(B)). The change in the orientation of the liquid crystal molecules M causes the liquid crystal 10 to change.
6 changes, and as a result, the tunable wavelength filter 100
Can select the resonance wavelength.
【0008】ところで、一般に液晶の屈折率は他の外的
要因によっても変化する。[0008] Generally, the refractive index of liquid crystal also changes due to other external factors.
【0009】図8に一般的な液晶の屈折率の温度依存性
を示す。ここでne は液晶分子の分子長軸方向の温度依
存性を、no は液晶分子の分子短軸方向の温度依存性を
それぞれ示す。FIG. 8 shows the temperature dependence of the refractive index of a general liquid crystal. Where n e is the temperature dependence of the molecular long axis direction of liquid crystal molecules, n o denotes a temperature dependence of the molecular minor axis direction of liquid crystal molecules.
【0010】図8から解るように、液晶の屈折率の温度
変化は、分子長軸方向が分子短軸方向よりも大きくなっ
ている。As can be seen from FIG. 8, the temperature change of the refractive index of the liquid crystal is such that the molecular major axis direction is larger than the molecular minor axis direction.
【0011】このため従来の可変波長フィルタ100
は、液晶分子Mの分子長軸方向の配向の変化により液晶
106の屈折率を変化させるものであるから、温度依存
性が高く、共振波長の精度良い選択には液晶106の温
度を一定になるように制御する必要がある。Therefore, the conventional variable wavelength filter 100
Is to change the refractive index of the liquid crystal 106 by changing the alignment of the liquid crystal molecules M in the molecular major axis direction. Therefore, the temperature dependency is high, and the temperature of the liquid crystal 106 is kept constant for accurate selection of the resonance wavelength. Need to be controlled.
【0012】そこで従来の可変波長フィルタ100に
は、図4に示すように液晶106の温度を一定に保つた
めの加熱機構200が備えられている。この加熱機構2
00は、可変波長フィルタ100の一対のガラス基板1
01上に設けられた温度センサ201及び加熱ヒータ2
02と、温度センサ201の信号により加熱ヒータ20
2の加熱温度を制御する温度制御装置203とからな
り、加熱ヒータ202は可変波長フィルタ100の光透
過部位108を囲繞するようにガラス基板101の外表
面に積層形成されている。Therefore, the conventional variable wavelength filter 100 is provided with a heating mechanism 200 for keeping the temperature of the liquid crystal 106 constant as shown in FIG. This heating mechanism 2
00 denotes a pair of glass substrates 1 of the variable wavelength filter 100.
Temperature sensor 201 and heater 2 provided on
02 and the signal of the temperature sensor 201, the heater 20
2, a temperature control device 203 for controlling the heating temperature. The heater 202 is laminated on the outer surface of the glass substrate 101 so as to surround the light transmitting portion 108 of the variable wavelength filter 100.
【0013】そしてこの加熱機構200は、温度センサ
201で可変波長フィルタ100の温度を測定し、これ
に応じて加熱を行なうようになっている。The heating mechanism 200 measures the temperature of the tunable filter 100 with the temperature sensor 201, and performs heating in accordance with the measured temperature.
【0014】[0014]
【発明が解決しようとする課題】しかしながら、可変波
長フィルタ100における加熱機構200は、可変波長
フィルタ100の外部に完全に露出した部分に温度セン
サ201を配置しているので、温度センサ201が内部
にある液晶106の温度変化よりも環境温度の変化を受
け易く、加熱ヒータ202の加熱温度が一定しないこ
と、及び温度センサ201による温度測定を外部で行な
うため、内部の液晶106の温度との間に大きな温度差
が生じること、により液晶106自体の温度を精度良く
制御することが難かしく、このため選択波長の変動が大
きく、可変波長フィルタとしての性能低下を招くという
課題を有している。However, in the heating mechanism 200 of the tunable wavelength filter 100, the temperature sensor 201 is disposed in a portion completely exposed to the outside of the tunable wavelength filter 100. Since the temperature of the liquid crystal 106 is more susceptible to a change in the environmental temperature than the temperature change of the liquid crystal 106, the heating temperature of the heater 202 is not constant, and the temperature measurement by the temperature sensor 201 is performed externally. Since a large temperature difference is generated, it is difficult to control the temperature of the liquid crystal 106 with high accuracy, and therefore, there is a problem that the selected wavelength fluctuates greatly and the performance as a variable wavelength filter is reduced.
【0015】その上加熱機構200は、温度センサ20
1及び温度制御装置103を必要とするため、この分可
変波長フィルタ100の構造が複雑化し大型化するとい
う課題をも有している。In addition, the heating mechanism 200 includes a temperature sensor 20
1 and the temperature control device 103, there is also a problem that the structure of the tunable wavelength filter 100 becomes complicated and large.
【0016】本発明は、前記した課題を解決すべくなさ
れたものであり、その目的は、選択波長の温度による変
動が小さく、波長選択性能が向上すると共に、構造簡単
でコンパクトな可変波長フィルタを提供するにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to provide a variable wavelength filter having a simple structure and a small structure, in which the fluctuation of the selected wavelength due to temperature is small, the wavelength selection performance is improved. To offer.
【0017】[0017]
【課題を解決するための手段】前記した目的を達成する
ため、請求項1記載の発明は、透明電極、誘電体反射
膜、液晶用配向膜を対向面上に積層形成した一対のガラ
ス基板がシール部材を介して対向配置されると共に、前
記シール部材で囲繞された前記一対のガラス基板間に液
晶が封入されている可変波長フィルタにおいて、前記シ
ール部材の外周部に接して正の抵抗温度係数を有する自
己制御型発熱抵抗体を配置したことを特徴としている。Means for Solving the Problems In order to achieve the above-mentioned object, the invention according to claim 1 comprises a pair of glass substrates in which a transparent electrode, a dielectric reflection film, and an alignment film for liquid crystal are formed on opposite surfaces. In a variable wavelength filter which is disposed to face through a sealing member and in which liquid crystal is sealed between the pair of glass substrates surrounded by the sealing member, a positive temperature coefficient of resistance in contact with an outer peripheral portion of the sealing member. And a self-regulating heating resistor having the following characteristics:
【0018】請求項2記載の発明は、請求項1記載の可
変波長フィルタであって、前記自己制御型発熱抵抗体
が、結晶性を有する合成樹脂に導電物質を添加して導電
化させて形成されていることを特徴としている。According to a second aspect of the present invention, there is provided the variable wavelength filter according to the first aspect, wherein the self-control type heating resistor is formed by adding a conductive material to a synthetic resin having crystallinity to make it conductive. It is characterized by being.
【0019】また、請求項3記載の発明は、請求項1又
は2記載の可変波長フィルタであって、前記自己制御型
発熱抵抗体が前記シール部材の外周部に沿って帯状に連
続するように配置されていることを特徴としている。According to a third aspect of the present invention, there is provided the variable wavelength filter according to the first or second aspect, wherein the self-control type heating resistor is continuous in a band along the outer peripheral portion of the seal member. It is characterized by being arranged.
【0020】さらに、請求項4記載の発明は、請求項1
乃至3のいずれか1項記載の可変波長フィルタであっ
て、前記自己制御型発熱抵抗体が、前記シール部材の外
周面と前記一対のガラス基板の対向面として形成される
コ字状断面の溝内に配置されていることを特徴としてい
る。Further, the invention described in claim 4 is the same as the claim 1.
4. The variable wavelength filter according to claim 3, wherein the self-controlling heating resistor is formed as a U-shaped cross-section formed as an opposing surface between the outer peripheral surface of the seal member and the pair of glass substrates. 5. It is characterized by being arranged in.
【0021】[0021]
【作用】請求項1乃至4記載の発明は、前記した構成に
なっているので次の作用を奏する。According to the first to fourth aspects of the present invention, the following effects are achieved because of the above-described configuration.
【0022】すなわち、請求項1記載の発明は、内部に
液晶を封入したシール部材の外周部に接して正の抵抗温
度係数を有する自己制御型発熱抵抗体を配置したので、
前記発熱抵抗体が液晶の温度変化を精確に検知して液晶
を精度良く温度制御することができる。That is, according to the first aspect of the present invention, since the self-control type heating resistor having a positive temperature coefficient of resistance is disposed in contact with the outer peripheral portion of the sealing member having liquid crystal sealed therein.
The heating resistor accurately detects a change in the temperature of the liquid crystal, so that the temperature of the liquid crystal can be accurately controlled.
【0023】その上、請求項1記載の発明は、加熱体と
して自己制御型発熱抵抗体を用いているので、温度セン
サ及び温度制御装置等の付帯設備が不要となる。In addition, since the invention according to claim 1 uses a self-control type heating resistor as the heating element, no additional equipment such as a temperature sensor and a temperature control device is required.
【0024】請求項2記載の発明は、自己制御型発熱抵
抗体が結晶性を有する合成樹脂に導電物質を添加して導
電化させて形成されているので、用いられる合成樹脂を
変更することによって、その合成樹脂の融点に応じた発
熱温度を設定することができると共に、流動状態あるい
はフィルム状態にすることによって可変波長フィルタへ
の配置を容易化することができる。According to a second aspect of the present invention, the self-control type heating resistor is formed by adding a conductive substance to a synthetic resin having crystallinity to make it conductive, so that the synthetic resin used is changed. In addition, it is possible to set an exothermic temperature according to the melting point of the synthetic resin, and it is possible to easily arrange the synthetic resin in the variable wavelength filter by setting it in a fluid state or a film state.
【0025】また、請求項3記載の発明は、自己制御型
発熱抵抗体を、シール部材の外周部に沿って帯状に連続
するように配置したので、液晶を加熱するに十分な伝熱
面積を確保することができる。According to the third aspect of the present invention, since the self-control type heating resistor is arranged in a band shape along the outer periphery of the sealing member, a heat transfer area sufficient for heating the liquid crystal is provided. Can be secured.
【0026】さらに、請求項4記載の発明は、自己制御
型発熱抵抗体を、シール部材の外周面と、一対のガラス
基板の対向面で形成されるコ字形断面の溝内に配置した
ので、自己制御型発熱抵抗体が環境温度の影響を少なく
すると共に、液晶との温度差を小さくして、液晶の温度
変化を精確に検知して、液晶を一層精度良く温度制御す
ることができる。Further, in the invention according to the fourth aspect, the self-control type heating resistor is arranged in a groove having a U-shaped cross section formed by the outer peripheral surface of the seal member and the opposing surfaces of the pair of glass substrates. The self-control type heating resistor reduces the influence of the ambient temperature and the temperature difference between the liquid crystal and the liquid crystal, thereby accurately detecting the change in the temperature of the liquid crystal and controlling the temperature of the liquid crystal more accurately.
【0027】[0027]
【実施例】以下、本発明を図示した実施例に基づいて具
体的に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described based on illustrated embodiments.
【0028】図1及び図2は、一実施例としての可変波
長フィルタ1を示す。FIGS. 1 and 2 show a tunable wavelength filter 1 as one embodiment.
【0029】この可変波長フィルタ1は、液晶の加熱機
構が相違するのみで、他の構成が前述した従来の可変波
長フィルタ100と同一構成となっている。このため以
下、同一構成要素は同一符号を付して説明する。The variable wavelength filter 1 has the same configuration as the above-mentioned conventional variable wavelength filter 100 except for the heating mechanism of the liquid crystal, except for the structure. Therefore, hereinafter, the same components will be described with the same reference numerals.
【0030】すなわち、可変波長フィルタ1は、一対の
ガラス基板101a,101bがシール部材105を挾
んで平行に対向配置しており、この一対のガラス基板1
01a,101bの各対向面上には透明電極102、誘
電体反射膜103、及び液晶用配向膜104が積層形成
されている。そしてシール部材105と液晶用配向膜1
04とで囲まれた空間部には液晶106が封入されてお
り、かつ加熱機構を構成する自己制御型発熱抵抗体2が
シール部材105の外周部に接して配置されることによ
って可変波長フィルタ1が大略構成されている。That is, in the variable wavelength filter 1, a pair of glass substrates 101a and 101b are arranged in parallel and opposed to each other with a seal member 105 interposed therebetween.
A transparent electrode 102, a dielectric reflection film 103, and a liquid crystal alignment film 104 are laminated on each of the opposing surfaces 01a and 101b. Then, the sealing member 105 and the liquid crystal alignment film 1
The liquid crystal 106 is sealed in the space surrounded by the reference numeral 04 and the self-control type heating resistor 2 constituting the heating mechanism is arranged in contact with the outer peripheral portion of the seal member 105 so that the variable wavelength filter 1 is formed. Is roughly configured.
【0031】なお、図2中、符号107は各ガラス基板
101a,101bの対向面と反対側の外表面上に形成
された反射膜であり、図1は、説明の便宜上無反射膜1
07、誘電体反射膜103、及び液晶用配向膜104を
省略してある。In FIG. 2, reference numeral 107 denotes a reflection film formed on the outer surface of the glass substrate 101a, 101b opposite to the opposite surface, and FIG. 1 shows the anti-reflection film 1 for convenience of explanation.
07, the dielectric reflection film 103, and the liquid crystal alignment film 104 are omitted.
【0032】このとき透明電極102、誘電体反射膜1
03、液晶用配向膜104、及びシール部材105は従
来と同様に形成され、かつ液晶106は従来と同様にネ
マチック用液晶が用いられる。At this time, the transparent electrode 102 and the dielectric reflection film 1
03, the alignment film 104 for liquid crystal, and the sealing member 105 are formed in the same manner as in the related art, and the liquid crystal 106 is a nematic liquid crystal in the same manner as in the related art.
【0033】すなわち、透明電極102は、青板ガラ
ス、光学ガラス、石英ガラス等からなるガラス基板10
1a,101bの対向面上にインジウムチンオキサイド
をスパッタすることにより形成され、矩形状の電圧印加
部102aと、この矩形状の電圧印加部102aから各
ガラス基板101a,101bの非対向面上に帯状に延
設した端子部102bとを有して形成されている。That is, the transparent electrode 102 is made of a glass substrate 10 made of blue plate glass, optical glass, quartz glass or the like.
1a and 101b are formed by sputtering indium tin oxide on the opposing surfaces, and a rectangular voltage applying portion 102a and a belt-like shape from the rectangular voltage applying portion 102a on the non-opposing surfaces of the glass substrates 101a and 101b. And a terminal portion 102b extending therefrom.
【0034】誘電体反射膜103は、透明電極102の
電圧印加部102a上に蒸着法により形成されるTiO
2 とSiO2 の多層膜で形成されている。The dielectric reflection film 103 is formed of TiO formed on the voltage application portion 102a of the transparent electrode 102 by vapor deposition.
2 and a multilayer film of SiO 2 .
【0035】また、液晶用配向膜104は、誘電体反射
膜103上にラビング処理される適宜の配向処理剤によ
り形成される。Further, the liquid crystal alignment film 104 is formed on the dielectric reflection film 103 by an appropriate alignment treatment agent which is rubbed.
【0036】さらに、シール部材105は、エポキシ樹
脂、フェノキシ樹脂、ポリアミド樹脂、光硬化型樹脂、
電子線硬化型樹脂などからなり、一対のガラス基板10
1a,101b間のギャップを一定に保つために、所定
の直径の円柱状ガラススペーサなどが混入されていても
よく、さらには架橋剤、硬化促進剤、カップリング剤な
どを含むことができる。そしてこのシール部材105
は、一対のガラス基板101a,101b間にあって透
明電極102の電圧印加部102a,誘電体反射膜10
3、及び液晶用配向膜4とからなる積層構造を囲繞する
ように形成されて、一対のガラス基板101a,101
bを接合している。このシール部材105には、液晶1
06を注入する注入口105aが形成されている。Further, the sealing member 105 is made of an epoxy resin, a phenoxy resin, a polyamide resin, a photocurable resin,
A pair of glass substrates 10 made of an electron beam curable resin or the like.
In order to keep the gap between 1a and 101b constant, a columnar glass spacer having a predetermined diameter may be mixed therein, and may further contain a crosslinking agent, a curing accelerator, a coupling agent, and the like. And this sealing member 105
Is a voltage applying portion 102a of the transparent electrode 102 between the pair of glass substrates 101a and 101b,
3, and a pair of glass substrates 101a, 101
b. The sealing member 105 includes a liquid crystal 1
Injection port 105a for injecting 06 is formed.
【0037】そして、液晶106は、シール部材105
の注入口105aから注入され、かつ注入口105aを
封止材4で閉塞することによってシール部材106で囲
まれた液晶用配向膜104,104間の空間部に封入さ
れている。Then, the liquid crystal 106 is sealed by the sealing member 105.
Is injected from the injection port 105a, and is sealed in the space between the liquid crystal alignment films 104 surrounded by the seal member 106 by closing the injection port 105a with the sealing material 4.
【0038】また、自己制御型発熱抵抗体2は、通電す
ると発熱温度によって抵抗が上昇する、正の抵抗温度係
数を有する発熱温度自己制御型となっている。具体的に
は自己抑制型発熱抵抗体2は、例えばポリエチレン樹脂
やエチレン酢酸ビニル共重合体等の結晶性を有する合成
樹脂に、カーボンブラック等の導電物質を添加して導電
化させて形成することができる。このように形成された
自己制御型発熱抵抗体2は、合成樹脂の結晶が融解する
融点付近の温度で、抵抗が著しく増大し、自己制御性を
発揮する。このため自己制御型発熱抵抗体2は、使用す
る合成樹脂を変更することによって、その合成樹脂の融
点に応じた発熱温度を設定することができる。Further, the self-control type heating resistor 2 is of a self-heating temperature control type having a positive temperature coefficient of resistance, the resistance of which rises according to the heat generation temperature when energized. Specifically, the self-suppressing heating resistor 2 is formed by adding a conductive substance such as carbon black to a synthetic resin having crystallinity such as a polyethylene resin or an ethylene-vinyl acetate copolymer to make it conductive. Can be. The resistance of the self-regulating type heating resistor 2 thus formed increases remarkably at a temperature near the melting point at which the crystal of the synthetic resin is melted, and exhibits self-controllability. For this reason, the self-control type heating resistor 2 can set the heat generation temperature according to the melting point of the synthetic resin by changing the synthetic resin to be used.
【0039】そしてこの自己制御型発熱抵抗体2は、シ
ール部材105の外周面と、一対のガラス基板101
a,101bの対向面とで形成するコ字状断面の溝5内
に配置されて(図2参照)、シール部材105をコ字状
に囲むように配置されており、両端部2aが各ガラス基
板101a,101b上面に帯状に形成した透明電極か
らなる加熱用端子部3に接続している。この加熱用端子
部3,3はリード線6によって電源7に接続している。The self-control type heating resistor 2 is provided between the outer peripheral surface of the seal member 105 and the pair of glass substrates 101.
a and 101b are arranged in a groove 5 having a U-shaped cross section formed with the opposing surfaces (see FIG. 2), and are arranged so as to surround the seal member 105 in a U-shape. It is connected to a heating terminal portion 3 made of a transparent electrode formed in a strip shape on the upper surfaces of the substrates 101a and 101b. The heating terminals 3 and 3 are connected to a power supply 7 by lead wires 6.
【0040】以上のようにして可変波長フィルタ1は構
成されているが、次に図3に基づいてその具体的な成形
方法について述べる。なお、図3は説明の便宜上、ガラ
ス基板101a,101b上に形成される積層構造の
内、誘電体反射膜103及び液晶用配向膜104を省略
してある。The variable wavelength filter 1 is configured as described above. Next, a specific forming method will be described with reference to FIG. In FIG. 3, for convenience of explanation, the dielectric reflective film 103 and the liquid crystal alignment film 104 are omitted from the laminated structure formed on the glass substrates 101a and 101b.
【0041】すなわち、図3(a)は一方のガラス基板
101aを示し、その対向面上には電圧印加部102a
と端子部102bとからなる透明電極102が形成され
ると共に、この透明電極102の電圧印加部102aと
の間に何も形成されない余白部Aを挾んで自己制御型発
熱抵抗体2がコ字状に形成されており、かつ自己制御型
発熱抵抗体2の一方の端部2aに接続する透明電極から
なる加熱用端子部3が形成されている。この自己制御型
発熱抵抗体2は、発熱抵抗体2を加熱して流動化させ、
印刷等でガラス基板101a上に塗布・乾燥させて形成
するか、あるいはフィルム状発熱抵抗体2をガラス基板
101a上に貼着して形成される。That is, FIG. 3A shows one glass substrate 101a, and a voltage application section 102a
A self-controlling heating resistor 2 is formed in a U-shape with a margin A where nothing is formed between the transparent electrode 102 and the voltage applying part 102a of the transparent electrode 102. And a heating terminal portion 3 formed of a transparent electrode connected to one end 2a of the self-control type heating resistor 2. This self-control type heating resistor 2 heats and heats the heating resistor 2,
It is formed by applying and drying on the glass substrate 101a by printing or the like, or by sticking the film-shaped heating resistor 2 on the glass substrate 101a.
【0042】また、図3(b)は他方のガラス基板10
1bを示し、その対向面上には電圧印加部102aと端
子部102bとからなる透明電極102が形成されると
共に、この透明電極102の電圧印加部102aを囲繞
するようにシール部材105が形成されており、かつこ
のシール部材105の被覆を避けて自己制御型発熱抵抗
体2の他方の端部2aに接続する透明電極からなる加熱
用端子3が形成さている。このシール部材105には液
晶106の注入口105aが形成されると共に、シール
部材105の外周部は何も形成されない余白部Bとなっ
ている。FIG. 3B shows the other glass substrate 10.
1b, a transparent electrode 102 composed of a voltage applying portion 102a and a terminal portion 102b is formed on an opposing surface thereof, and a seal member 105 is formed so as to surround the voltage applying portion 102a of the transparent electrode 102. A heating terminal 3 made of a transparent electrode connected to the other end 2a of the self-control type heating resistor 2 is formed so as to avoid covering the seal member 105. The sealing member 105 has an injection port 105a for the liquid crystal 106, and the outer periphery of the sealing member 105 is a blank portion B in which nothing is formed.
【0043】これら一対のガラス基板101a,101
bの対向面上に形成される透明電極102の電圧印加部
102a上には、図示しないが前述したように誘電体反
射膜103、及び液晶用配向膜104が積層形成されて
いる。The pair of glass substrates 101a, 101
Although not shown, the dielectric reflection film 103 and the liquid crystal alignment film 104 are stacked on the voltage application unit 102a of the transparent electrode 102 formed on the opposing surface b as described above.
【0044】そして、他方のガラス基板101bを裏返
して、シール部材105を余白部Aに、自己制御型発熱
抵抗体2を余白部Bに、自己制御型発熱抵抗体2の他方
の端部2aを他方のガラス基板101bに設けた加熱用
端子部3に、それぞれ対応させて一方のガラス基板10
1aに接合する。この接合はシール部材105の両ガラ
ス基板101a,101bへの接着により行われる。さ
らに、液晶106を注入口105aから注入した後、注
入口105aを封止材4で閉塞して可変波長フィルタ1
を得ることができる。Then, the other glass substrate 101b is turned upside down, the sealing member 105 is placed in the margin A, the self-control heating resistor 2 is placed in the margin B, and the other end 2a of the self-control heating resistor 2 is placed in the margin B. One glass substrate 10 corresponds to the heating terminal portion 3 provided on the other glass substrate 101b.
1a. This bonding is performed by bonding the sealing member 105 to both glass substrates 101a and 101b. Further, after the liquid crystal 106 is injected from the injection port 105a, the injection port 105a is closed with the sealing material 4 to
Can be obtained.
【0045】このようにして形成された可変波長フィル
タ1は、次のように作動する。The tunable wavelength filter 1 thus formed operates as follows.
【0046】可変波長フィルタ1は、透明電極102の
端子部102bを介して電圧印加部102a,102a
間に電圧を印加して液晶106の屈折率を変化させ、フ
ァブリー・ペロ干渉系における誘電体反射膜103,1
03間の光路長を変化させることにより、共振波長(可
変波長フィルタ1の透過光の波長)を選択することがで
きる。The tunable wavelength filter 1 is connected to the voltage applying units 102a, 102a via the terminal 102b of the transparent electrode 102.
A voltage is applied between them to change the refractive index of the liquid crystal 106, and the dielectric reflection films 103, 1 in the Fabry-Perot interference system
The resonance wavelength (the wavelength of the transmitted light of the tunable wavelength filter 1) can be selected by changing the optical path length between 03.
【0047】また、自己制御型発熱抵抗体2は、正の温
度係数を有するため、通電すると、電圧及び抵抗に応じ
て発熱し温度が上昇し、発熱抵抗体2を構成する合成樹
脂の融点付近になると、抵抗が急激に大きくなって発熱
量が抑制され、発熱抵抗体2の温度が下がると抵抗が小
さくなって発熱量が増加し温度上昇する。このように自
己制御型発熱抵抗体2は、抵抗変化によって発熱量を自
己制御することによって液晶106の温度を一定に保っ
ている。Further, since the self-control type heating resistor 2 has a positive temperature coefficient, when energized, it generates heat in accordance with the voltage and resistance, and the temperature rises, and the vicinity of the melting point of the synthetic resin constituting the heating resistor 2 , The resistance increases rapidly and the amount of heat generation is suppressed. When the temperature of the heating resistor 2 decreases, the resistance decreases, the amount of heat generation increases, and the temperature rises. In this way, the self-control type heating resistor 2 maintains the temperature of the liquid crystal 106 constant by self-controlling the amount of heat generated by a change in resistance.
【0048】この可変波長フィルタ1は、自己制御型発
熱抵抗体2をシール部材105の外周面と、一対のガラ
ス基板101a,101bの対向面とで形成されるコ字
形断面の溝5内に帯状に連続するように配したので、十
分な伝熱面積を確保することができると共に環境温度の
影響が少なく液晶106との温度差を小さくして液晶1
06の温度変化を精確に検知して、液晶106を精度良
く温度制御することができ、これにより選択波長の温度
による変動が小さく、波長選択性能が向上したものとな
っている。In the variable wavelength filter 1, the self-control type heating resistor 2 is formed in a band shape in a groove 5 having a U-shaped cross section formed by the outer peripheral surface of the seal member 105 and the opposing surfaces of the pair of glass substrates 101a and 101b. Are arranged so that a sufficient heat transfer area can be secured, the influence of the environmental temperature is small, and the temperature difference between the liquid crystal 106 and the liquid crystal 106 is reduced.
The temperature change of the liquid crystal 106 can be accurately controlled by accurately detecting the temperature change of the liquid crystal 106, and thus the fluctuation of the selected wavelength due to the temperature is small, and the wavelength selecting performance is improved.
【0049】また、可変波長フィルタ1は、温度制御手
段として自己制御型発熱抵抗体2を用いているので、温
度センサあるいは/及び温度制御装置等の付帯設備が不
要となって構造簡単でコンパクトなものとなっている。Further, since the variable wavelength filter 1 uses the self-control type heating resistor 2 as the temperature control means, no additional equipment such as a temperature sensor and / or a temperature control device is required, and the structure is simple and compact. It has become something.
【0050】さらに、可変波長フィルタ1は、自己制御
型発熱抵抗体2を構成する合成樹脂を変更することによ
り、その合成樹脂の融点に応じた発熱温度を設定するこ
とができるので設計自由度が拡大したものとなっている
と共に、自己制御型発熱抵抗体2を流動状態あるいはフ
ィルム状態にすることによって可変波長フィルタ1に容
易に配置することができるので成形が容易なものとなっ
ている。Further, the variable wavelength filter 1 can set the heat generation temperature in accordance with the melting point of the synthetic resin by changing the synthetic resin forming the self-control type heat generating resistor 2, so that the degree of freedom in design is increased. In addition to being enlarged, the self-control type heating resistor 2 can be easily arranged on the tunable wavelength filter 1 by making it into a fluid state or a film state, so that the molding is easy.
【0051】[0051]
【発明の効果】以上詳細に説明したように本発明によれ
ば次の効果を奏する。According to the present invention, as described in detail above, the following effects can be obtained.
【0052】すなわち、請求項1記載の発明によれば、
内部に液晶を封入したシール部材の外周部に接して正の
抵抗温度係数を有する自己制御型発熱抵抗体を配置した
ので、前記発熱抵抗体が液晶の温度変化を精確に検知し
て液晶を精度良く温度制御することができ、この結果選
択波長の温度による変動が小さく波長選択性能が向上し
た可変波長フィルタを提供することができる。That is, according to the first aspect of the present invention,
Since the self-regulating heating resistor having a positive temperature coefficient of resistance is disposed in contact with the outer peripheral portion of the sealing member in which the liquid crystal is sealed, the heating resistor accurately detects a change in the temperature of the liquid crystal and accurately detects the liquid crystal. The temperature can be controlled well, and as a result, it is possible to provide a variable wavelength filter in which the variation of the selected wavelength due to the temperature is small and the wavelength selection performance is improved.
【0053】その上、請求項1記載の発明によれば、加
熱体として自己制御型発熱抵抗体を用いているので、温
度センサ及び温度制御装置等の付帯設備が不要となり、
この結果構造簡単でコンパクトな可変波長フィルタを提
供することができる。In addition, according to the first aspect of the present invention, since a self-control type heating resistor is used as the heating element, ancillary equipment such as a temperature sensor and a temperature control device becomes unnecessary.
As a result, a compact tunable wavelength filter having a simple structure can be provided.
【0054】請求項2記載の発明によれれば、自己制御
型発熱抵抗体が結晶性を有する合成樹脂に導電物質を添
加して導電化させて形成されているので、用いられる合
成樹脂を変更することによって、その合成樹脂の融点に
応じた発熱温度を設定することができて設計自由度が拡
大したものとなっていると共に、流動状態あるいはフィ
ルム状態にすることによって可変波長フィルタへの配置
を容易化することができ、この結果、請求項2記載の発
明の効果に加えて一層成形容易な可変波長フィルタを提
供することができる。According to the second aspect of the present invention, the self-control type heating resistor is formed by adding a conductive substance to a crystalline synthetic resin to make it conductive, so that the synthetic resin used is changed. By doing so, it is possible to set the heat generation temperature in accordance with the melting point of the synthetic resin, thereby increasing the degree of freedom of design. As a result, it is possible to provide a tunable wavelength filter that is easier to form in addition to the effects of the second aspect of the present invention.
【0055】また、請求項3記載の発明によれば、自己
制御型発熱抵抗体を、シール部材の外周部に沿って帯状
に連続するように配置したので、液晶を加熱するに充分
な伝熱面積を確保して液晶の温度を一定に保つことがで
き、この結果、請求項1記載の発明の効果に加えて温度
依存性が小さく、波長選択性能が一層向上した可変波長
フィルタを提供することができる。According to the third aspect of the present invention, since the self-control type heating resistor is arranged so as to be continuous in a band along the outer peripheral portion of the seal member, sufficient heat transfer for heating the liquid crystal is achieved. It is possible to provide a tunable wavelength filter in which the area of the liquid crystal can be kept constant and the temperature of the liquid crystal can be kept constant. Can be.
【0056】さらに、請求項4記載の発明は、自己制御
型発熱抵抗体を、シール部材の外周面と、一対のガラス
基板の対向面とで形成されるコ字形断面の溝内に配置し
たので、自己制御型発熱抵抗体が環境温度の影響が少な
く、液晶との温度差を小さくして、液晶の温度変化を精
確に検知して、液晶を一層精度良く温度制御することが
でき、この結果、請求項1記載の発明の効果に加えて温
度依存性が小さく、波長選択性能が一層向上した可変波
長フィルタを提供することができる。Further, in the invention according to claim 4, the self-control type heating resistor is arranged in a groove having a U-shaped cross section formed by the outer peripheral surface of the seal member and the opposing surfaces of the pair of glass substrates. The self-regulating heating resistor is less affected by the ambient temperature, reduces the temperature difference with the liquid crystal, accurately detects the temperature change of the liquid crystal, and can control the temperature of the liquid crystal more accurately. As a result, In addition to the effects of the first aspect of the present invention, it is possible to provide a tunable wavelength filter having small temperature dependence and further improved wavelength selection performance.
【図1】一実施例としての可変波長フィルタの概念図で
ある。FIG. 1 is a conceptual diagram of a variable wavelength filter as one embodiment.
【図2】図1のII−II線に沿う断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.
【図3】図1の可変波長フィルタを構成する一対のガラ
ス基板の概念図であり、(a)は一方のガラス基板、
(b)は他方のガラス基板をそれぞれ示す。3A and 3B are conceptual diagrams of a pair of glass substrates constituting the variable wavelength filter of FIG. 1; FIG.
(B) shows the other glass substrate, respectively.
【図4】従来の可変波長フィルタの斜視図である。FIG. 4 is a perspective view of a conventional variable wavelength filter.
【図5】図4のV−V線に沿う断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 4;
【図6】液晶分子の概念図である。FIG. 6 is a conceptual diagram of liquid crystal molecules.
【図7】図4の可変波長フィルタの概念図であり、
(a)は電圧無印加時、(b)は電圧印加時をそれぞれ
示す。FIG. 7 is a conceptual diagram of the variable wavelength filter of FIG. 4,
(A) shows the state when no voltage is applied, and (b) shows the state when a voltage is applied.
【図8】液晶の屈折率の温度依存性を示すグラフであ
る。FIG. 8 is a graph showing the temperature dependence of the refractive index of the liquid crystal.
1 可変波長フィルタ 2 自己制御型発熱抵抗体 3 加熱用端子 5 溝 101a,101b ガラス基板 102 透明電極 103 誘電体反射膜 104 液晶用配向膜 105 シール部材 106 液晶 DESCRIPTION OF SYMBOLS 1 Variable wavelength filter 2 Self-control type heating resistor 3 Heating terminal 5 Groove 101a, 101b Glass substrate 102 Transparent electrode 103 Dielectric reflective film 104 Liquid crystal alignment film 105 Seal member 106 Liquid crystal
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02F 1/13 505 G02F 1/133 G02F 1/1333 G02F 1/1339 G09F 9/30 G09G 3/18 G09G 3/36 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) G02F 1/13 505 G02F 1/133 G02F 1/1333 G02F 1/1339 G09F 9/30 G09G 3/18 G09G 3 / 36
Claims (4)
を対向面上に積層形成した一対のガラス基板がシール部
材を介して対向配置されると共に、前記シール部材で囲
繞された前記一対のガラス基板間に液晶が封入されてい
る可変波長フィルタにおいて、 前記シール部材の外周部に接して正の抵抗温度係数を有
する自己制御型発熱抵抗体を配置したことを特徴とする
可変波長フィルタ。1. A pair of glass substrates each having a transparent electrode, a dielectric reflection film, and an alignment film for liquid crystal laminated on an opposing surface are disposed to face each other via a seal member, and the pair of glass substrates surrounded by the seal member. A variable wavelength filter in which a liquid crystal is sealed between glass substrates, wherein a self-control type heating resistor having a positive temperature coefficient of resistance is disposed in contact with an outer peripheral portion of the seal member.
て、 前記自己制御型発熱抵抗体が、結晶性を有する合成樹脂
に導電物質を添加して導電化させて形成されていること
を特徴とする可変波長フィルタ。2. The variable wavelength filter according to claim 1, wherein the self-control type heating resistor is formed by adding a conductive substance to a synthetic resin having crystallinity to make the synthetic resin conductive. Variable wavelength filter.
であって、 前記自己制御型発熱抵抗体が前記シール部材の外周部に
沿って帯状に連続するように配置されていることを特徴
とする可変波長フィルタ。3. The tunable wavelength filter according to claim 1, wherein said self-control type heating resistor is arranged so as to be continuous in a band along an outer peripheral portion of said seal member. Variable wavelength filter.
変波長フィルタであって、 前記自己制御型発熱抵抗体が、前記シール部材の外周面
と前記一対のガラス基板の対向面とで形成されるコ字状
断面の溝内に配置されていることを特徴とする可変波長
フィルタ。4. The tunable wavelength filter according to claim 1, wherein the self-control type heating resistor is formed by an outer peripheral surface of the seal member and an opposing surface of the pair of glass substrates. A tunable wavelength filter, which is disposed in a groove having a U-shaped cross section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19930894A JP2966288B2 (en) | 1994-08-24 | 1994-08-24 | Tunable wavelength filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19930894A JP2966288B2 (en) | 1994-08-24 | 1994-08-24 | Tunable wavelength filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0862563A JPH0862563A (en) | 1996-03-08 |
JP2966288B2 true JP2966288B2 (en) | 1999-10-25 |
Family
ID=16405647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19930894A Expired - Lifetime JP2966288B2 (en) | 1994-08-24 | 1994-08-24 | Tunable wavelength filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2966288B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180095756A (en) * | 2017-02-17 | 2018-08-28 | (주)엠이엘 텔레콤 | Temperature-stabilized wavelength tunable optical filter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010175793A (en) * | 2009-01-29 | 2010-08-12 | Kyocera Corp | Liquid crystal shutter and camera module having same |
-
1994
- 1994-08-24 JP JP19930894A patent/JP2966288B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180095756A (en) * | 2017-02-17 | 2018-08-28 | (주)엠이엘 텔레콤 | Temperature-stabilized wavelength tunable optical filter |
KR102611850B1 (en) | 2017-02-17 | 2023-12-11 | (주)엠이엘텔레콤 | Temperature-stabilized wavelength tunable optical filter |
Also Published As
Publication number | Publication date |
---|---|
JPH0862563A (en) | 1996-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6943768B2 (en) | Thermal control system for liquid crystal cell | |
US7352428B2 (en) | Liquid crystal cell platform | |
US4093355A (en) | Symmetrical internal heater for liquid crystal display | |
JPS58173718A (en) | Liquid crystal light modulator and its manufacturing method | |
US7623291B2 (en) | Polarized diffractive filter and layered polarized diffractive filter | |
EP0244770B1 (en) | Thermally controllable optical devices and system | |
US20110043742A1 (en) | Contamination prevention in liquid crystal cells | |
JP2966288B2 (en) | Tunable wavelength filter | |
JPS6212894B2 (en) | ||
US7355671B2 (en) | Fabrication method for liquid crystal cell | |
JPH10221661A (en) | Optical device, wavelength selection filter, and temperature control method used for these | |
JPH06148692A (en) | Tunable liquid crystal optical filter | |
JP2010175785A (en) | Wavelength variable filter | |
US20060007385A1 (en) | Optical attenuator and optical head device | |
JPS5823614B2 (en) | LCD display method | |
JPH06258611A (en) | Fabry-Perot etalon type wavelength selective filter manufacturing method | |
KR890003631B1 (en) | Liquid Crystal Display Device Using Conductive Spacer | |
JP4694009B2 (en) | Panel heater for liquid crystal display elements | |
JPS63274564A (en) | liquid crystal optical device | |
JPH01288826A (en) | Ferroelectric liquid crystal element | |
JPH10221660A (en) | Wavelength selection filter and resonance wavelength selection control method used therefor | |
JPH11119238A (en) | Reflection type liquid crystal display device | |
CA1256543A (en) | Transflective liquid crystal display with integral heating unit | |
JPS62153835A (en) | liquid crystal element | |
JP2006518880A (en) | Liquid crystal variable optical attenuator |