[go: up one dir, main page]

JP2943365B2 - Method and apparatus for continuous measurement of aldehyde concentration in gas sample - Google Patents

Method and apparatus for continuous measurement of aldehyde concentration in gas sample

Info

Publication number
JP2943365B2
JP2943365B2 JP5231391A JP5231391A JP2943365B2 JP 2943365 B2 JP2943365 B2 JP 2943365B2 JP 5231391 A JP5231391 A JP 5231391A JP 5231391 A JP5231391 A JP 5231391A JP 2943365 B2 JP2943365 B2 JP 2943365B2
Authority
JP
Japan
Prior art keywords
aldehyde
concentration
gas sample
nadh
capturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5231391A
Other languages
Japanese (ja)
Other versions
JPH04287694A (en
Inventor
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5231391A priority Critical patent/JP2943365B2/en
Publication of JPH04287694A publication Critical patent/JPH04287694A/en
Application granted granted Critical
Publication of JP2943365B2 publication Critical patent/JP2943365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルデヒドの気中濃度
の連続測定方法及びその装置に関する。本発明は走行条
件の変動による自動車の排気ガス中のホルムアルデヒド
濃度の変動を測定する場合などに利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for continuously measuring the concentration of aldehyde in the air. INDUSTRIAL APPLICABILITY The present invention can be used for measuring a change in the formaldehyde concentration in the exhaust gas of an automobile due to a change in running conditions.

【0002】[0002]

【従来の技術】近年、大気汚染防止の観点から、自動車
の排気ガス中に含まれるアルデヒド類の排出の抑制の必
要性が論じられている。特にホルムアルデヒドは光化学
反応性が高いことが知られ、また低濃度でも人体に対す
る刺激があることから、その排出の規制が望まれてい
る。
2. Description of the Related Art In recent years, from the viewpoint of preventing air pollution, the necessity of suppressing emission of aldehydes contained in exhaust gas of automobiles has been discussed. In particular, since formaldehyde is known to have high photochemical reactivity, and there is irritation to the human body even at a low concentration, regulation of its emission is desired.

【0003】ところで気体中に含まれるアルデヒドの濃
度の測定方法としては、各種クロマトグラフィーによる
方法、捕捉溶媒中に捕捉して滴定法や比色法にて測定す
る方法、あるいは赤外分光分析装置を利用する方法など
が知られている。しかしながらこれらの測定方法では、
感度が低くppbレベルの低濃度域の測定ができない、
操作が煩雑である、応答速度が遅い、などの問題があ
り、連続的に測定することは困難であった。しかしアル
デヒドの排出を低減する技術の開発に当たっては、排気
ガス中のアルデヒド濃度を連続的に測定することが不可
欠であり、その測定技術の開発が望まれていた。
As a method for measuring the concentration of an aldehyde contained in a gas, there are various chromatographic methods, a method in which the aldehyde is captured in a capturing solvent and measured by a titration method or a colorimetric method, or an infrared spectrometer. There are known methods to use. However, in these measurement methods,
The sensitivity is so low that it is not possible to measure in the low concentration range of ppb level,
There are problems such as complicated operation and slow response speed, and it has been difficult to measure continuously. However, in developing a technology for reducing aldehyde emission, it is essential to continuously measure the aldehyde concentration in exhaust gas, and development of such a measurement technology has been desired.

【0004】そこで本願発明者らは、酵素を利用したア
ルデヒド濃度の連続測定法を確立し、特開平2−264
847号公報にその測定装置を開示している。この測定
方法は、気体試料をフロー状態にある捕捉溶媒と接触さ
せ含まれるアルデヒドを捕捉溶媒に連続的に吸収させる
捕捉工程と、アルデヒドデヒドロゲナーゼの存在下で捕
捉溶媒中に存在するアルデヒドをニコチンアミドアデニ
ンジヌクレオチド(NAD)と連続的に反応させ、アル
デヒドの液中濃度に応じた量の還元型ニコチンアミドア
デニンジヌクレオチド(NADH)を生成させるNAD
H生成工程と、NADHの液中濃度に応じた発光を発生
させその強度からNADHの液中濃度を連続的に測定
し、その値から気体試料中のアルデヒド濃度を求める分
析工程と、を順次行うことを特徴としている。
The inventors of the present invention have established a method for continuously measuring the aldehyde concentration using an enzyme, and
No. 847 discloses the measuring device. This measurement method includes a capturing step in which a gas sample is brought into contact with a capturing solvent in a flowing state to continuously absorb the aldehyde contained therein, and the aldehyde present in the capturing solvent in the presence of aldehyde dehydrogenase is converted into nicotinamide adenine. NAD which is continuously reacted with dinucleotide (NAD) to produce reduced nicotinamide adenine dinucleotide (NADH) in an amount corresponding to the concentration of aldehyde in the liquid
An H generation step and an analysis step of generating a light emission according to the concentration of NADH in the liquid, continuously measuring the concentration of NADH in the liquid from the intensity thereof, and obtaining the aldehyde concentration in the gas sample from the value are sequentially performed. It is characterized by:

【0005】この測定方法によれば、ppbレベルの低
濃度域の連続測定が可能であり、気中アルデヒド濃度変
化を応答性よくしかも正確に測定することができる。
According to this measuring method, continuous measurement in a low concentration range of ppb level is possible, and a change in aerial aldehyde concentration can be measured with good responsiveness and accurately.

【0006】[0006]

【発明が解決しようとする課題】ところが上記測定方法
を自動車の排気ガス中のアルデヒド濃度の測定に適用し
た場合、ベースラインが変動し測定値が現実の値より低
くなることが明らかとなった。本発明はこのような事情
に鑑みてなされたものであり、上記特開平2−2648
47号公報に記載された測定方法において、ベースライ
ンの変動を無くしアルデヒド濃度の測定値を一層正確と
することを目的とする。
However, when the above-mentioned measuring method is applied to the measurement of the aldehyde concentration in the exhaust gas of an automobile, it has been found that the baseline changes and the measured value becomes lower than the actual value. The present invention has been made in view of such circumstances, and is described in Japanese Patent Application Laid-Open No. HEI 2-2648.
In the measurement method described in Japanese Patent No. 47, the object is to eliminate the fluctuation of the baseline and to make the measured value of the aldehyde concentration more accurate.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記不具合
の原因について鋭意研究した結果、排気ガス中に含まれ
るSO2 の影響に起因するものであることを見出した。
すなわち、SO2 が捕捉溶媒中で反応性の高い亜硫酸イ
オンとなり、酵素活性点へ選択的に吸着してアルデヒド
との反応を阻害するため、負の干渉が生じて測定値が現
実の値より低くなることが明らかとなった。そして排気
ガスが吸収された捕捉溶媒が酵素と接触する前にSO2
を除去することを想起し、本発明を完成したものであ
る。
Means for Solving the Problems The present inventors have conducted intensive studies on the causes of the above-mentioned problems, and as a result, have found that they are caused by the influence of SO 2 contained in exhaust gas.
That is, SO 2 becomes highly reactive sulfite ion in the capture solvent and selectively adsorbs to the enzyme active site to inhibit the reaction with the aldehyde, so that negative interference occurs and the measured value is lower than the actual value. It became clear that it became. Then, before the trapped solvent in which the exhaust gas is absorbed comes into contact with the enzyme, SO 2
The present invention has been completed by recalling that

【0008】すなわち上記課題を解決する本発明の測定
方法は、気体試料をフロー状態にある捕捉溶媒と接触さ
せ気体試料に含まれるアルデヒドを捕捉溶媒に連続的に
吸収させる捕捉工程と、捕捉溶媒中に吸収されたSO2
を酸化する酸化工程と、アルデヒドデヒドロゲナーゼの
存在下で捕捉溶媒中に存在するアルデヒドをニコチンア
ミドアデニンジヌクレオチド(NAD)と連続的に反応
させアルデヒドの液中濃度に応じた量の還元型ニコチン
アミドアデニンジヌクレオチド(NADH)を生成させ
るNADH生成工程と、NADHの液中濃度に応じた発
光を発生させ発光の強度を測定することによりNADH
の液中濃度を連続的に測定しその値から気体試料中のア
ルデヒド濃度を求める分析工程と、を順次行うことを特
徴とする。
[0008] That is, the measuring method of the present invention for solving the above-mentioned problems comprises a capturing step in which a gas sample is brought into contact with a capturing solvent in a flow state to continuously absorb the aldehyde contained in the gas sample into the capturing solvent; SO 2 absorbed in
An oxidizing step of oxidizing aldehydes, and continuously reacting aldehydes present in the capture solvent with nicotinamide adenine dinucleotide (NAD) in the presence of aldehyde dehydrogenase to reduce the amount of reduced nicotinamide adenine according to the concentration of the aldehyde in the liquid A NADH generating step of generating a dinucleotide (NADH), and generating luminescence corresponding to the concentration of NADH in the solution, and measuring the luminescence intensity to obtain NADH.
And measuring the aldehyde concentration in the gas sample from the measured values in the liquid continuously.

【0009】また上記測定方法を実施する好ましい測定
装置は、気体試料をフロー状態にある捕捉溶媒と接触さ
せ気体試料に含まれるアルデヒドを捕捉溶媒に連続的に
吸収させる捕捉部と、捕捉部の下流側に設けられ捕捉溶
媒中に吸収されたSO2 を酸化する酸化触媒と、酸化触
媒の下流側に設けられNADと捕捉溶媒中のアルデヒド
とを反応させてNADHを生成させる還元部と、還元部
の下流側に設けられNADHと試薬とをフロー状態で反
応させNADHの液中濃度に応じた発光を発生させて発
光の強度を測定することによりNADHの液中濃度を連
続的に測定する分析部とを備え、NADHの液中濃度か
ら気体試料中のアルデヒド濃度を連続的に求めるように
構成されたことを特徴とする。
Further, a preferred measuring device for carrying out the above-mentioned measuring method comprises a capturing section for bringing a gas sample into contact with a capturing solvent in a flowing state to continuously absorb aldehyde contained in the gas sample into the capturing solvent, and a downstream section of the capturing section. An oxidation catalyst provided on the side of the catalyst to oxidize SO 2 absorbed in the trapping solvent; a reducing section provided downstream of the oxidation catalyst to react NAD with aldehyde in the trapping solvent to generate NADH; An analyzer that is provided downstream of the analyzer to continuously measure the NADH concentration in the liquid by reacting NADH and the reagent in a flow state, generating luminescence in accordance with the concentration of NADH in the liquid, and measuring the intensity of the luminescence. Wherein the concentration of aldehyde in the gas sample is continuously determined from the concentration of NADH in the liquid.

【0010】捕捉工程とは、捕捉溶媒にアルデヒドを吸
収させる工程をいい、連続的に流れている捕捉溶媒と気
体試料とを接触させることで行う。捕捉溶媒としてはア
ルデヒドを吸収可能な溶媒が用いられ、ホルムアルデヒ
ド(以下HCHOという)の場合は一般に水が用いられ
る。そして捕捉溶媒と気体試料を接触させるには、捕捉
溶媒中に気体試料をバブリングさせてもよいが、シール
性、操作性などの面から分子透過膜を介して接触させる
のが好ましい。この捕捉工程は捕捉部で行われる。な
お、捕捉部全体を加温し吸収性能を向上させることも好
ましい。
[0010] The capture step refers to a step in which the aldehyde is absorbed by the capture solvent, and is carried out by bringing the continuous flow of the capture solvent into contact with a gas sample. As the trapping solvent, a solvent capable of absorbing aldehyde is used. In the case of formaldehyde (hereinafter, referred to as HCHO), water is generally used. In order to bring the trapping solvent into contact with the gaseous sample, the gaseous sample may be bubbled in the trapping solvent. However, it is preferable that the trapping solvent and the gas sample be brought into contact with each other via a molecule permeable membrane in terms of sealing properties and operability. This capturing step is performed in the capturing section. In addition, it is also preferable to heat the entire capturing unit to improve the absorption performance.

【0011】捕捉溶液中には、アルデヒドとともにSO
2 も吸収されている。そこで本発明の特色をなす酸化工
程を行う。すなわち、例えば捕捉溶媒が水の場合は、S
2 が吸収されて亜硫酸イオン(SO3 2- )となって存
在している捕捉溶媒を酸化触媒と接触させ、亜硫酸イオ
ンを不活性な硫酸イオン(SO4 2- )に変える。これに
より次工程のNADH生成工程におけるSO2 の干渉を
阻止することができる。ここで酸化触媒としては、P
t、Pd、Rh等の貴金属触媒及びCu、Ni、Fe等
の遷移金属触媒を用いることができる。また、この触媒
反応は温度が高いほど促進されるので、加温下で行うこ
とが好ましい。なお、SO2 とともにアルデヒドの一部
も酸化される恐れがあるが、例えば図3に示すようにS
2 の酸化反応はHCHOの酸化反応に先行するため、
図3の斜線域で反応させることによりHCHOの酸化を
防止することができる。
The scavenging solution contains SO together with aldehyde.
2 has also been absorbed. Therefore, an oxidation step which is a feature of the present invention is performed. That is, for example, when the trapping solvent is water, S
O 2 is absorbed to form a sulfite ion (SO 3 2− ), and the existing trapping solvent is brought into contact with an oxidation catalyst to convert the sulfite ion into an inert sulfate ion (SO 4 2− ). Thus, interference of SO 2 in the next step of generating NADH can be prevented. Here, as the oxidation catalyst, P
Noble metal catalysts such as t, Pd, and Rh and transition metal catalysts such as Cu, Ni, and Fe can be used. In addition, since this catalytic reaction is promoted as the temperature increases, it is preferable to perform the reaction under heating. Although there is a possibility that a part of the aldehyde may be oxidized together with the SO 2 , for example, as shown in FIG.
Since the oxidation reaction of O 2 precedes the oxidation reaction of HCHO,
By reacting in the shaded region in FIG. 3, oxidation of HCHO can be prevented.

【0012】還元部で行われるNADH生成工程は、酵
素(アルデヒドデヒドロゲナーゼ)の存在下で、捕捉溶
媒中に存在するアルデヒドをNADと連続的に反応さ
せ、次式によりアルデヒドの液中濃度に応じた量のNA
DHを生成させる。このときアルデヒドは酸化されて対
応する酸に変化する。なお、アルデヒドデヒドロゲナー
ゼは固定化しておくことが好ましい。これにより試料液
をフロー状態のまま連続的に反応させることができる。
In the NADH producing step performed in the reducing section, the aldehyde present in the capturing solvent is continuously reacted with NAD in the presence of an enzyme (aldehyde dehydrogenase), and the aldehyde present in the solution is determined according to the following equation according to the concentration of the aldehyde in the liquid. NA of quantity
Generate DH. At this time, the aldehyde is oxidized and changes to a corresponding acid. The aldehyde dehydrogenase is preferably immobilized. As a result, the sample solution can be continuously reacted in the flow state.

【0013】 RCHO+NAD+H2 O → RCOOH+NADH+H+ 分析工程は、NADHの液中濃度に応じた発光を発生さ
せてその強度を測定することにより、NADHの液中濃
度を連続的に測定し、その値から気体試料中のアルデヒ
ド濃度を求める工程である。NADH自身の蛍光を利用
してもよいし、NADHと反応して発光する試薬を用い
その発光を利用することもできる。この発光の強度を測
定する方法によれば、従来の比色法などに比べて極めて
高感度となり、微量のアルデヒドでも高速に測定するこ
とができる。
In the RCHO + NAD + H 2 O → RCOOH + NADH + H + analysis step, the luminescence corresponding to the NADH concentration in the liquid is generated and its intensity is measured, whereby the NADH concentration in the liquid is continuously measured, and the gas is determined from the value. In this step, the aldehyde concentration in the sample is determined. The fluorescence of NADH itself may be used, or the luminescence may be used by using a reagent that emits light by reacting with NADH. According to the method for measuring the emission intensity, the sensitivity becomes extremely high as compared with a conventional colorimetric method or the like, and even a small amount of aldehyde can be measured at high speed.

【0014】[0014]

【発明の作用及び効果】すなわち本発明の測定方法で
は、酸化工程で捕捉溶媒中のSO2 が酸化されるため、
SO2 がアルデヒドの測定値に及ぼす干渉が回避され、
測定の精度が向上する。したがって本発明の測定方法及
び測定装置によれば、連続的にかつ正確に気中アルデヒ
ド濃度を測定することができるので、自動車の排気ガス
中のアルデヒドの連続的な定量分析が可能となり、今後
のアルデヒド排出量の低減技術に大きく寄与することが
できる。
According to the measurement method of the present invention, SO 2 in the trapping solvent is oxidized in the oxidation step.
Avoids the interference of SO 2 on aldehyde measurements,
Measurement accuracy is improved. Therefore, according to the measuring method and the measuring device of the present invention, since the concentration of aldehyde in the air can be measured continuously and accurately, the continuous quantitative analysis of aldehyde in the exhaust gas of automobiles becomes possible. It can greatly contribute to technology for reducing aldehyde emissions.

【0015】[0015]

【実施例】以下、実施例により具体的に説明する。 (測定装置)図1に本発明の一実施例の測定装置の概略
ブロック図を示す。この測定装置は、捕捉部1と、酸化
触媒2と、還元部3及び分析部4とから構成されてい
る。
The present invention will be specifically described below with reference to examples. (Measuring Apparatus) FIG. 1 is a schematic block diagram of a measuring apparatus according to one embodiment of the present invention. This measuring device includes a capturing unit 1, an oxidation catalyst 2, a reducing unit 3, and an analyzing unit 4.

【0016】捕捉部1は、図2に詳細を示すように、円
筒状の気体試料導通部10と、アルデヒド透過部11と
から構成されている。気体試料導通部10は導入口10
aと排出口10bとをもち、導入口10aは自動車の排
気通路12とポンプ13を介して連通されている。また
ポンプ13と導入口10aとの間には、三方バルブ14
を介して窒素ガス供給管15が連結されている。さらに
排気口10bには圧力弁16が設けられ、排出量を調整
可能に構成されている。すなわち気体試料導通部10に
は、三方バルブ14の切り換えにより排気ガスと窒素ガ
スのどちらか一方が選択的に、かつ流量が制御可能に通
過可能となっている。また圧力弁16にて気体試料導通
部10内の圧力を制御することにより、アルデヒド捕捉
率を制御することもできる。
As shown in detail in FIG. 2, the capturing section 1 is composed of a cylindrical gas sample conducting section 10 and an aldehyde transmitting section 11. The gas sample conducting part 10 is an inlet 10
a and an outlet 10b, and the inlet 10a is communicated with an exhaust passage 12 of the vehicle via a pump 13. A three-way valve 14 is provided between the pump 13 and the inlet 10a.
The nitrogen gas supply pipe 15 is connected via the. Further, a pressure valve 16 is provided at the exhaust port 10b so that the discharge amount can be adjusted. That is, one of the exhaust gas and the nitrogen gas can be selectively passed through the gas sample conducting section 10 by switching the three-way valve 14 and the flow rate can be controlled. Further, by controlling the pressure in the gas sample conducting section 10 by the pressure valve 16, the aldehyde trapping rate can be controlled.

【0017】アルデヒド透過部11は多孔性フッ素樹脂
膜製のパイプから形成され、気体試料導通部10を貫通
して、一端が純水を供給するポンプ17に接続されてい
る。また他端が酸化触媒2に接続されている。このアル
デヒド透過部11は、HCHOなどのアルデヒドが選択
的に透過可能であり、気体試料導通部10内のガス中の
HCHOがアルデヒド透過部11の管壁を透過して内部
を流れる純水に捕捉されるように構成されている。
The aldehyde permeable portion 11 is formed of a pipe made of a porous fluororesin film, penetrates the gas sample conducting portion 10 and has one end connected to a pump 17 for supplying pure water. The other end is connected to the oxidation catalyst 2. The aldehyde transmitting section 11 is capable of selectively transmitting aldehyde such as HCHO, and HCHO in the gas in the gas sample conducting section 10 is captured by pure water flowing through the tube wall of the aldehyde transmitting section 11 and flowing inside. It is configured to be.

【0018】酸化触媒2は、コージェライト質粉末表面
に活性アルミナ層が形成され、さらに活性アルミナ層に
Ptが担持された1000メッシュの粒状触媒からな
り、図示しない筒状のカラムに0.02ccの容量で封
入されている。そして上流側の一端がアルデヒド透過部
11に連通し、下流側の他端が還元部3に接続されてい
る。なお、捕捉部1と酸化触媒2は恒温室5内に配置さ
れ、所定温度に加温可能となっている。
The oxidation catalyst 2 comprises a 1000-mesh granular catalyst in which an activated alumina layer is formed on the surface of cordierite-based powder and Pt is supported on the activated alumina layer. Enclosed in capacity. One end on the upstream side communicates with the aldehyde permeating section 11, and the other end on the downstream side is connected to the reducing section 3. Note that the capturing unit 1 and the oxidation catalyst 2 are arranged in a constant temperature chamber 5 and can be heated to a predetermined temperature.

【0019】酸化触媒2を通過したアルデヒド含有水
は、NAD供給ポンプ6から供給されるNADと混合さ
れ還元部3に流入する。還元部3は、酵素ホルムアルデ
ヒドデヒドロゲナーゼがアミノプロピル修飾手法により
固定化された固定化酵素と、その固定化酵素が充填され
たカラムとからなる固定化酵素リアクターであり、前記
した反応式により流入水に含まれるHCHOは酸化され
て蟻酸となるとともに、そのHCHOと等モルのNAD
Hが生成する。
The aldehyde-containing water that has passed through the oxidation catalyst 2 is mixed with NAD supplied from the NAD supply pump 6 and flows into the reduction unit 3. The reducing unit 3 is an immobilized enzyme reactor consisting of an immobilized enzyme in which the enzyme formaldehyde dehydrogenase is immobilized by an aminopropyl modification technique and a column packed with the immobilized enzyme. The HCHO contained is oxidized to formic acid, and NAD is equimolar to the HCHO.
H is generated.

【0020】還元部3を通過し蟻酸、水素イオン及びN
ADHを含む水溶液は、供給ポンプ7、8からそれぞれ
供給されるフェナジンメゾサルフェート溶液及びイソル
ミノール:ミクロパーオキシダーゼ混合溶液と混合さ
れ、分析部4へ向かう。このときNADHはフェナジン
メゾサルフェートと反応し、過酸化水素を生成する。こ
の過酸化水素がイソルミノール:ミクロパーオキシダー
ゼ混合物とただちに反応し、化学発光が生じる。この化
学発光の強度を分析部4に備えられた化学発光検出器で
測定する。
After passing through the reducing section 3, formic acid, hydrogen ions and N
The aqueous solution containing ADH is mixed with the phenazine mezosulfate solution and the mixed solution of isoluminol and microperoxidase supplied from the supply pumps 7 and 8, respectively, and goes to the analysis unit 4. At this time, NADH reacts with phenazine mezosulfate to generate hydrogen peroxide. This hydrogen peroxide reacts immediately with the isoluminol: microperoxidase mixture, producing chemiluminescence. The intensity of the chemiluminescence is measured by a chemiluminescence detector provided in the analysis unit 4.

【0021】生じる化学発光の光強度はNADHの量に
比例し、NADHの量はHCHOの量に比例するので、
予め基準濃度のHCHOで検量線を作成しておくことに
より、気体試料中のHCHO量を知ることができる。 (測定方法)上記のように構成された本実施例の測定装
置を用い、走行中の自動車の排気ガス中のHCHO濃度
を連続的に測定した。
Since the light intensity of the resulting chemiluminescence is proportional to the amount of NADH and the amount of NADH is proportional to the amount of HCHO,
The amount of HCHO in the gas sample can be known by preparing a calibration curve with HCHO of the reference concentration in advance. (Measurement Method) Using the measurement apparatus of the present embodiment configured as described above, the HCHO concentration in the exhaust gas of a running automobile was continuously measured.

【0022】まずポンプ13により排気通路12から排
気ガスを気体試料導通部10に供給するとともに、ポン
プ17の駆動によりアルデヒド透過部11に純水を供給
する。排気ガスの供給量は10l/分であり、純水の供
給量は1cc/分である。アルデヒド透過部11では、
パイプ管壁からアルデヒド、SO2 などが透過して純水
中に溶解する。
First, an exhaust gas is supplied from the exhaust passage 12 to the gas sample conducting section 10 by the pump 13, and pure water is supplied to the aldehyde transmitting section 11 by driving the pump 17. The supply rate of the exhaust gas is 10 l / min, and the supply rate of the pure water is 1 cc / min. In the aldehyde transmitting section 11,
Aldehyde, SO 2 and the like permeate through the pipe wall and dissolve in pure water.

【0023】アルデヒド透過部11を通過した溶液は、
酸化触媒2内を通過してPt−アルミナ触媒と接触す
る。ここで単位体積当たりの溶液が触媒と接触する時間
は、1.2秒間であり図3の斜線の範囲にあるためHC
HOの酸化は防止されている。そして触媒との接触によ
り、SO2 が溶解して生成した亜硫酸イオンは効率的に
酸化されて硫酸イオンに変化する。なお、恒温室5は8
0℃に加温されているため、気体試料導通部10、アル
デヒド透過部11及び酸化触媒2は80℃に加温され、
アルデヒドの吸収及び触媒の酸化反応が促進されるよう
に構成されている。
The solution that has passed through the aldehyde transmitting section 11 is
It passes through the oxidation catalyst 2 and comes into contact with the Pt-alumina catalyst. Here, the contact time of the solution per unit volume with the catalyst is 1.2 seconds, which is within the range of the shaded area in FIG.
HO oxidation is prevented. Then, by the contact with the catalyst, the sulfite ions generated by dissolving the SO 2 are efficiently oxidized and changed to sulfate ions. The constant temperature chamber 5 is 8
Since it is heated to 0 ° C., the gas sample conducting part 10, the aldehyde transmitting part 11, and the oxidation catalyst 2 are heated to 80 ° C.,
It is configured to promote aldehyde absorption and oxidation reaction of the catalyst.

【0024】酸化触媒2を通過した溶液には、ポンプ6
からNAD水溶液が供給されて混合され、還元部3に流
入する。還元部3では、流入した溶液中に含まれるHC
HOの量に対応した量のNADがNADHに還元され
る。そしてポンプ7からはフェナジンメゾサルフェート
水溶液が供給され、ポンプ8からはイソルミノール:ミ
クロパーオキシダーゼの混合物水溶液が供給され、還元
部3から流出する溶液と混合されてただちに反応し化学
発光が生じる。
The solution passing through the oxidation catalyst 2 is supplied to a pump 6
, An NAD aqueous solution is supplied and mixed, and flows into the reduction unit 3. In the reduction unit 3, the HC contained in the influent solution is
An amount of NAD corresponding to the amount of HO is reduced to NADH. Then, an aqueous solution of phenazine mezosulfate is supplied from the pump 7, and an aqueous solution of a mixture of isoluminol and microperoxidase is supplied from the pump 8, mixed with the solution flowing out of the reducing unit 3, and immediately reacts to generate chemiluminescence.

【0025】分析部4では、光電子倍増管によりその化
学発光の強度が連続的に測定され、その変化が記録され
る。次に三方バルブ14を操作し、排気通路12と気体
試料導通部10との連通を断つとともに、窒素ガス供給
管15と気体試料導通部10とを連通させる。そして基
準濃度のHCHOを含む窒素ガスを、図示しないポンプ
により前記ポンプ13による排気ガスの供給量と同一の
供給量で気体試料部10に供給する。そして上記と全く
同一の条件で酸化触媒2、還元部3を通過させ、同様に
生じた化学発光の強さを分析部4で測定する。この操作
を複数の基準濃度でHCHOを含む窒素ガスについてそ
れぞれ同様に行い、それぞれの化学発光の強度とその場
合のHCHO濃度から検量線を作成する。
In the analysis section 4, the intensity of the chemiluminescence is continuously measured by a photomultiplier tube, and the change is recorded. Next, the three-way valve 14 is operated to cut off the communication between the exhaust passage 12 and the gas sample conducting part 10 and to make the nitrogen gas supply pipe 15 communicate with the gas sample conducting part 10. Then, a nitrogen gas containing a reference concentration of HCHO is supplied to the gas sample unit 10 by a pump (not shown) at the same supply amount as the supply amount of the exhaust gas by the pump 13. Then, the light is passed through the oxidation catalyst 2 and the reduction unit 3 under exactly the same conditions as described above, and the intensity of chemiluminescence generated in the same manner is measured by the analysis unit 4. This operation is similarly performed for nitrogen gas containing HCHO at a plurality of reference concentrations, and a calibration curve is created from the intensity of each chemiluminescence and the HCHO concentration in that case.

【0026】そして得られた検量線に、上記で得られた
連続的な化学発光強度のデータを当てはめてHCHO濃
度に換算することにより、HCHO量の変動を知ること
ができる。 (試験例1)車両は「22Rハイラックス」トヨタ自動
車(株)製、燃料にはガソリンを用い、完全暖機後の図
4、図5に示すLA#42山目モードにおける運転条件
で運転し、かつ酸化触媒2を用いないこと以外は実施例
と同様にして、同様の条件下における化学発光の強度を
測定した。この条件下では、排気ガス中にSO2 は含ま
れるがHCHOは含まれない。その結果図4に示すよう
に、測定値は車速が大きくなるほど低い値となり、HC
HO量に換算して最大0.5ppm程度の差が生じてベ
ースラインが変動した。 (試験例2)また、酸化触媒2を用いたこと以外は上記
と同様にして、HCHOの含まれない同様の条件下にお
ける化学発光の強度を測定した。その結果図5に示すよ
うに測定値の変動はみられず、ベースラインは安定して
いた。
By applying the continuous chemiluminescence intensity data obtained above to the obtained calibration curve and converting it into HCHO concentration, the fluctuation of the HCHO amount can be known. (Test Example 1) The vehicle was a "22R Hilux" manufactured by Toyota Motor Corporation, using gasoline as the fuel, and operating under the operating conditions in the LA # 42 mountain mode shown in FIGS. The chemiluminescence intensity was measured under the same conditions as in the example except that the oxidation catalyst 2 was not used. Under this condition, the exhaust gas contains SO 2 but not HCHO. As a result, as shown in FIG. 4, the measured value decreases as the vehicle speed increases,
There was a difference of about 0.5 ppm at the maximum in terms of HO amount, and the baseline fluctuated. (Test Example 2) The chemiluminescence intensity under the same conditions without HCHO was measured in the same manner as above except that the oxidation catalyst 2 was used. As a result, as shown in FIG. 5, there was no change in the measured value, and the baseline was stable.

【0027】この2つの試験の結果より、酸化触媒2が
無い場合には、排気ガス中に含まれるSO2 が酸化され
ずに還元部3に影響し、酵素反応に干渉することが明ら
かである。なお、SO2 が1ppm存在することによ
り、測定結果にHCHOの0.1ppmに相当する干渉
が生じることもわかった。しかし酸化触媒2を用いるこ
とによりSO2 の干渉を無視することができるので、本
発明の測定装置及び測定方法によれば正確にHCHO量
を測定することができる。
From the results of these two tests, it is clear that in the absence of the oxidation catalyst 2, SO 2 contained in the exhaust gas is not oxidized but affects the reducing section 3 and interferes with the enzyme reaction. . It was also found that the presence of 1 ppm of SO 2 caused interference corresponding to 0.1 ppm of HCHO in the measurement results. However, the use of the oxidation catalyst 2 makes it possible to disregard the interference of SO 2 , so that the measuring device and the measuring method of the present invention can accurately measure the amount of HCHO.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の測定装置の概略ブロック図
である。
FIG. 1 is a schematic block diagram of a measuring apparatus according to one embodiment of the present invention.

【図2】図1の捕捉部1の拡大説明図である。FIG. 2 is an enlarged explanatory view of a capturing unit 1 of FIG.

【図3】酸化触媒における接触時間と酸化率の関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between a contact time and an oxidation rate in an oxidation catalyst.

【図4】試験例1における走行モードとベースラインを
示す線図である。
FIG. 4 is a diagram showing a running mode and a baseline in Test Example 1.

【図5】試験例2における走行モードとベースラインを
示す線図である。
FIG. 5 is a diagram showing a running mode and a baseline in Test Example 2.

【符号の説明】[Explanation of symbols]

1:捕捉部 2:酸化触媒 3:還元部
4:分析部 5:恒温室 6、7、8:ポンプ 10:気体試
料導通部 11:アルデヒド透過部 12:排気
通路
1: Capture unit 2: Oxidation catalyst 3: Reduction unit
4: Analysis unit 5: Constant temperature chamber 6, 7, 8: Pump 10: Gas sample conduction unit 11: Aldehyde transmission unit 12: Exhaust passage

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気体試料をフロー状態にある捕捉溶媒と
接触させ該気体試料に含まれるアルデヒドを該捕捉溶媒
に連続的に吸収させる捕捉工程と、該捕捉溶媒中に吸収
されたSO2 を酸化する酸化工程と、アルデヒドデヒド
ロゲナーゼの存在下で該捕捉溶媒中に存在するアルデヒ
ドをニコチンアミドアデニンジヌクレオチド(NAD)
と連続的に反応させ該アルデヒドの液中濃度に応じた量
の還元型ニコチンアミドアデニンジヌクレオチド(NA
DH)を生成させるNADH生成工程と、該NADHの
液中濃度に応じた発光を発生させ該発光の強度を測定す
ることにより該NADHの液中濃度を連続的に測定しそ
の値から該気体試料中のアルデヒド濃度を求める分析工
程と、を順次行うことを特徴とする気体試料中のアルデ
ヒド濃度連続測定方法。
1. A capturing step of bringing a gas sample into contact with a capturing solvent in a flow state to continuously absorb aldehyde contained in the gas sample into the capturing solvent, and oxidizing SO 2 absorbed in the capturing solvent. Oxidizing step, and aldehyde present in the capture solvent in the presence of aldehyde dehydrogenase is converted to nicotinamide adenine dinucleotide (NAD)
With the reduced nicotinamide adenine dinucleotide (NA) in an amount corresponding to the concentration of the aldehyde in the liquid.
DH) is produced, and the concentration of the NADH in the liquid is continuously measured by generating luminescence corresponding to the concentration of the NADH in the liquid and measuring the intensity of the luminescence. A method for continuously measuring the concentration of aldehyde in a gas sample, comprising sequentially performing an analysis step for determining the concentration of aldehyde in the gas sample.
【請求項2】 気体試料をフロー状態にある捕捉溶媒と
接触させ該気体試料に含まれるアルデヒドを該捕捉溶媒
に連続的に吸収させる捕捉部と、該捕捉部の下流側に設
けられ該捕捉溶媒中に吸収されたSO2 を酸化する酸化
触媒と、該酸化触媒の下流側に設けられニコチンアミド
アデニンジヌクレオチド(NAD)と該捕捉溶媒中のア
ルデヒドとを反応させて還元型ニコチンアミドアデニン
ジヌクレオチド(NADH)を生成させる還元部と、該
還元部の下流側に設けられ該NADHと試薬とをフロー
状態で反応させ該NADHの液中濃度に応じた発光を発
生させて該発光の強度を測定することにより該NADH
の液中濃度を連続的に測定する分析部とを備え、該NA
DHの液中濃度から該気体試料中のアルデヒド濃度を連
続的に求めるように構成されたことを特徴とする気体試
料中のアルデヒド濃度連続測定装置。
2. A capturing section for bringing a gas sample into contact with a capturing solvent in a flow state to continuously absorb aldehyde contained in the gas sample into the capturing solvent; and a capturing solvent provided downstream of the capturing section. an oxidation catalyst for oxidizing SO 2 absorbed in, the oxidative nicotinamide adenine dinucleotide provided downstream of the catalyst (NAD) and the an aldehyde of the capture in a solvent is reacted with reduced nicotinamide adenine dinucleotide A reducing unit for producing (NADH) and a reagent provided downstream of the reducing unit, the NADH reacting with a reagent in a flow state to generate luminescence corresponding to the concentration of NADH in the liquid, and measure the intensity of the luminescence By doing this NADH
And an analyzer for continuously measuring the concentration of the NA in the liquid.
An apparatus for continuously measuring the concentration of aldehyde in a gas sample, wherein the concentration of aldehyde in the gas sample is continuously determined from the concentration of DH in the liquid.
JP5231391A 1991-03-18 1991-03-18 Method and apparatus for continuous measurement of aldehyde concentration in gas sample Expired - Lifetime JP2943365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5231391A JP2943365B2 (en) 1991-03-18 1991-03-18 Method and apparatus for continuous measurement of aldehyde concentration in gas sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5231391A JP2943365B2 (en) 1991-03-18 1991-03-18 Method and apparatus for continuous measurement of aldehyde concentration in gas sample

Publications (2)

Publication Number Publication Date
JPH04287694A JPH04287694A (en) 1992-10-13
JP2943365B2 true JP2943365B2 (en) 1999-08-30

Family

ID=12911296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5231391A Expired - Lifetime JP2943365B2 (en) 1991-03-18 1991-03-18 Method and apparatus for continuous measurement of aldehyde concentration in gas sample

Country Status (1)

Country Link
JP (1) JP2943365B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509515B2 (en) * 2013-09-20 2019-05-08 地方独立行政法人東京都立産業技術研究センター Volatile organic compound component detection sensor
JP7128007B2 (en) * 2018-03-29 2022-08-30 パイオニア株式会社 Gas component detection flow cell and detector

Also Published As

Publication number Publication date
JPH04287694A (en) 1992-10-13

Similar Documents

Publication Publication Date Title
CA1250214A (en) Method and apparatus for detection of certain nitrogen-containing gases using chemiluminescence
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
US5205988A (en) Apparatus for measuring gaseous aldehyde
Dunham et al. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence
US7179422B2 (en) Apparatus for improved detection of carbon monoxide by infrared absorption spectroscopy
Kim et al. Relationship between theoretical oxygen demand and photocatalytic chemical oxygen demand for specific classes of organic chemicals
Yagi et al. The absorption of oxygen into sodium sulphite solution
JP4317324B2 (en) An apparatus comprising an analyzer for continuously measuring H2S contained in a gas and an analyzer for adjusting a flow rate of air injected into a reactor for oxidizing H2S to sulfur
Possanzini et al. Determination of formaldehyde and acetaldehyde in air by HPLC with fluorescence detection
Pockard et al. The determination of traces of formaldehyde
JP2943365B2 (en) Method and apparatus for continuous measurement of aldehyde concentration in gas sample
Aoki Continuous flow determination of nitrite with membrane separation/chemiluminescence detection
Maeda et al. Continuous determination of gaseous formaldehyde by a chemiluminescence method
Braman et al. Sublimation sources for nitrous acid and other nitrogen compounds in air
JP3406968B2 (en) Adsorption tube for nitrogen oxides in gas, collection / recovery method using the same, and measurement method and apparatus using the same
JPH0377458B2 (en)
JP2812745B2 (en) Chemiluminescence determination of ammonia and its device
JP2013145228A (en) Method for determining formaldehyde concentration in gas
Pérez-Ruiz et al. Flow injection determination of lactate based on a photochemical reaction using photometric and chemiluminescence detection
Matuszewski et al. Continuous monitoring of gas-phase species at trace levels with electrochemical detectors: Part 1. Direct amperometric measurement of hydrogen peroxide and enzyme-based detection of alcohols and sulfur dioxide
Anthemidis et al. Selective stopped-flow injection spectrophotometric determination of palladium (II) in hydrogenation and automobile exhaust gas converter catalysts
JPS60207057A (en) Water organic carbon measuring device
JP2597180B2 (en) Aerial aldehyde capture device
Lam et al. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography
Yue et al. Simultaneous determination of formaldehyde and methanol by flow-injection catalytic spectrophotometry

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110625

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110625