[go: up one dir, main page]

JP2941449B2 - Joint structure of ceramic body and metal member - Google Patents

Joint structure of ceramic body and metal member

Info

Publication number
JP2941449B2
JP2941449B2 JP3029480A JP2948091A JP2941449B2 JP 2941449 B2 JP2941449 B2 JP 2941449B2 JP 3029480 A JP3029480 A JP 3029480A JP 2948091 A JP2948091 A JP 2948091A JP 2941449 B2 JP2941449 B2 JP 2941449B2
Authority
JP
Japan
Prior art keywords
ceramic body
metal member
joining
less
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3029480A
Other languages
Japanese (ja)
Other versions
JPH04243983A (en
Inventor
本 伸 福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3029480A priority Critical patent/JP2941449B2/en
Publication of JPH04243983A publication Critical patent/JPH04243983A/en
Application granted granted Critical
Publication of JP2941449B2 publication Critical patent/JP2941449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はセラミック体と金属部材
の接合構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joint structure between a ceramic body and a metal member.

【0002】[0002]

【従来の技術】従来、セラミック体と金属部材の接合は
生もしくは焼結セラミック体表面に、タングステン(W)
、モリブデンーマンガン(Mo-Mn) 等の高融点金属粉末
に有機溶剤、溶媒を添加混合し、ペースト状となしたも
のをスクリーン印刷法により塗布し、これを還元雰囲気
中で焼成して高融点金属粉末とセラミック体とを焼結一
体化させメタライズ金属層を被着させるとともに該メタ
ライズ金属層上に金属部材をロウ材を介しロウ付けする
ことよって行われている。
2. Description of the Related Art Conventionally, the joining of a ceramic body and a metal member has been performed by using tungsten (W)
, Molybdenum-manganese (Mo-Mn), and other high-melting metal powders are mixed with an organic solvent and a solvent, and the mixture is paste-coated by screen printing. This is performed by sintering and integrating a metal powder and a ceramic body, depositing a metallized metal layer, and brazing a metal member on the metallized metal layer via a brazing material.

【0003】しかしながら、この従来のセラミック体と
金属部材の接合はセラミック体表面に予めメタライズ金
属層を被着させておかなければならず、メタライズ金属
層を被着するための複雑な工程が必要で、最終製品を高
価とする欠点を有していた。
[0003] However, this conventional joining of a ceramic body and a metal member requires a metallized metal layer to be applied to the surface of the ceramic body in advance, and requires a complicated process for applying the metallized metal layer. However, there is a disadvantage that the final product is expensive.

【0004】また前記タングステン、モリブデンーマン
ガンを使用したメタライズ金属層は酸化アルミニウム(A
l 2 O 3 ) に代表される酸化物系セラミック体にしか被
着せず、炭化珪素(SiC) や窒化珪素(Si 3 N 4 ) 、窒化
アルミニウム(AlN)に代表される炭化物系、窒化物系セ
ラミック体には被着しないことからセラミック体と金属
部材の接合において、セラミック体側の材質に大きな制
約を受けるという欠点も有していた。
The metallized metal layer using tungsten and molybdenum-manganese is made of aluminum oxide (A
l 2 O 3 ), which can be applied only to oxide ceramics such as silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and carbides and nitrides such as aluminum nitride (AlN) Since it does not adhere to the ceramic body, there is also a disadvantage that the material of the ceramic body side is greatly restricted in joining the ceramic body and the metal member.

【0005】そこで上記欠点を解消するためにセラミッ
ク体と金属部材との間にチタン (Ti) やジルコニウム(Z
r)等の活性の強い金属を介在させ、金属部材とチタン等
とを反応させて合金を形成するとともに該合金をセラミ
ック体中に拡散させることによってセラミック体と金属
部材とを接合させる方法、即ち、活性金属化法による接
合が提案されている。
[0005] Therefore, in order to solve the above-mentioned drawback, titanium (Ti) or zirconium (Z) is placed between the ceramic body and the metal member.
r) a method of joining a ceramic body and a metal member by interposing a metal having a strong activity such as r), reacting the metal member with titanium or the like to form an alloy, and diffusing the alloy into the ceramic body. Also, joining by an active metallization method has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、活性金
属化法によってセラミック体と金属部材とを接合させた
場合、金属部材とチタンやジルコニウム等との合金の熱
膨張係数が14〜18×10-6/ ℃であるのに対し、セラミッ
ク体の熱膨張係数がアルミナの時、7.1 ×10-6/ ℃、炭
化珪素の時、4.0 ×10-6/ ℃ 、窒化珪素の時、3.2 ×
10-6/ ℃、窒化アルミニウムの時、4.6 ×10-6/ ℃であ
り、大きく相違することからセラミック体と金属部材の
接合部に−40乃至125 ℃の熱が繰り返し印加されると金
属部材とチタン、ジルコニウム等とから成る合金とセラ
ミック体との界面に大きな熱ストレスが発生し、該熱ス
トレスによって金属部材がセラミック体より剥離してし
まうという欠点を有していた。
However, when the ceramic body and the metal member are joined by the active metallization method, the coefficient of thermal expansion of the alloy of the metal member and titanium or zirconium is 14 to 18 × 10 -6. / ° C, whereas the coefficient of thermal expansion of the ceramic body is 7.1 × 10 -6 / ° C for alumina, 4.0 × 10 -6 / ° C for silicon carbide, and 3.2 × for silicon nitride.
10 -6 / ℃, 4.6 × 10 -6 / ℃ in the case of aluminum nitride, which is greatly different from the metal member when heat of -40 to 125 ℃ is repeatedly applied to the joint between the ceramic body and the metal member A large thermal stress is generated at the interface between the ceramic body and the alloy made of titanium, zirconium, or the like, and the metal member is separated from the ceramic body due to the thermal stress.

【0007】[0007]

【課題を解決するための手段】本発明のセラミック体と
金属部材の接合構造はセラミック体に金属部材を、粒径
10μm 以下の銅粉末50乃至80重量%と、粒径50μm 以下
のチタン粉末10乃至30重量%と、粒径5 μm 以下の酸化
アルミニウム、窒化アルミニウム、モリブデンの少なく
とも1 種10乃至30重量%とから成る接合部材を介して接
合させたことを特徴とするものである。
According to the present invention, there is provided a joint structure between a ceramic body and a metal member.
50 to 80% by weight of copper powder having a particle size of 10 μm or less, 10 to 30% by weight of titanium powder having a particle size of 50 μm or less, and 10 to 30% by weight of at least one of aluminum oxide, aluminum nitride and molybdenum having a particle size of 5 μm or less. It is characterized by being joined via the joining member thus formed.

【0008】本発明のセラミック体と金属部材の接合構
造においては、セラミック体と金属部材とを接合させる
接合部材の銅(Cu)の量が80.0重量%を越え、チタン(Ti)
の量が10.0重量%未満であると接合部材がセラミック体
と反応せず、セラミック体に金属部材を接合部材を介し
て強固に接合させることができず、また銅の量が50.0重
量%未満、チタンの量が30.0重量%を越えると接合部材
とセラミック体との反応が大きく進んでセラミック体の
機械的強度が劣化してしまう。従って、接合部材を形成
する銅はその量が50.0乃至80.0重量%の範囲、またチタ
ンは10.0乃至30.0重量%の範囲に各々特定される。
In the joint structure of a ceramic body and a metal member according to the present invention, the amount of copper (Cu) in the joint member for joining the ceramic body and the metal member exceeds 80.0% by weight, and titanium (Ti) is used.
If the amount is less than 10.0% by weight, the joining member does not react with the ceramic body, the metal member cannot be firmly joined to the ceramic body via the joining member, and the amount of copper is less than 50.0% by weight, If the amount of titanium exceeds 30.0% by weight, the reaction between the joining member and the ceramic body greatly proceeds, and the mechanical strength of the ceramic body deteriorates. Therefore, the amount of copper forming the joining member is specified in the range of 50.0 to 80.0% by weight, and the amount of titanium is specified in the range of 10.0 to 30.0% by weight.

【0009】また接合部材に含有される酸化アルミニウ
ム、窒化アルミニウム、モリブデンの少なくとも1 種は
接合部材の熱膨張係数をセラミック体に合わす作用を為
し、その量が10.0重量%未満であれば接合部材とセラミ
ック体の熱膨張係数が大きく相違し、セラミック体に金
属部材を接合部材を介して接合させた後、−40乃至125
℃の熱が繰り返し印加されればセラミック体と接合部材
の間に熱ストレスが発生して金属部材がセラミック体よ
り剥離してしまう。また酸化アルミニウム等の量が30.0
重量%を越えると該酸化アルミニウム等が接合部材とセ
ラミック体との反応を妨げ、セラミック体に金属部材を
強固に接合させることができなくなる。従って、酸化ア
ルミニウム、窒化アルミニウム、モリブデンの少なくと
も1 種はその量が10.0乃至30.0重量%の範囲に特定され
る。
In addition, at least one of aluminum oxide, aluminum nitride, and molybdenum contained in the joining member has a function of adjusting the thermal expansion coefficient of the joining member to the ceramic body. The coefficient of thermal expansion of the ceramic body is significantly different from that of the ceramic body.After joining the metal member to the ceramic body via the joining member, -40 to 125
When heat of ° C. is repeatedly applied, thermal stress is generated between the ceramic body and the joining member, and the metal member is separated from the ceramic body. The amount of aluminum oxide etc. is 30.0
If the amount exceeds the weight percentage, the aluminum oxide or the like hinders the reaction between the joining member and the ceramic body, and the metal member cannot be firmly joined to the ceramic body. Therefore, the amount of at least one of aluminum oxide, aluminum nitride, and molybdenum is specified in the range of 10.0 to 30.0% by weight.

【0010】更に、本発明の接合部材を構成する銅、チ
タン及び酸化アルミニウム、窒化アルミニウム、モリブ
デンの少なくとも1 種はその各々の粒径が10.0μm 、5
0.0μm 、5.0 μm を越えると各粒子間の接触反応が悪
くなってセラミック体と金属部材の接合強度が大きく低
下してしまう。従って、銅は10.0μm 以下、特に望まし
くは 3.0μm 以下に、チタンは 50.0 μm 以下、特に望
ましくは20.0μm 以下に、酸化アルミニウム、窒化アル
ミニウム、モリブデンの少なくとも1 種は 5.0μm 以
下、特に望ましくは2.0 μm 以下にしておく必要があ
る。
Further, at least one of copper, titanium, aluminum oxide, aluminum nitride, and molybdenum constituting the joining member of the present invention has a particle diameter of 10.0 μm,
If it exceeds 0.0 μm or 5.0 μm, the contact reaction between the particles deteriorates, and the bonding strength between the ceramic body and the metal member is greatly reduced. Therefore, copper is 10.0 μm or less, particularly preferably 3.0 μm or less, titanium is 50.0 μm or less, particularly preferably 20.0 μm or less, and at least one of aluminum oxide, aluminum nitride and molybdenum is 5.0 μm or less, particularly preferably 2.0 μm or less. It must be kept below μm.

【0011】尚、前記チタンは水素と反応させて水素化
チタンの形で接合部材に含有させておいてもよい。
[0011] The titanium may be reacted with hydrogen and contained in the joining member in the form of titanium hydride.

【0012】[0012]

【実施例】次ぎに本発明を以下に述べる実施例に基づき
説明する。
Next, the present invention will be described with reference to the following embodiments.

【0013】まず粒径10.0μm 以下の銅粉末(Cu)、粒径
50.0μm 以下のチタン粉末(Ti)及び粒径5.0 μm 以下の
酸化アルミニウム粉末(Al 2 0 3 ) 、 窒化アルミニウ
ム粉末(AlN) 、モリブデン粉末(Mo)の一種を表1乃至表
3に示す値となるように秤量し、これに有機溶媒として
のテルピネオールとバインダーとしてのエチルセルロー
スを添加混合して接合部材用ペースト試料を得、次ぎに
これをセラミック体(酸化アルミニウム質焼結体:Al 2
0 3、炭化珪素質焼結体:SiC、窒化珪素質焼結体:Si 3
N 4 、窒化アルミニウム質焼結体:AlN)表面にスクリー
ン印刷法により40乃至100 μm 厚みに印刷塗布するとと
もにその上部に金属部材としての銅(Cu)を載置させ、し
かる後、これを真空度10-3Torr以下の真空炉中で900 乃
至1080℃の温度で焼成し、セラミック体に接合部材を間
に介して金属部材を接合させる。
First, copper powder (Cu) having a particle size of 10.0 μm or less,
Table 1 to Table 3 show the types of titanium powder (Ti) of 50.0 μm or less, aluminum oxide powder (Al 2 O 3 ), aluminum nitride powder (AlN), and molybdenum powder (Mo) with a particle size of 5.0 μm or less. Then, terpineol as an organic solvent and ethylcellulose as a binder were added thereto and mixed to obtain a paste sample for a joining member, which was then baked into a ceramic body (aluminum oxide sintered body: Al 2
0 3 , silicon carbide based sintered body: SiC, silicon nitride based sintered body: Si 3
N 4 , aluminum nitride sintered body: AlN) is screen-printed to a thickness of 40 to 100 μm by screen printing, and copper (Cu) as a metal member is placed on top of it. It is fired at a temperature of 900 to 1080 ° C. in a vacuum furnace at a temperature of 10 −3 Torr or less, and a metal member is joined to the ceramic body via a joining member.

【0014】尚、セラミック体に金属部材を接合させた
サンプルは各々20個ずつ準備した。
Incidentally, 20 samples each prepared by joining a metal member to a ceramic body were prepared.

【0015】また試料番号30,31 は本発明と比較するた
めの比較試料であり、セラミック体と金属部材の間にチ
タンもしくはジルコニウムを100μm の厚みに介在させ
て接合したものである。
Sample Nos. 30 and 31 are comparative samples for comparison with the present invention, in which titanium or zirconium is interposed between the ceramic body and the metal member so as to have a thickness of 100 μm.

【0016】次ぎに前記セラミック体に金属部材を接合
させたものに対し金属部材を接合面に垂直方向に引っ張
ることによってセラミック体と金属部材の接合強度を調
べ、その平均値を初期の接合強度として評価した。
Next, the joining strength between the ceramic body and the metal member is examined by pulling the metal member in a direction perpendicular to the joining surface with respect to the ceramic member joined to the metal member, and the average value is used as the initial joining strength. evaluated.

【0017】また同時に前記各々のサンプルに−40乃至
125 ℃の熱を30、50、60サイクル印加するとともに金属
部材を1Kg/mm2 の力で引っ張り、金属部材がセラミック
体から剥離したものの数を調べるとともに剥離したもの
の個数から耐熱ストレスの評価をした。
At the same time, each of the samples is -40 to
Pulling with a force of 1Kg / mm 2 the metal member as well as 30, 50, 60 cycles applying a 125 ° C. heat, the metal member was evaluated heat stress from the number of those stripped with examining the number of those separated from the ceramic body .

【0018】上記の結果を表1乃至表3に示す。The above results are shown in Tables 1 to 3.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】次ぎに銅粉末60.0重量%、チタン粉末20.0
重量%及び酸化アルミニウム粉末、窒化アルミニウム粉
末、モリブデン粉末の一種20.0重量%をその各々の粒径
を表5乃至表8に示す値として混合し、上述の方法と同
様してセラミック体に金属部材を接合させ、しかる後、
金属部材を接合面に対し垂直方向に引っ張り金属部材が
セラミック体より剥がれる際の引っ張り強度を調べ、そ
の値をセラミック体と金属部材の接合強度として評価し
た。
Next, copper powder 60.0% by weight, titanium powder 20.0%
% Of aluminum oxide powder, aluminum nitride powder, and molybdenum powder, and 20.0% by weight of each of the powders were mixed with the respective particle diameters as shown in Tables 5 to 8, and a metal member was formed on the ceramic body in the same manner as described above. After joining,
The metal member was pulled in a direction perpendicular to the joining surface, and the tensile strength when the metal member was peeled from the ceramic body was examined, and the value was evaluated as the joining strength between the ceramic body and the metal member.

【0023】上記の結果を表4乃至表6に示す。The above results are shown in Tables 4 to 6.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【表6】 [Table 6]

【0027】[0027]

【発明の効果】以上、実施例から判るように従来の活性
金属化法によりセラミック体と金属部材とを接合させた
ものは−40乃至125 ℃の熱が30回 (サイクル) 印加され
ると熱ストレスによって金属部材がセラミック体より殆
ど剥離してしまうのに対し、本発明品は接合部材の熱膨
張係数がセラミック体の熱膨張係数に近いため熱が50回
以上繰り返し印加されたとしても金属部材がセラミック
体より剥離することは殆どない。
As described above, as can be seen from the examples, in the case where the ceramic body and the metal member are joined by the conventional active metallization method, the heat at −40 to 125 ° C. is applied 30 times (cycle). While the metal member is almost exfoliated from the ceramic body due to the stress, the product of the present invention has a thermal expansion coefficient close to that of the ceramic body because the thermal expansion coefficient of the joining member is close to that of the ceramic body. Hardly peels off from the ceramic body.

【0028】また本発明品はセラミック体と金属部材の
接合強度が2.0Kg/mm2 以上であり、両者が強固に接合し
ていることも判る。
Further, it can be seen that the bonding strength between the ceramic body and the metal member of the product of the present invention is 2.0 kg / mm 2 or more, and that both are firmly bonded.

【0029】特に接合部材を構成する銅の粒径が3.0 μ
m 以下、チタンの粒径が20.0μm 以下、酸化アルミニウ
ム、窒化アルミニウム、モリブデンの少なくとも1 種の
粒径が2.0 μm 以下であるとセラミック体と金属部材の
接合強度が3.5Kg/mm2 以上となり、セラミック体の材質
に制約を受けることなく両者は極めて強固に接合してい
る。
Particularly, the grain size of copper constituting the joining member is 3.0 μm.
m or less, the particle size of titanium is 20.0 μm or less, aluminum oxide, aluminum nitride, molybdenum and at least one of the particle size is 2.0 μm or less, the joining strength between the ceramic body and the metal member becomes 3.5 kg / mm 2 or more, Both are very strongly joined without being restricted by the material of the ceramic body.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミック体に金属部材を、粒径10μm 以
下の銅粉末50乃至80重量%と、粒径50μm 以下のチタン
粉末10乃至30重量%と、粒径5 μm 以下の酸化アルミニ
ウム、窒化アルミニウム、モリブデンの少なくとも1 種
10乃至30重量%とから成る接合部材を介して接合させた
ことを特徴とするセラミック体と金属部材の接合構造。
1. A metal member in a ceramic body, 50 to 80% by weight of copper powder having a particle size of 10 μm or less, 10 to 30% by weight of titanium powder having a particle size of 50 μm or less, aluminum oxide having a particle size of 5 μm or less, At least one of aluminum and molybdenum
A joining structure between a ceramic body and a metal member, wherein the joining is performed via a joining member comprising 10 to 30% by weight.
JP3029480A 1991-01-29 1991-01-29 Joint structure of ceramic body and metal member Expired - Fee Related JP2941449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3029480A JP2941449B2 (en) 1991-01-29 1991-01-29 Joint structure of ceramic body and metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3029480A JP2941449B2 (en) 1991-01-29 1991-01-29 Joint structure of ceramic body and metal member

Publications (2)

Publication Number Publication Date
JPH04243983A JPH04243983A (en) 1992-09-01
JP2941449B2 true JP2941449B2 (en) 1999-08-25

Family

ID=12277252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3029480A Expired - Fee Related JP2941449B2 (en) 1991-01-29 1991-01-29 Joint structure of ceramic body and metal member

Country Status (1)

Country Link
JP (1) JP2941449B2 (en)

Also Published As

Publication number Publication date
JPH04243983A (en) 1992-09-01

Similar Documents

Publication Publication Date Title
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
JPH0474306B2 (en)
JP2941449B2 (en) Joint structure of ceramic body and metal member
JPS59137373A (en) Ceramic bonding method
JPH0679988B2 (en) Metallization method for nitride ceramics
US6447923B1 (en) Metallized silicon nitride ceramic and fabricating process thereof as well as metallizing composite for the process
JP2826840B2 (en) Method of joining ceramic body and metal member
JP2000178079A (en) Brazing material
JPH0292872A (en) How to join ceramic body and copper material
JP3740300B2 (en) Brazing material
JP2742602B2 (en) Method of depositing metal layer on ceramic body
JP3370060B2 (en) Ceramic-metal joint
JP2784540B2 (en) Metallizing composition
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JPH0678196B2 (en) Metallizing composition
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPS5864271A (en) Silicon nitride sintered body
JPH0669914B2 (en) Metallizing composition
JPH06100380A (en) Bonding structure of ceramic body and metal member
JPS59203779A (en) Method of bonding ceramic sintered bodies having different thermal expansion coefficients or ceramic sintered body to metal member
JPH044268B2 (en)
JP3523665B2 (en) Method of forming metal layer on ceramic surface
JP3190052B2 (en) Titanium-based composite material and method for producing the same
JPH061671A (en) Method of joining ceramic body and metal member
JPS61178476A (en) Method of joining ceramic and metal and joint structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees