JP2941811B2 - Superconducting transistor - Google Patents
Superconducting transistorInfo
- Publication number
- JP2941811B2 JP2941811B2 JP63105131A JP10513188A JP2941811B2 JP 2941811 B2 JP2941811 B2 JP 2941811B2 JP 63105131 A JP63105131 A JP 63105131A JP 10513188 A JP10513188 A JP 10513188A JP 2941811 B2 JP2941811 B2 JP 2941811B2
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- superconducting
- oxide
- gate
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超伝導トランジスタ特に注入型超伝導トラ
ンジスタに係わる。Description: TECHNICAL FIELD The present invention relates to a superconducting transistor, in particular, to an injection superconducting transistor.
本発明は、酸化物系超伝導チャンネルを構成する超伝
導体に接して絶縁薄膜を介してゲート電極が設けられた
ゲート部を配し、このゲート部への印加電圧によってゲ
ート電極から絶縁薄膜を通ずるキャリアのトンネル注入
を行って超伝導チャンネルのキャリア濃度を変調し、こ
れによってその転移温度Tcを変化させて超伝導及び常伝
導の各状態間の切換えによる変調を行うことができるよ
うにする。According to the present invention, a gate portion provided with a gate electrode in contact with a superconductor constituting an oxide-based superconducting channel is provided via an insulating thin film, and the insulating thin film is separated from the gate electrode by a voltage applied to the gate portion. The carrier concentration of the superconducting channel is modulated by tunnel injection of passing carriers, whereby the transition temperature Tc is changed so that modulation by switching between the superconducting and normal states can be performed.
本来、超伝導材料を用いた電子能動素子には、ジョセ
フソン効果を用いた2端子素子及び電子対の近接効果を
利用した各種電界効果型超伝導トランジスタ、更に超伝
導体をベースに応用したバイポーラトランジスタ素子な
どの提案がある。このうち、半導体への近接効果を利用
した電界効果型トランジスタは回路構成上の利点も多く
期待が大きい。この場合の素子構成は、超伝導体をソー
ス及びドレインとし、ゲートに相当する部分を半導体に
して、そこへの超伝導体からの電子対の浸み出し率を第
3電極(ゲート電極)によって制御するものである。し
たがって、この場合、ソース及びドレイン間の間隔は超
伝導体からの電子対の波動関数の浸み出しの長さ程度に
する必要があり、極めて微細な構造となる。その目安の
1つはコヒーレント長である。ところがコヒーレント長
と超伝導体の超伝導転移温度Tcとは逆相関にあり、高温
超伝導体程、コヒーレント長は短くなるため、超微細加
工を必要としてくるという課題がある。Originally, electronic active devices using superconducting materials include two-terminal devices using the Josephson effect, various field-effect superconducting transistors using the proximity effect of electron pairs, and bipolar devices based on superconductors. There are proposals such as transistor elements. Among them, a field effect transistor utilizing a proximity effect to a semiconductor has many advantages in circuit configuration and is expected to be large. In this case, the element configuration is such that the superconductor is a source and a drain, a portion corresponding to the gate is a semiconductor, and the leaching rate of electron pairs from the superconductor into the semiconductor is determined by a third electrode (gate electrode). To control. Therefore, in this case, the interval between the source and the drain needs to be about the length of the leaching of the wave function of the electron pair from the superconductor, resulting in an extremely fine structure. One measure is the coherent length. However, there is an inverse correlation between the coherent length and the superconducting transition temperature Tc of the superconductor, and the higher the temperature of the superconductor, the shorter the coherent length.
一方、近年、高温超伝導体の開発、特性研究が急速に
進められている。例えばジャパニーズ ジャーナル オ
ブ アプライド フィジックス(Japanese Journal of
Applied Physics)vol.27,No.1,1月,1988には、超伝導
体Nd1+KBa2-KCu3O7−δのキャリア(ホール)〔Cu−
0〕+の濃度変化と超伝導転移温度Tcの変化との関係に
ついての報告がなされている。On the other hand, in recent years, development of high-temperature superconductors and research on characteristics have been rapidly advanced. For example, Japanese Journal of Applied Physics
Applied Physics) vol.27, No.1, 1 January, the 1988, the carrier of the superconductor Nd 1 + K Ba 2-K Cu 3 O 7-δ ( hole) [Cu-
0] + has been reported on the relationship between the change in the concentration of + and the change in the superconducting transition temperature Tc.
本発明は、上述した課題の解決をはかり、高温超伝導
体によって構成することのできる超伝導トランジスタを
提供する。The present invention provides a superconducting transistor which can be constituted by a high-temperature superconductor to solve the above-mentioned problems.
本発明は、第1図に示すように、例えばCuOを含んだ
層状ペロブスカイト構造の酸化物系超伝導物質の例えば
Nd1+KBa2-KCu3O7−δより成る超伝導体(1)と、この
超伝導体(1)にキャリアのトンネルを生じ得る程度に
薄い膜厚の絶縁薄膜(2)を介して常伝導体の例えば金
属、または超伝導体より成るゲート電極(3)を配して
ゲート部(4)を構成する。そして、このゲート部
(4)の両側に、第1及び第2の電極部(5)及び
(6)すなわちソース及びドレイン電極を設ける。そし
て、ゲート電極(3)への印加電圧によって上記超伝導
体のゲート部(4)下に絶縁薄膜(2)を通じてキャリ
アの注入を行って第1及び第2の電極部間(5)及び
(6)のチャンネル部のキャリア濃度を変調して超伝導
の転移温度を変化させてこのチャンネル部の超伝導及び
常伝導の各状態間の切換えを行う。As shown in FIG. 1, the present invention relates to an oxide-based superconducting material having a layered perovskite structure containing CuO, for example.
Nd 1 + K Ba 2-K Cu 3 O 7-δ than consisting superconductor (1), a thin film thickness of the insulating film (2) to a degree that may cause tunnel carrier to the superconductor (1) A gate portion (4) is formed by disposing a gate electrode (3) made of a normal conductor, for example, a metal or a superconductor. Then, first and second electrode portions (5) and (6), that is, source and drain electrodes are provided on both sides of the gate portion (4). Then, carriers are injected through the insulating thin film (2) under the gate portion (4) of the superconductor by the voltage applied to the gate electrode (3), and between the first and second electrode portions (5) and ( 6) The carrier concentration in the channel portion is modulated to change the superconducting transition temperature, thereby switching between the superconducting state and the normal conducting state of the channel portion.
上述の構成において、ゲート電極(3)に所要の電圧
を印加するとゲート電極(3)からキャリア例えば電子
が絶縁薄膜(2)を通じてトンネルゲート部(4)下の
超伝導体(1)にキャリアのトンネル注入がなされる。
これよって超伝導体(1)のキャリア濃度が変調され
る。すなわち、例えば超伝導体(1)が上述のNd1+KBa
2-KCu307−δであるとき、〔Cu3O7〕+すなわちホール
の濃度が減少することになり、超伝導度の転移温度Tcを
低下させる。したがって例えば設定された周囲温度Ts下
でチャンネル部の比抵抗特性が第2図中曲線(21)に示
すように温度Tsより高い転移温度Tcoを示す超伝導状態
であるとき、キャリア濃度の変化によって第2図曲線
(22)に示すように転移温度TcのTc1への低下によって
常伝導状態に切換えられ、第1及び第2の電極部(ソー
ス及びドレイン)(5)及び(6)間を例えばオフ状態
に切換えることができる。In the above configuration, when a required voltage is applied to the gate electrode (3), carriers such as electrons are transferred from the gate electrode (3) to the superconductor (1) below the tunnel gate portion (4) through the insulating thin film (2). Tunnel injection is performed.
This modulates the carrier concentration of the superconductor (1). That is, for example, the superconductor (1) is made of Nd 1 + K Ba
When a 2-K Cu 3 0 7- δ, [Cu 3 O 7] + That will be the concentration of holes decreases, lowering the transition temperature Tc of super conductivity. Therefore, for example, in a superconducting state in which the specific resistance characteristic of the channel portion shows a transition temperature Tco higher than the temperature Ts as shown by a curve (21) in FIG. It is switched to the normal state by a decrease in the Tc 1 transition temperature Tc as shown in FIG. 2 curve (22), first and second electrode portions between (source and drain) (5) and (6) For example, it can be switched to the off state.
第1図に示すように、例えばMgO,SrTiO3等の絶縁基板
(7)上に、1000Å以下の厚さの超伝導体(1)を薄膜
状にスパッタリング、或いは原料をミスト化して化学的
気相成長するいわゆるMT−CVD法等によって形成する。
この超伝導体(1)は、例えばCuOを含んだ層状ペロブ
スカイト構造の酸化物系超伝導体の例えば、Nd1+KBa2-K
Cu3O7−δ、或いは例えばNbの一部をYで置換したも
の、Baの一部をSrで置換したもの、Oの一部をFもしく
はSで置換したもの等によって構成できる。そして、こ
の超伝導体のキャリア濃度は、この濃度と超伝導転移温
度Tcとが強い相関関係を示す、1022cm-3以下の例えば10
21cm-3台とする。As shown in FIG. 1, a superconductor (1) having a thickness of 1000 mm or less is sputtered into a thin film on an insulating substrate (7) of, for example, MgO, SrTiO 3 or the like, or a raw material is mist-formed to form a chemical vapor. It is formed by a so-called MT-CVD method or the like that grows in phase.
This superconductor (1) is, for example, an oxide-based superconductor having a layered perovskite structure containing CuO, for example, Nd 1 + K Ba 2-K
Cu 3 O 7-δ or, for example, one in which Nb is partially substituted with Y, one in which Ba is partially substituted with Sr, one in which O is partially substituted with F or S, or the like can be used. The carrier concentration of this superconductor shows a strong correlation between this concentration and the superconducting transition temperature Tc, for example, 10 22 cm -3 or less.
21 cm -3 units.
そして、この超伝導体(1)上に例えばSiO2を電荷の
トンネル注入を生ぜしめ得る程度に薄い厚さの500Å以
下例えば100Åの厚さに周知の技術によって被着し、こ
れの上にゲート電極(3)を被着してゲート部(4)を
構成する。そして、超伝導体(1)のゲート部(4)下
をチャンネル部(8)としてこれを挟んでその両側に例
えばAg電極を被着して成るソース及びドレインとなる第
1及び第2の電極(5)及び(6)を被着する。Then, for example, SiO 2 is deposited on the superconductor (1) by a known technique to a thickness of 500 mm or less, for example, 100 mm, which is thin enough to cause tunnel injection of electric charges, and a gate is formed thereon. The gate (4) is formed by applying the electrode (3). The first and second electrodes serving as a source and a drain are formed by depositing, for example, an Ag electrode on both sides of the channel part (8) under the gate part (4) of the superconductor (1). (5) and (6) are applied.
上述したように本発明によれば、ゲート電極(3)へ
の印加電圧によって、チャンネル部への電荷の注入を行
ってチャンネル部のキャリア濃度を変調させて所定の温
度Ts下で、チャンネル部の超伝導転移温度を温度Tsより
高い温度Tcoと低い温度Tc1間に移行させるようにしたの
で、伝導度の顕著な変調を行うことができ、また、簡単
な構造で、またコヒーレント長オーダの微細加工を必要
としないことから工業的に大きな利益がある。As described above, according to the present invention, the charge is injected into the channel portion by the voltage applied to the gate electrode (3) to modulate the carrier concentration in the channel portion. since so as to shift between the superconducting transition temperature Ts higher temperatures Tco and low temperature Tc 1, and can perform remarkable modulation of conductivity, also, with a simple structure, and the coherence length order fine There is great industrial benefit because no processing is required.
第1図は本発明によるトランジスタの一例の略線的断面
図、第2図は比抵抗の温度特性曲線図である。 (1)は超伝導体、(2)は絶縁薄膜(3)はゲート電
極、(5)及び(6)は第1及び第2の電極部である。FIG. 1 is a schematic cross-sectional view of an example of a transistor according to the present invention, and FIG. 2 is a temperature characteristic curve diagram of specific resistance. (1) is a superconductor, (2) is an insulating thin film, (3) is a gate electrode, and (5) and (6) are first and second electrode portions.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮嶋 孝夫 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特開 昭62−88381(JP,A) 特開 平1−202874(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Miyajima 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (56) References JP-A-62-88381 (JP, A) 1-2202874 (JP, A)
Claims (1)
けられて成るゲート部と、 上記酸化物系超伝導体の、上記ゲート部を挟んでその両
側に設けられた第1及び第2の電極部とを有し、 ゲート電極への印加電圧によって上記酸化物系超伝導体
の上記ゲート部下に上記絶縁薄膜を通じでキャリアの注
入を行って上記第1及び第2の電極部間のチャンネル部
のキャリア濃度を変調して超伝導体の転移温度を変化さ
せて該チャンネル部の超伝導及び常伝導の各状態間の切
換えを行うことを特徴とする超伝導トランジスタ。An oxide-based superconductor, a gate portion including a gate electrode provided on the oxide-based superconductor via an insulating thin film, and a gate portion of the oxide-based superconductor. And first and second electrode portions provided on both sides of the oxide superconductor. Carrier is injected under the gate portion of the oxide-based superconductor through the insulating thin film by a voltage applied to a gate electrode. Modulating the carrier concentration of the channel portion between the first and second electrode portions to change the transition temperature of the superconductor to switch between the superconducting and normal conduction states of the channel portion. Superconducting transistor characterized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63105131A JP2941811B2 (en) | 1988-04-27 | 1988-04-27 | Superconducting transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63105131A JP2941811B2 (en) | 1988-04-27 | 1988-04-27 | Superconducting transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01276680A JPH01276680A (en) | 1989-11-07 |
JP2941811B2 true JP2941811B2 (en) | 1999-08-30 |
Family
ID=14399209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63105131A Expired - Fee Related JP2941811B2 (en) | 1988-04-27 | 1988-04-27 | Superconducting transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2941811B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01290271A (en) * | 1988-05-18 | 1989-11-22 | Seiko Epson Corp | Josephson transistor |
JP2515947B2 (en) * | 1992-05-29 | 1996-07-10 | 株式会社日立製作所 | Superconducting element |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6288381A (en) * | 1985-10-11 | 1987-04-22 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | Superconducting switching apparatus |
-
1988
- 1988-04-27 JP JP63105131A patent/JP2941811B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01276680A (en) | 1989-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0834321B2 (en) | Method of manufacturing superconducting field effect transistor having inverted MISFET structure | |
US5179426A (en) | Josephson device | |
JP2941811B2 (en) | Superconducting transistor | |
EP0577074B1 (en) | Field-effect type super-conducting device | |
JP2583922B2 (en) | Superconducting switching element | |
JP2583923B2 (en) | Superconducting switching element | |
JPH02194667A (en) | Superconducting transistor and its manufacturing method | |
JP2641978B2 (en) | Superconducting element and fabrication method | |
JP2583924B2 (en) | Superconducting switching element | |
JPH0237786A (en) | superconducting transistor | |
JP2641973B2 (en) | Superconducting element and manufacturing method thereof | |
JP2599500B2 (en) | Superconducting element and fabrication method | |
JP3221037B2 (en) | Current modulator | |
JP3212141B2 (en) | Superconducting element | |
JPH07131081A (en) | Superconducting field effect device and method of manufacturing the same | |
JP2597745B2 (en) | Superconducting element and fabrication method | |
JP2641971B2 (en) | Superconducting element and fabrication method | |
JP2647251B2 (en) | Superconducting element and fabrication method | |
JP2691065B2 (en) | Superconducting element and fabrication method | |
JP2641970B2 (en) | Superconducting element and fabrication method | |
JP2738144B2 (en) | Superconducting element and fabrication method | |
RU2029415C1 (en) | Field-effect transistor | |
JP3348249B2 (en) | Dielectric-based transistor | |
JP2641966B2 (en) | Superconducting element and fabrication method | |
JP3126410B2 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |