[go: up one dir, main page]

JP2942789B1 - Measurement method of stress inside rock - Google Patents

Measurement method of stress inside rock

Info

Publication number
JP2942789B1
JP2942789B1 JP12290398A JP12290398A JP2942789B1 JP 2942789 B1 JP2942789 B1 JP 2942789B1 JP 12290398 A JP12290398 A JP 12290398A JP 12290398 A JP12290398 A JP 12290398A JP 2942789 B1 JP2942789 B1 JP 2942789B1
Authority
JP
Japan
Prior art keywords
rock
displacement
stress
discontinuous surface
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12290398A
Other languages
Japanese (ja)
Other versions
JPH11304601A (en
Inventor
昌幸 小杉
健治 林
Original Assignee
工業技術院長
昌幸 小杉
東洋検査工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 昌幸 小杉, 東洋検査工業株式会社 filed Critical 工業技術院長
Priority to JP12290398A priority Critical patent/JP2942789B1/en
Application granted granted Critical
Publication of JP2942789B1 publication Critical patent/JP2942789B1/en
Publication of JPH11304601A publication Critical patent/JPH11304601A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

【要約】 【課題】 岩盤内部、特に特定の不連続面やその近傍に
作用する応力を3次元的に計測する方法を提供する。 【解決手段】 2点間の3次元変位を計測できる構造を
備えた変位計測装置10を岩盤に形成されている孔井2
内に挿入し、これを岩盤1に拘束された状態で孔井2内
に設置した時に得られる変位の計測値と、孔井2の内壁
をコア穿孔して岩盤1に対する拘束状態から解放した時
に得られる変位の計測値とを用いて、岩盤1に作用して
いる応力を検出するようにした。従って、変位計測装置
10を不連続面3のある部分に設置すれば不連続面3を
挟む岩盤1,1間に作用する応力を、また不連続面3の
ない部分に設置すれば連続した岩盤1内に作用する応力
を、それぞれ場所を特定して3次元的に計測することが
できる。
An object of the present invention is to provide a method for three-dimensionally measuring stress acting on the inside of a bedrock, particularly on a specific discontinuous surface and its vicinity. SOLUTION: A displacement measurement device 10 having a structure capable of measuring a three-dimensional displacement between two points is formed by a well 2 formed on a rock mass.
The measured value of the displacement obtained when this is installed in the well 2 while being constrained by the rock 1 and when the inner wall of the well 2 is released from the constrained state with respect to the rock 1 by core piercing. The stress acting on the bedrock 1 is detected using the obtained measured value of the displacement. Therefore, if the displacement measuring device 10 is installed in a portion having the discontinuous surface 3, the stress acting between the rocks 1 and 1 sandwiching the discontinuous surface 3 will be increased. The stress acting on the inside 1 can be measured three-dimensionally by specifying the location of each.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、岩盤内部の不連
続面等に作用する応力を計測する方法、特に既存不連続
面の破壊の要因となる応力状態、地震等の発生メカニズ
ムに関連した岩盤内の断層等の滑り破壊の要因となる歪
エネルギーや応力状態、等の評価に必要となる岩盤内部
における応力を3次元的に計測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a stress acting on a discontinuous surface or the like inside a rock mass, and more particularly to a rock mass related to a stress state which causes a breakage of an existing discontinuous surface or an occurrence mechanism of an earthquake or the like. The present invention relates to a method for three-dimensionally measuring stress in a rock mass necessary for evaluating strain energy, stress state, and the like that cause slip failure of a fault or the like in a rock.

【0002】[0002]

【従来の技術】従来より、地震工学あるいは地球物理学
の分野において、地震の発生メカニズムや地震による岩
盤のダメージを適正に評価するために岩盤等の地震波計
測や歪計測が行われている。このような岩盤内の地震動
に関連する計測方法としては、一般に地震計や加速度計
によるものが採用されているが、これらの方法は、岩盤
内を伝播する地震動の動的応力波に伴う岩盤表面の振動
を共振する振動子の振幅あるいは振動圧力として計測す
ることにより、地震動に関連した岩盤の現象を解析する
ものである。
2. Description of the Related Art Conventionally, in the field of earthquake engineering or geophysics, seismic wave measurement and strain measurement of rocks and the like have been performed in order to appropriately evaluate the mechanism of earthquake occurrence and damage to rocks caused by earthquakes. Generally, seismometers and accelerometers are used as measurement methods related to such seismic motion in the rock, but these methods use the rock surface caused by the dynamic stress wave of the seismic wave propagating in the rock. By analyzing the vibration of the rock as the amplitude or vibration pressure of the resonating vibrator, the rock phenomena related to the ground motion is analyzed.

【0003】しかしながら、このような地震計や加速度
計による計測は、地震動の発生後における岩盤内の伝播
現象を把握して振動方向やその大きさなどを包括的に評
価するものに過ぎないため、断層等の不連続面を特定
し、その特定された不連続面に作用してすべり破壊を誘
引する応力状態を評価することは困難である。
[0003] However, such a measurement using a seismometer or an accelerometer is only for grasping the propagation phenomena in the rock after the occurrence of the seismic motion and comprehensively evaluating the vibration direction and the magnitude thereof. It is difficult to specify a discontinuous surface such as a fault and evaluate a stress state acting on the specified discontinuous surface to induce a slip failure.

【0004】また岩盤工学や土木工学の分野において、
岩盤内の力学的な変状を評価するため、不連続面が存在
していない岩盤内における応力(あるいは地圧)や変位
の計測が行われている。このような岩盤内の力学状態に
関連する計測方法としては、一般に応力開放法による地
圧計や地中変位計等が採用されているが、これらの方法
は、岩盤の孔井壁面に貼付した周囲をコア穿孔して応力
開放した際の歪や、孔井に設置した固定点の孔口からの
変位を計測することにより、岩盤内の応力状態や変形状
態を評価するものである。
In the field of rock engineering and civil engineering,
In order to evaluate mechanical deformation in rock, stress (or ground pressure) and displacement are measured in rock where there is no discontinuity. As a measurement method related to the mechanical state in the rock, a pressure manometer or an underground displacement meter based on a stress release method is generally employed. The stress state and deformation state in the rock are evaluated by measuring the strain when the stress is released by drilling the core and the displacement from the hole at the fixed point installed in the well.

【0005】しかしながら、これらによる計測は岩盤を
連続体と仮定して装置を孔井内に設置するものであり、
岩盤内の亀裂等の不連続面の滑り変形や膨潤挙動を引き
起こす応力を適正に検出することはできない。特に地圧
計による計測は、岩盤内の孔井壁面に歪ゲージ等のセン
サを直接貼付してその周囲をコア穿孔して応力開放した
際の歪を計測し、あるいは応力状態の変化に伴う岩盤の
歪を計測して応力を評価するものであり、対象となる岩
盤が連続体であることを前提としているために特定の不
連続面に作用する応力を評価する方法としては適用が困
難である。また地中変位計は、孔井内の固定点から孔口
までの区間における岩盤全体の1次元的な変位を計測す
るものであるため、特定の不連続面について3次元的な
応力を評価するのは困難である。
[0005] However, these measurements are based on the assumption that the bedrock is a continuum and the apparatus is installed in the wellbore.
It is not possible to properly detect the stress that causes sliding deformation and swelling behavior of discontinuous surfaces such as cracks in rock. In particular, when measuring with a geomanometer, a strain gauge or other sensor is directly attached to the borehole wall in the rock, and the core is pierced around it to measure the strain when the stress is released, or the rock rock due to changes in the stress state is measured. This method evaluates stress by measuring strain, and is difficult to apply as a method of evaluating stress acting on a specific discontinuous surface because it is assumed that the target rock is a continuum. In addition, since the underground displacement meter measures the one-dimensional displacement of the whole rock in the section from the fixed point in the wellbore to the hole mouth, it evaluates three-dimensional stress on a specific discontinuous surface. It is difficult.

【0006】[0006]

【発明が解決しようとする課題】この発明はこれらの点
に着目し、岩盤内部、特に特定の不連続面やその近傍に
作用する応力を3次元的に計測する方法を提供すること
により、例えば岩盤開発における既存不連続面の破壊の
要因となる応力状態や、地震等の発生メカニズムに関連
した岩盤内の断層等の滑り破壊の要因となる歪エネルギ
ーや応力状態等の評価を容易に実施できるようにするこ
とを課題としてなされたものである。
The present invention focuses on these points, and provides a method for three-dimensionally measuring the stress acting on the inside of a bedrock, particularly on a specific discontinuous surface and its vicinity. Easily evaluate stress conditions that cause the failure of existing discontinuities in rock development, and strain energy and stress conditions that cause slip failures of faults in rocks related to the mechanism of occurrence of earthquakes, etc. The task was to do so.

【0007】[0007]

【課題を解決するための手段】上記の課題を達成するた
めに、第1の発明では、少なくとも2点間の相対的な3
次元変位を計測できる構造を備えた変位計測装置を使用
し、これを不連続面を横断して岩盤に形成されている孔
井内に挿入し、不連続面を挟む両方の岩盤に対して拘束
された状態で変位計測装置を孔井内に設置した時に得ら
れる変位の計測値と、孔井の内壁をコア穿孔して岩盤に
対する拘束状態から解放した時に得られる変位の計測値
とを用いて、岩盤内部に存在する亀裂や断層等の不連続
面に作用する応力を検出するようにしている。
In order to achieve the above-mentioned object, the first aspect of the present invention provides a method for measuring a relative position between at least two points.
Using a displacement measuring device with a structure that can measure dimensional displacement, insert it into a well formed in the rock across the discontinuous surface and restrained against both rocks sandwiching the discontinuous surface Using the measured values of the displacement obtained when the displacement measuring device is installed in the wellbore in the drilled state and the measured values of the displacement obtained when the inner wall of the well is released from the constrained state against the rock by drilling the core The stress acting on a discontinuous surface such as a crack or a fault existing inside is detected.

【0008】また第2の発明では、上記第1の発明と同
様に少なくとも2点間の相対的な3次元変位を計測でき
る構造を備えた変位計測装置を使用し、これを岩盤に形
成されている孔井内に挿入し、岩盤に対して拘束された
状態で変位計測装置を孔井内に設置した時に得られる変
位の計測値と、孔井の内壁をコア穿孔して岩盤に対する
拘束状態から解放した時に得られる変位の計測値とを用
いて、亀裂や断層等の不連続面が存在していない岩盤内
部に作用する応力を検出するようにしている。
In the second invention, a displacement measuring device having a structure capable of measuring a relative three-dimensional displacement between at least two points is used similarly to the first invention, and the displacement measuring device is formed on a bedrock. The measured value of the displacement obtained when the displacement measuring device was installed in the borehole while being inserted into the borehole and constrained against the rock, and the inner wall of the well was released from the constrained state by the core drilling By using the measured value of the displacement obtained sometimes, the stress acting on the inside of the rock where there is no discontinuous surface such as a crack or a fault is detected.

【0009】これらの方法によれば、不連続面を特定し
てその不連続面に作用している応力や、不連続面に関係
なく岩盤中の特定箇所に作用している応力を3次元的に
検出することができ、これらの検出結果から岩盤内部に
おける応力状態を適正に評価できる。従って、例えば亀
裂や断層等が滑り破壊に至る降伏応力との比較から地震
等の発生現象とされる地表近傍の前記断層等の破壊発生
の危険度を評価し、あるいは岩盤の崩落現象とされる岩
盤内の亀裂等の破壊発生の危険度を評価することが極め
て容易となる。また、地殻変動の計測データと関連する
断層等の周辺に蓄積される歪エネルギーからこの断層等
に作用する応力の経時的な上昇特性を解析し、滑り破壊
降伏応力を指標として地震等に関連した滑り破壊の発生
時期を予知する手法を提供することも可能となるのであ
る。
According to these methods, a discontinuous surface is specified, and a stress acting on the discontinuous surface or a stress acting on a specific portion in the rock irrespective of the discontinuous surface is three-dimensionally determined. And the stress state inside the rock mass can be properly evaluated from these detection results. Therefore, for example, a risk of the occurrence of a failure such as a fault near the surface of the ground, which is considered to be an occurrence phenomenon such as an earthquake, is evaluated from a comparison with a yield stress at which a crack, a fault, or the like leads to a sliding failure, or a rock collapse phenomenon. It becomes extremely easy to evaluate the risk of fracture such as cracks in the rock. In addition, by analyzing the crustal deformation data and the strain energy accumulated around the fault, etc., the time-dependent rise characteristics of the stress acting on this fault, etc., are analyzed, and the slip fracture yield stress is used as an index to determine the relation to earthquakes, etc. It is also possible to provide a method for predicting the time of occurrence of slip failure.

【0010】[0010]

【発明の実施の形態】以下、この発明の実施の形態を説
明する。図1は第1の発明の実施状況の説明図、図2は
第2の発明の実施状況の説明図、図3はこの発明に使用
する変位計測装置の一例を示す概略断面図である。な
お、この明細書においてコア穿孔とはオーバーコアリン
グ、すなわち孔井の内壁を削り取って孔井の内径を大き
くすることを意味しており、以下の説明ではオーバーコ
アリングの語を使用する。
Embodiments of the present invention will be described below. FIG. 1 is an explanatory view of an embodiment of the first invention, FIG. 2 is an explanatory view of an embodiment of the second invention, and FIG. 3 is a schematic sectional view showing an example of a displacement measuring device used in the present invention. In this specification, core drilling means over-coring, that is, cutting the inner wall of a well to increase the inner diameter of the well, and the term “over-coring” is used in the following description.

【0011】まず図3に示す変位計測装置について説明
する。図示の装置は特開平7−159146号公報に開
示されている公知のものであり、装置10は前部構造体
11と後部構造体12で構成された細長い形状である。
前部構造体11は互いに直交する3枚の平面13を後端
部に備えており、後部構造体12は前記平面部13にそ
れぞれ対向する3個の変位センサ14を前端部に備えて
いる。そしてこれら3組の平面13と変位センサ14の
組み合わせによって、前部構造体11と後部構造体12
の相対的な変位を検出するように構成されている。従っ
て、前部構造体11と後部構造体12を測定の対象物に
それぞれ固定すれば、前部構造体11が固定された箇所
と後部構造体12が固定された箇所、すなわち測定対象
となる2点間の3次元変位を計測できるのである。
First, the displacement measuring device shown in FIG. 3 will be described. The illustrated device is a known device disclosed in Japanese Patent Application Laid-Open No. 7-159146, and the device 10 has an elongated shape including a front structure 11 and a rear structure 12.
The front structure 11 has at its rear end three planes 13 orthogonal to each other, and the rear structure 12 has at its front end three displacement sensors 14 facing the planes 13 respectively. The combination of the three sets of planes 13 and the displacement sensors 14 makes the front structure 11 and the rear structure 12
It is configured to detect a relative displacement of. Therefore, if the front structure 11 and the rear structure 12 are respectively fixed to the object to be measured, the portion where the front structure 11 is fixed and the position where the rear structure 12 is fixed, that is, the measurement target 2 The three-dimensional displacement between points can be measured.

【0012】前部構造体11には固定ピン15が、後部
構造体12には固定ピン16がそれぞれ設けられてお
り、岩盤1に穿孔された孔井2に変位計測装置10を挿
入し、固定ピン15,16の上部に係止させた細長い移
動用部材(図示せず)により所定位置まで移動させた
後、固定ピン15,16の下端を突出させて孔井2の内
壁を押圧することにより、前部構造体11と後部構造体
12は孔井2にそれぞれ固定された拘束状態となる。こ
のため、例えば不連続面3を挟む一方の岩盤1に前部構
造体11が、また他方の岩盤1に後部構造体12が共に
拘束されている状態にすれば、不連続面3の両側の岩盤
1,1間における3次元的な変位を計測できることにな
る。17は内部の平面13と変位センサ14を保護する
ために構造体11及び12の連結部に設けられた防水シ
ール、18は構造体11,12の外周面と孔井2の壁面
との間隔を保持すると共に、移動用部材を保護するため
の設置ガイドである。
A fixing pin 15 is provided on the front structure 11 and a fixing pin 16 is provided on the rear structure 12, respectively. The displacement measuring device 10 is inserted into the well 2 drilled in the rock 1 and fixed. After being moved to a predetermined position by an elongated moving member (not shown) locked on the upper portions of the pins 15 and 16, the lower ends of the fixing pins 15 and 16 are projected to press the inner wall of the well 2. The front structure 11 and the rear structure 12 are in a restrained state fixed to the well 2 respectively. For this reason, for example, if the front structure 11 and the rear structure 12 are constrained on one rock 1 and the other rock 1 sandwiching the discontinuous surface 3, respectively, The three-dimensional displacement between the rocks 1 and 1 can be measured. Reference numeral 17 denotes a waterproof seal provided at a connection portion between the structures 11 and 12 to protect the internal plane 13 and the displacement sensor 14, and 18 denotes a distance between the outer peripheral surfaces of the structures 11 and 12 and the wall surface of the well 2. This is an installation guide for holding and protecting the moving member.

【0013】固定ピン15,16は例えば油圧シリンダ
とスプリングを組み合わせた伸縮装置を備えていて、図
示しない圧力ラインを介して孔口の作業スペースから供
給される油圧力によって制御される。また変位センサ1
4は例えば差動トランス式の検出部を備えていて、その
検出出力は図示しないリード線によってCPUやメモ
リ、ディスプレイ等を備えた制御装置に送られ、必要に
応じて表示されると共に記録されて以後のデータ解析に
供される。なお、上記で説明した変位計測装置10は一
例に過ぎず、少なくとも2点間の相対的な3次元変位を
検出できる計測装置であれば他の形式の計測装置を使用
することができる。
The fixing pins 15 and 16 are provided with, for example, a telescopic device combining a hydraulic cylinder and a spring, and are controlled by hydraulic pressure supplied from a working space at a hole via a pressure line (not shown). Displacement sensor 1
4 is provided with, for example, a differential transformer type detection unit, and its detection output is sent to a control device having a CPU, a memory, a display, and the like via a lead wire (not shown), and displayed and recorded as necessary. It will be used for subsequent data analysis. Note that the displacement measuring device 10 described above is merely an example, and other types of measuring devices can be used as long as the measuring device can detect a relative three-dimensional displacement between at least two points.

【0014】以下、不連続面に作用する応力を検出する
ための第1の発明の実施の形態について説明する。この
発明の場合は、変位計測装置10を岩盤1に形成された
孔井2に挿入し、図1に示すように不連続面3より奥
(図の右側)の岩盤1に前部構造体11が位置し、不連
続面3の手前(図の左側)の岩盤1に後部構造体12が
位置するように配置して、固定ピン15,16を突出さ
せて孔井2に固定する。不連続面3を挟む両側の岩盤
1,1間には一般に応力が常時作用しているので、変位
計測装置10を上記のように配置して拘束状態にする
と、孔井2が直線状に穿孔されていてもすぐに前後の構
造体11,12間にはミクロンオーダーのずれが生じ、
このずれが岩盤1,1間の3次元変位として検出され
る。
Hereinafter, an embodiment of the first invention for detecting a stress acting on a discontinuous surface will be described. In the case of the present invention, the displacement measuring device 10 is inserted into the well 2 formed in the rock 1 and the front structure 11 is inserted into the rock 1 deeper than the discontinuous surface 3 (right side in the figure) as shown in FIG. Is positioned so that the rear structure 12 is located on the rock 1 in front of the discontinuous surface 3 (left side in the figure), and the fixing pins 15 and 16 are protruded and fixed to the well 2. Generally, stress always acts between the rocks 1 and 1 on both sides of the discontinuous surface 3. Therefore, when the displacement measuring device 10 is arranged as described above to be in the restrained state, the well 2 is perforated in a straight line. Even if it is performed, a shift on the order of microns occurs between the front and rear structures 11 and 12,
This shift is detected as a three-dimensional displacement between the rocks 1 and 1.

【0015】次に、例えば筒状の切削工具により鎖線で
示すように孔井2の内壁を削り取って内径を大きくする
コア穿孔、すなわちオーバーコアリングを孔口側から実
施し、不連続面3の手前の岩盤1に不連続面3に達する
オーバーコアリング部4を形成する。ちなみに孔井2の
内径dは例えば66mm、オーバーコアリング部4の内径
Dは例えば96mmである。このオーバーコアリングによ
って後部構造体12は固定ピン16による支えを失い、
岩盤1への拘束状態から解放されて岩盤1からの応力を
受けなくなるので、変位センサ14の出力は応力を受け
る前の初期値に戻る。従って、拘束状態から解放される
前後の計測値を比較することにより、不連続面3を挟む
両側の岩盤1,1間に作用していた応力を検出すること
ができるのである。なお、こうして得られたオーバーコ
アリング前後の変位の差は、不連続面3の変形特性と密
接に関連しており、不連続面3の滑り変形特性としての
変形係数によって解放に相当する応力と線形相関してい
る。
Next, as shown by a chain line, for example, the inner wall of the well 2 is shaved by a cylindrical cutting tool to increase the inner diameter, that is, core drilling is performed. An overcoring portion 4 reaching the discontinuous surface 3 is formed in the bedrock 1 in the foreground. Incidentally, the inner diameter d of the well 2 is, for example, 66 mm, and the inner diameter D of the overcoring portion 4 is, for example, 96 mm. Due to this over-coring, the rear structure 12 loses the support by the fixing pin 16,
Because the rock 1 is released from the restrained state and receives no stress from the rock 1, the output of the displacement sensor 14 returns to the initial value before receiving the stress. Therefore, by comparing the measured values before and after the release from the restrained state, it is possible to detect the stress acting between the rocks 1 on both sides of the discontinuous surface 3. The difference between the displacement before and after the over-coring obtained in this way is closely related to the deformation characteristic of the discontinuous surface 3, and the stress corresponding to the release by the deformation coefficient as the sliding deformation characteristic of the discontinuous surface 3. Linearly correlated.

【0016】また、図の左側からオーバーコアリング部
4が次第に延びて来て固定ピン16の部分にかかり、こ
れを通り過ぎて拘束状態が完全に解除されるまでは分オ
ーダーの時間を要し、この間は岩盤1からの応力を受け
ている状態から応力を全く受けなくなる状態まで計測値
が徐々に変化するので、この変化状況を連続的に記録し
て分析することにより、不連続面3に作用している応力
の状態をより細かく検出することが可能となる。
Further, the over-coring portion 4 gradually extends from the left side of the drawing and is applied to the portion of the fixing pin 16, and it takes a time on the order of minutes until the over-coring portion 4 is completely released after passing through the portion. During this time, the measured values gradually change from a state where the rock 1 receives the stress to a state where the stress is not received at all. Therefore, by continuously recording and analyzing the change, the effect on the discontinuous surface 3 is obtained. It is possible to detect the state of the applied stress more finely.

【0017】以上の図1による方法は特定の不連続面3
に関する計測であるが、同様な方法によって岩盤内部の
亀裂や断層等の不連続面が存在していない部分、あるい
は特定の不連続面の近傍における応力状態を検出するこ
ともできる。第2の発明はこの方法に関するものであ
る。
The above-described method according to FIG.
Although the measurement is related to the above, it is also possible to detect a stress state in a portion where a discontinuous surface does not exist, such as a crack or a fault inside the rock, or in the vicinity of a specific discontinuous surface by a similar method. The second invention relates to this method.

【0018】すなわち、図2に示すように岩盤1に形成
された孔井2に変位計測装置10を挿入し、固定ピン1
5,16を突出させて前部構造体11と後部構造体12
を孔井2に固定する。そして図1の場合と同様にオーバ
ーコアリングを行って、後部構造体12の岩盤1への拘
束状態を解除するのであり、これによって岩盤1の前部
構造体11が固定されている部分と、後部構造体12が
固定されている部分の間に作用している応力が検出され
る。また、オーバーコアリング部4が次第に延びて来て
固定ピン16の部分にかかり、これを通り過ぎて拘束状
態から完全に解放されるまでの計測値の変化状況から、
変位計測装置10が配置されている部分の岩盤1に作用
している応力の状態をより細かく検出することができ
る。
That is, as shown in FIG. 2, a displacement measuring device 10 is inserted into a well 2 formed in a rock 1
The front structure 11 and the back structure 12
Is fixed to the well 2. Then, the over-coring is performed in the same manner as in the case of FIG. 1 to release the restrained state of the rear structure 12 to the rock 1, whereby the portion where the front structure 11 of the rock 1 is fixed, The stress acting between the parts where the rear structure 12 is fixed is detected. In addition, from the state of change in the measured values until the over-coring portion 4 gradually extends and engages the portion of the fixing pin 16 and passes through this, and is completely released from the restrained state,
It is possible to more finely detect the state of the stress acting on the rock 1 at the portion where the displacement measuring device 10 is disposed.

【0019】更に、このような計測を変位計測装置10
を少しずつ前進させながら繰り返すことにより、孔井2
が形成されている部分における応力の分布状態を計測す
ることができる。またこの計測は、不連続面が全く存在
しない部分や不連続面の近傍だけでなく、変位計測装置
10を不連続面3まで前進させて第1の発明による計測
を行い、更にこの不連続面を通り過ぎてからも計測を行
うなど、孔井の穿孔場所やその方向を適宜選定すること
により、対象となる岩盤内部の応力状態をより詳しく検
出することができる。
Further, such measurement is performed by the displacement measuring device 10.
Is repeated while moving forward little by little.
It is possible to measure a stress distribution state in a portion where is formed. In addition, this measurement is performed not only at the portion where the discontinuous surface does not exist at all or near the discontinuous surface, but also by performing the measurement according to the first invention by advancing the displacement measuring device 10 to the discontinuous surface 3. By appropriately selecting the drilling location and the direction of the borehole, for example, by performing measurements even after passing through, the stress state inside the target rock can be detected in more detail.

【0020】こうして得られたデータは種々の分析に供
される。すなわち、例えば不連続面のせん断ベクトル変
位と開口変位あるいは閉塞変位を評価した値と、不連続
面の変形剛性特性等から解放分に相当する応力状態を評
価することができ、また不連続面が存在しない部分や不
連続面の近傍の岩盤における応力状態を評価した値を不
連続面に作用する応力状態と等価として評価することが
できる。また、岩盤開発における既存不連続面の破壊の
要因となる応力状態や、地震等の発生メカニズムに関連
した岩盤内の断層等の滑り破壊の要因となる歪エネルギ
ーや応力状態等を評価することができる。
The data thus obtained is subjected to various analyses. That is, for example, the stress state corresponding to the released portion can be evaluated from the value obtained by evaluating the shear vector displacement and the opening displacement or the closing displacement of the discontinuous surface, and the deformation rigidity characteristics of the discontinuous surface, and the like. The value obtained by evaluating the stress state in the nonexistent part or the rock near the discontinuous surface can be evaluated as being equivalent to the stress state acting on the discontinuous surface. In addition, it is possible to evaluate the stress state that causes the failure of the existing discontinuous surface in rock development, and the strain energy and stress state that cause the slip failure of a fault or the like in the rock related to the occurrence mechanism of earthquakes. it can.

【0021】従ってこれらの結果を活用することによ
り、例えば応力状態と亀裂や断層等が滑り破壊に至る降
伏応力との比較から前記断層等の破壊発生の危険度を評
価したり、岩盤内の亀裂等の破壊発生の危険度を評価し
たりすることが極めて容易となる。また、地殻変動の計
測データと関連する断層等の周辺に蓄積される歪エネル
ギーからこの断層等に作用する応力の経時的な上昇特性
を解析し、滑り破壊降伏応力を指標として地震等に関連
した滑り破壊の発生時期を場所を特定して予知すること
も可能となるのである。
Therefore, by utilizing these results, it is possible to evaluate the risk of failure of the fault or the like by comparing the stress state with the yield stress at which the crack or the fault or the like causes sliding failure, or to evaluate the risk of the occurrence of a crack in the rock. It becomes extremely easy to evaluate the risk of occurrence of destruction such as the above. In addition, by analyzing the crustal deformation data and the strain energy accumulated around the fault, etc., the time-dependent rise characteristics of the stress acting on this fault, etc., are analyzed, and the slip fracture yield stress is used as an index to determine the relation to earthquakes, etc. It is also possible to specify the location and predict the timing of the occurrence of slip failure.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、この発
明は、岩盤内の不連続面やその近傍、あるいは不連続面
が存在しない部分に変位計測装置を設置し、オーバーコ
アリングによってこの装置が拘束状態から解放される前
後の変位を計測し、前後の計測値の差からその部分に作
用する応力を検出するようにしたものである。
As is apparent from the above description, according to the present invention, a displacement measuring device is installed on a discontinuous surface in a rock mass or in the vicinity thereof, or a portion where no discontinuous surface exists, and this device is installed by over-coring. Is measured before and after release from the restrained state, and the stress acting on the portion is detected from the difference between the measured values before and after.

【0023】従って、従来の方法では困難であった岩盤
内の不連続面などを特定してその場所における応力を3
次元的にしかも高精度で検出することが可能となり、得
られたデータを活用することによって、岩盤内部におけ
る応力状態を適正に把握して例えば岩盤における不連続
面の崩落等の危険度を評価したり、地震等に関連した滑
り破壊の発生時期を予知したりすることが容易となる。
Therefore, a discontinuous surface or the like in a rock mass, which is difficult with the conventional method, is specified and the stress at that location is reduced by three.
Dimensional and high-accuracy detection is possible, and by utilizing the obtained data, the stress state inside the rock can be properly grasped to evaluate the risk of, for example, the collapse of discontinuous surfaces in the rock. In addition, it becomes easy to predict the time of occurrence of slip failure related to an earthquake or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明の実施状況の説明図である。FIG. 1 is an explanatory diagram of an implementation state of a first invention.

【図2】第2の発明の実施状況の説明図である。FIG. 2 is an explanatory diagram of an implementation state of a second invention.

【図3】この発明に使用する変位計測装置の一例を示す
概略断面図である。
FIG. 3 is a schematic sectional view showing an example of a displacement measuring device used in the present invention.

【符号の説明】[Explanation of symbols]

1 岩盤 2 孔井 3 不連続面 4 オーバーコアリング部 10 変位計測装置 11 前部構造体 12 後部構造体 13 平面 14 変位センサ 15,16 固定ピン Reference Signs List 1 rock 2 borehole 3 discontinuous surface 4 overcoring portion 10 displacement measuring device 11 front structure 12 rear structure 13 plane 14 displacement sensor 15, 16 fixing pin

───────────────────────────────────────────────────── フロントページの続き 審査官 福田 裕司 (56)参考文献 特開 平1−199130(JP,A) 特開 平9−26386(JP,A) 特開 平9−145849(JP,A) 特開 平5−180709(JP,A) 特開 平11−37866(JP,A) 特開 平8−327746(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01L 5/00 E02D 1/00 ────────────────────────────────────────────────── ─── Continuation of the front page Examiner Yuji Fukuda (56) References JP-A-1-199130 (JP, A) JP-A-9-26386 (JP, A) JP-A-9-145849 (JP, A) JP-A-5-180709 (JP, A) JP-A-11-37866 (JP, A) JP-A-8-327746 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01L5 / 00 E02D 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 岩盤内部に存在する亀裂や断層等の不連
続面に作用する応力状態を計測するための方法であっ
て、少なくとも2点間の相対的な3次元変位を計測でき
る構造を備えた変位計測装置を上記不連続面を横断して
岩盤に形成されている孔井内に挿入し、不連続面を挟む
両方の岩盤に対して拘束された状態で上記変位計測装置
を孔井内に設置した時に得られる変位の計測値と、孔井
の内壁をコア穿孔して岩盤に対する拘束状態から解放し
た時に得られる変位の計測値とを用いて、上記不連続面
に作用している応力を検出することを特徴とする岩盤内
部における応力の計測方法。
1. A method for measuring a stress state acting on a discontinuous surface such as a crack or a fault existing inside a rock, comprising a structure capable of measuring a relative three-dimensional displacement between at least two points. The displacement measuring device is inserted into the well formed in the rock across the discontinuous surface, and the displacement measuring device is installed in the well while being restrained by both rocks sandwiching the discontinuous surface. The stress acting on the discontinuous surface is detected by using the measured value of the displacement obtained when the drilling is performed and the measured value of the displacement obtained when the inner wall of the borehole is released from the restrained state against the rock by drilling the core of the borehole A method for measuring stress in a rock mass, characterized in that:
【請求項2】 亀裂や断層等の不連続面が存在していな
い岩盤内部に作用する応力状態を計測するための方法で
あって、少なくとも2点間の相対的な3次元変位を計測
できる構造を備えた変位計測装置を岩盤に形成されてい
る孔井内に挿入し、岩盤に対して拘束された状態で上記
変位計測装置を孔井内に設置した時に得られる変位の計
測値と、孔井の内壁をコア穿孔して岩盤に対する拘束状
態から解放した時に得られる変位の計測値とを用いて、
岩盤内部に作用している応力を検出することを特徴とす
る岩盤内部における応力の計測方法。
2. A method for measuring a stress state acting inside a rock mass having no discontinuous surface such as a crack or a fault, wherein the structure is capable of measuring a relative three-dimensional displacement between at least two points. A displacement measurement device equipped with a rock is inserted into a well formed in the rock, and the displacement measurement value obtained when the displacement measurement device is installed in the well while being restrained with respect to the rock, Using the measured value of the displacement obtained when the inner wall is cored and released from the constraint state against the rock,
A method for measuring stress inside a rock mass, comprising detecting stress acting inside the rock mass.
JP12290398A 1998-04-16 1998-04-16 Measurement method of stress inside rock Expired - Fee Related JP2942789B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12290398A JP2942789B1 (en) 1998-04-16 1998-04-16 Measurement method of stress inside rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12290398A JP2942789B1 (en) 1998-04-16 1998-04-16 Measurement method of stress inside rock

Publications (2)

Publication Number Publication Date
JP2942789B1 true JP2942789B1 (en) 1999-08-30
JPH11304601A JPH11304601A (en) 1999-11-05

Family

ID=14847473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12290398A Expired - Fee Related JP2942789B1 (en) 1998-04-16 1998-04-16 Measurement method of stress inside rock

Country Status (1)

Country Link
JP (1) JP2942789B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595122B2 (en) * 2005-10-20 2010-12-08 独立行政法人産業技術総合研究所 Separation casing installation method and installation apparatus
JP5356894B2 (en) * 2009-04-06 2013-12-04 ポリプラスチックス株式会社 Residual stress calculation method and residual stress distribution derivation method

Also Published As

Publication number Publication date
JPH11304601A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
Ljunggren et al. An overview of rock stress measurement methods
Fairhurst Methods of determining in-situ rock stresses at great depths
CN110486007B (en) In-situ testing device and method for mechanical parameters of coal mine surrounding rock while drilling
US7006918B2 (en) Method for stress and stability related measurements in boreholes
Gao et al. Estimation of effect of voids on frequency response of mountain tunnel lining based on microtremor method
US6415648B1 (en) Method for measuring reservoir permeability using slow compressional waves
BR112015019552B1 (en) METHOD OF USE OF WELL HOLE ACOUSTIC SYSTEM AND PASSIVE ACOUSTIC SYSTEM
Zhang et al. Stress, porosity, and failure-dependent compressional and shear velocity ratio and its application to wellbore stability
CN105004662A (en) Method for testing contact rigidity of rock discontinuity structural plane, and apparatus thereof
Maxwell et al. A micro-velocity tool to assess the excavation damaged zone
Jiang et al. Analytical investigation for stress measurement with the rheological stress recovery method in deep soft rock
Liu et al. Identification of rock discontinuities by coda wave analysis while borehole drilling in deep buried tunnels
JP2942789B1 (en) Measurement method of stress inside rock
JP4818010B2 (en) Early prediction method of earthquake magnitude and early prediction program of earthquake magnitude based on building deformation during earthquake
US4510799A (en) Method of measuring material properties of rock in the wall of a borehole
JP3243499B2 (en) Earthquake prediction method by monitoring fault displacement and volume displacement
Hofmann et al. An attempt to constrain the stress and strength of a dyke that accommodated a ML2. 1 seismic event
US20130188452A1 (en) Assessing stress strain and fluid pressure in strata surrounding a borehole based on borehole casing resonance
Ambrosini et al. Long Piles Integrity Trough Impact Echo Technique.
JP3263737B2 (en) Fault vibration displacement measuring device
Tolooiyan et al. Maximising the efficiency of Menard pressuremeter testing in cohesive materials by a cookie-cutter drilling technique
EP1126290B1 (en) Improvements in or relating to seismic wave measuring devices
JP2004020432A (en) Borehole jack type one-plane crushing stress measuring probe and apparatus using the same
Hendi et al. Development of a Non-Destructive Stress Measurement Technique with Applications in Deep Mining Using Distributed Sensing
US20240201032A1 (en) Optical fiber equipped geomaterial test plug standards

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees