JP2936144B2 - Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method - Google Patents
Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying methodInfo
- Publication number
- JP2936144B2 JP2936144B2 JP2200170A JP20017090A JP2936144B2 JP 2936144 B2 JP2936144 B2 JP 2936144B2 JP 2200170 A JP2200170 A JP 2200170A JP 20017090 A JP20017090 A JP 20017090A JP 2936144 B2 JP2936144 B2 JP 2936144B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- fine particles
- product
- coating layer
- ceramic fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims description 45
- 239000011248 coating agent Substances 0.000 title claims description 42
- 238000000034 method Methods 0.000 title claims description 10
- 238000005551 mechanical alloying Methods 0.000 title claims description 3
- 239000011247 coating layer Substances 0.000 claims description 21
- 239000000919 ceramic Substances 0.000 claims description 20
- 239000010419 fine particle Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 229910000765 intermetallic Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 2
- 239000007800 oxidant agent Substances 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 229910010038 TiAl Inorganic materials 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910017150 AlTi Inorganic materials 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Chemically Coating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属単体もしくは合金、セラミックス微粒
子あるいはこれらの複合化物を乾式で機械的に混合と粉
砕を繰返すことによって、これらを球状体もしくは管及
び容器の内面に被覆し、高強度高硬度、耐摩耗性あるい
は強耐食性を有する被覆層を形成する方法で前記の特性
を持つベアリング・パイプ容器の製造に利用することが
できる。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of mechanically mixing and pulverizing a simple metal or alloy, ceramic fine particles or a composite thereof in a dry manner to form a spherical body or a tube. And a method of forming a coating layer having high strength, high hardness, abrasion resistance or strong corrosion resistance by coating the inner surface of the container, which can be used for manufacturing a bearing pipe container having the above-mentioned characteristics.
従来、被覆膜の形成技術にはCVD.PVDなどプラズマや
気相反応を利用したものあるいは塗料の吹き付けによる
被覆法がある。しかし、これらの方法は、非常に大きな
設備を必要とするか、被覆層の密着性が悪い。また、球
状体に対してその全面に均一な被覆を行うことができな
かった。さらに、被覆層の厚さも薄く、厚い被覆層でし
かも、被覆表面の滑らかな被覆を行うことが困難であっ
た。2. Description of the Related Art Conventionally, as a coating film forming technique, there is a coating method using plasma or gas phase reaction such as CVD.PVD or a coating method by spraying a paint. However, these methods require very large equipment or have poor adhesion of the coating layer. Further, uniform coating could not be performed on the entire surface of the spherical body. Further, the thickness of the coating layer is small, and it is difficult to form a thick coating layer and to smoothly coat the coating surface.
本発明は、かなり厚い被覆層を被覆対象物に均一に形
成し、被覆膜の密着性を良好にするとともに平滑な被覆
面とし、硬度・耐摩耗性・耐食性のすぐれた球状体もし
くは管、容器を製造することができる。The present invention forms a fairly thick coating layer evenly on the object to be coated, improves the adhesion of the coating film and forms a smooth coating surface, and a spherical body or a tube having excellent hardness, abrasion resistance and corrosion resistance, Containers can be manufactured.
前記目的を達成するために、本発明方法は原子レベル
での合金化もしくは複合化を行うために乾式による機械
的粉砕混合(アトライター、ボールミル、強攪拌ポット
ミル等)を行うことにより、被覆層の硬度、耐摩耗性、
耐食性を良好にし、さらに密着性を向上させる。その
上、被覆材にセラミックスの微粉末を添加して、研磨効
果を利用し、被覆表面の平滑度を良好にすることを特徴
としている。In order to achieve the above object, the method of the present invention is to carry out mechanical pulverization and mixing (attritor, ball mill, strong stirring pot mill, etc.) by dry method to perform alloying or compounding at the atomic level, thereby forming a coating layer. Hardness, wear resistance,
Improves corrosion resistance and improves adhesion. In addition, the method is characterized in that fine powder of ceramics is added to the coating material, and the smoothness of the coating surface is improved by utilizing the polishing effect.
具体的に説明すると、本発明の原理は第1図に示すご
とく、被覆材料は鋼球の衝撃力およびせん断力により被
覆対象物表面に押し付けられ薄い被覆膜を形成するとと
もにセラミックス微粒子により研磨される。これらの効
果は、鋼球の数と大きさに依存し、鋼球数の増加により
指数関数的に合金化、複合化、アモルファス化が促進さ
れる。したがって、鋼球の大きさと数を適当に選択する
ことにより短時間で被覆層の厚い被覆ができる。More specifically, as shown in FIG. 1, the principle of the present invention is that a coating material is pressed against the surface of an object to be coated by the impact force and shear force of a steel ball to form a thin coating film and is polished by ceramic fine particles. You. These effects depend on the number and size of the steel balls, and an increase in the number of steel balls exponentially promotes alloying, complexing, and amorphization. Therefore, by appropriately selecting the size and the number of the steel balls, a thick coating layer can be formed in a short time.
被覆層の厚さと組成の制御は、機械的合金化の攪拌時
間によって行い、被覆層は被覆表面を良好にするため添
加したセラミックス微粒子をわずかに含み、セラミック
ス微粒子を含む密着性の高い複合被覆層が得られる。な
お、微粒のセラミックス粒子を配合することによりアモ
ルファス化した被覆層を形成することもできる。The thickness and composition of the coating layer are controlled by the mechanical alloying agitation time. The coating layer contains a small amount of ceramic particles added to improve the coating surface, and has a highly adherent composite coating layer containing ceramic particles. Is obtained. It is also possible to form an amorphous coating layer by mixing fine ceramic particles.
〔実施例1〕 以下、本発明を被覆対象材料としてステンレス球、被
覆材料として金属間化合物TiAl、セラミックス微粒子と
してジルコニアゾルを用いた場合の被覆膜形成について
説明する。[Example 1] Hereinafter, formation of a coating film when the present invention uses stainless steel spheres as a coating target material, an intermetallic compound TiAl as a coating material, and zirconia sol as ceramic fine particles will be described.
第2図は、本発明の上記材料への適用例の金属組織を
表わす顕微鏡写真である。被覆膜は約7μmであり、ス
テンレス球に密着した被覆膜が、得られていた。FIG. 2 is a micrograph showing the metallographic structure of an example of the application of the present invention to the above materials. The coating film was about 7 μm, and a coating film adhered to the stainless steel balls was obtained.
第3図は、被覆膜の部分をEPMAを用い、元素分析した
X線写真である。膜中には、ステンレスの構成元素およ
び被覆材料としてのTiAl、セラミックス微粒子のジルコ
ニアが認められる。膜表面は非常にきれいであり、研磨
効果の高かったことがうかがえる。FIG. 3 is an X-ray photograph of a portion of the coating film subjected to elemental analysis using EPMA. In the film, constituent elements of stainless steel, TiAl as a coating material, and zirconia of ceramic fine particles are recognized. The film surface was very clean, indicating that the polishing effect was high.
第4図は、比較としてセラミックス微粒子を入れなか
った場合のX線写真である。表面の被覆膜はところどこ
ろしかなく、面粗さも非常に悪くなっている。FIG. 4 is an X-ray photograph in the case where ceramic fine particles were not added as a comparison. The coating film on the surface is sparse, and the surface roughness is very poor.
本実施例の被覆膜の密着性は1273K×1.2Ksecの大気中
酸化テストにおいてもはく離が見られず、耐酸化性にお
いても、非常に優れた被覆膜が形成されていた。本実施
例は、9.5Hzのモータによる振動ボールミルにて100時間
行った。雰囲気は不活性雰囲気とした。The adhesion of the coating film of this example did not show any peeling even in an atmospheric oxidation test at 1273 K × 1.2 Ksec, and a coating film having extremely excellent oxidation resistance was formed. This example was performed for 100 hours in a vibration ball mill using a 9.5 Hz motor. The atmosphere was an inert atmosphere.
〔実施例2〕 管の内面被覆の実施例を第5図に示す。実施例1と同
様、鋼球としてはステンレス球を用い、被覆対象として
ステンレス管、被覆材料として金属間化合物TiAl、セラ
ミックス微粒子としてジルコニアゾルを用い強攪拌ポッ
トミルにて200時間、不活性雰囲気中で処理を行った。
被覆膜は、約6μmであった。[Example 2] Fig. 5 shows an example of the inner surface coating of a pipe. As in Example 1, a stainless steel ball was used as the steel ball, a stainless steel tube was used as the coating target, an intermetallic compound TiAl was used as the coating material, and zirconia sol was used as the ceramic fine particles. The treatment was performed in a strong stirring pot mill for 200 hours in an inert atmosphere. Was done.
The coating film was about 6 μm.
〔実施例3〕 容器の内面被覆の実施例を第6図に示す。実施例1と
同様、鋼球としてはステンレス球を用い、被覆対象とし
てステンレス製品、被覆材料として金属間化合物TiAl、
セラミックス微粒子としてジルコニアゾルを用い、振動
ボールミルにて100時間、不活性雰囲気中で処理を行っ
た。結果は実施例1と同様約7μmの被覆膜が得られ
た。Embodiment 3 FIG. 6 shows an embodiment of the inner surface coating of the container. As in Example 1, a stainless steel ball was used as the steel ball, a stainless steel product was used as a coating object, and an intermetallic compound TiAl was used as a coating material.
Using a zirconia sol as ceramic fine particles, the treatment was performed in an inert atmosphere for 100 hours using a vibration ball mill. As a result, a coating film of about 7 μm was obtained as in Example 1.
〔実施例4〕 異形容器管の内面被覆の実施例を第7図に示す。実施
例1と同様、鋼球としてはステンレス球、被覆対象とし
てステンレス異形管、被覆材料として金属間化合物TiA
l、セラミックス微粒子としてジルコニアゾルを用い、
強攪拌ポットミルにて200時間、不活性雰囲気中で処理
を行った。被覆膜は5〜7μmであった。[Example 4] Fig. 7 shows an example of coating the inner surface of a deformed container tube. As in Example 1, a stainless steel ball was used as the steel ball, a stainless steel deformed tube was used as the coating object, and an intermetallic compound TiA was used as the coating material.
l, using zirconia sol as ceramic fine particles,
The treatment was performed in a strong stirring pot mill for 200 hours in an inert atmosphere. The coating film was 5 to 7 μm.
〔実施例5〕 実施例1で得られた製品を真空下、850℃×8時間熱
処理した時の被覆層周辺の変化を第8図に示す。アモル
ファス化した被覆層は結晶化してAlFe、AlTiの金属間化
合物の生成及びAl,Tiの混入したZrO2複合酸化物が認め
られた。被覆層の密着性の向上及び被覆層が本熱処理に
よって高硬度となり、耐摩耗性が著しく向上した。ま
た、層の厚みは10μmであった。Example 5 FIG. 8 shows a change around the coating layer when the product obtained in Example 1 was heat-treated under vacuum at 850 ° C. for 8 hours. The amorphous coating layer was crystallized to form intermetallic compounds of AlFe and AlTi, and a ZrO 2 composite oxide mixed with Al and Ti was recognized. The adhesion of the coating layer was improved and the coating layer became harder by the main heat treatment, and the wear resistance was remarkably improved. The thickness of the layer was 10 μm.
本発明によれば、金属単体、合金、セラミックス及び
これらの複合材の被覆層が容易に得られ、またアモルフ
ァス状の被覆層も得ることができる。被覆する金属、合
金、セラミックス及びこれらを適当に組み合わせること
により、管・容器の内面もしくは球状体表面の耐摩耗
性、耐食性、硬度などを向上させることができる。した
がって、本発明により上記特性にすぐれたベアリング、
管・容器の製造が可能である。ADVANTAGE OF THE INVENTION According to this invention, the coating layer of a metal simple substance, an alloy, ceramics, and these composite materials can be easily obtained, and the amorphous coating layer can also be obtained. Metals, alloys, ceramics to be coated, and appropriate combinations thereof can improve the abrasion resistance, corrosion resistance, hardness, and the like of the inner surface of the tube or container or the surface of the spherical body. Therefore, a bearing excellent in the above characteristics according to the present invention,
Manufacture of tubes and containers is possible.
第1図は、本発明の原理図、第2図は実施例1に示した
ステンレス製球体表面及び実施例2、3に示した管・容
器内面に形成された被覆層の金属組織を表わす顕微鏡写
真である。第3図は被覆層のX線写真、第4図はセラミ
ックス微粒子を含まない場合のX線写真、第5図は、管
の内面被覆装置図、第6図は、容器の内面被覆装置図、
第7図は、異形容器の内面被覆装置図、第8図は実施例
1に示したステンレス製球体表面及び実施例2、3に示
した管・容器内面に形成された熱処理後の被覆層の金属
組織を表わす顕微鏡写真である。 1…被覆対象材、2…被覆膜 3…鋼球(衝撃力)、4…鋼球(せん断力) 5…セラミックス微粒子、6…被覆材料 7…ステンレス素地、8…ローラー 9…鋼球、10…蓋、11…管 12…バルプ、13…充填剤、14…異形容器FIG. 1 is a view showing the principle of the present invention, and FIG. 2 is a microscope showing the metal structure of the surface of the stainless steel sphere shown in Example 1 and the coating layer formed on the inner surface of the tube / container shown in Examples 2 and 3. It is a photograph. FIG. 3 is an X-ray photograph of the coating layer, FIG. 4 is an X-ray photograph in the case where ceramic fine particles are not contained, FIG. 5 is a diagram of an inner surface coating device of a tube, FIG.
FIG. 7 is a view of an inner surface coating apparatus for a deformed container, and FIG. 8 is a diagram showing the coating layer after heat treatment formed on the surface of the stainless steel sphere shown in Example 1 and the inner surfaces of the tubes and containers shown in Examples 2 and 3. It is a micrograph showing a metal structure. DESCRIPTION OF SYMBOLS 1 ... Coating object material 2 ... Coating film 3 ... Steel ball (impact force) 4 ... Steel ball (shearing force) 5 ... Ceramic fine particles, 6 ... Coating material 7 ... Stainless base material, 8 ... Roller 9 ... Steel ball, 10… Lid, 11… Tube 12… Valve, 13… Filling agent, 14… Deformed container
───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 靖彦 愛知県名古屋市守山区大字幸心字中畑41 ―1 幸心西住宅1―305 (56)参考文献 特開 昭51−73930(JP,A) 特開 昭63−265627(JP,A) 特開 平3−87377(JP,A) 特公 昭43−2842(JP,B1) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Kondo 41-1, Nakahata, Saikoshin-zai, Moriyama-ku, Nagoya-shi, Aichi 1-305 JP-A-63-265627 (JP, A) JP-A-3-87377 (JP, A) JP-B-43-2842 (JP, B1)
Claims (2)
れらに非金属元素の単体を含有させたもののいずれか1
種類以上の粉末に、セラミックス微粒子を1種類以上加
えた混合物を、乾式機械的混合法を用いて、前記混合物
の複合化物として、あるいは、機械的合金化によって生
成した混合物のアモルファス化物として、球状体、管及
び容器状製品等の被覆対象製品の表面もしくは内面に被
覆する方法であり、必要により、前記被覆処理を施した
製品を真空もしくは不活性雰囲気または非酸化性物質の
ものは大気中において熱処理を行い、被覆材を製品表面
部に拡散浸透させて被覆材のより密着化を図るととも
に、被覆層の改質を行う方法において、前記セラミック
ス微粒子として、セラミックスゾルを用いることを特徴
とする被覆方法。1. A metal simple substance, an alloy, an intermetallic compound, or any of these containing a non-metallic element simple substance
A mixture obtained by adding one or more types of ceramic fine particles to at least one type of powder, using a dry mechanical mixing method, as a composite of the mixture, or as an amorphous product of a mixture generated by mechanical alloying, This is a method of coating the surface or inner surface of a product to be coated such as a pipe, a container and a container-like product, and if necessary, heat-treating the coated product in a vacuum or an inert atmosphere or a non-oxidizing substance in the air. The coating material is diffused and infiltrated into the surface of the product to improve the adhesion of the coating material and modify the coating layer, wherein a ceramic sol is used as the ceramic fine particles. .
を用いることを特徴とする請求項1記載の被覆方法。2. The coating method according to claim 1, wherein a zirconia sol is used as the ceramic fine particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2200170A JP2936144B2 (en) | 1990-07-27 | 1990-07-27 | Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2200170A JP2936144B2 (en) | 1990-07-27 | 1990-07-27 | Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0483883A JPH0483883A (en) | 1992-03-17 |
JP2936144B2 true JP2936144B2 (en) | 1999-08-23 |
Family
ID=16419960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2200170A Expired - Lifetime JP2936144B2 (en) | 1990-07-27 | 1990-07-27 | Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2936144B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114619130B (en) * | 2022-03-24 | 2024-05-31 | 有研工程技术研究院有限公司 | Welding method of aluminum-chromium-boron target material and aluminum-silicon alloy backboard |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5173930A (en) * | 1974-12-25 | 1976-06-26 | Nippon Steel Corp | KINZOKUHIFUKUKOHANNO SEIZOHOHO |
JPS63265627A (en) * | 1987-04-24 | 1988-11-02 | Sumitomo Metal Ind Ltd | Surface-coated steel and its manufacturing method |
EP0408818A1 (en) * | 1989-07-20 | 1991-01-23 | Battelle Memorial Institute | A method for simultaneously alloying metals and plating parts with the resulting alloys |
-
1990
- 1990-07-27 JP JP2200170A patent/JP2936144B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0483883A (en) | 1992-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI299364B (en) | Fabrication of b/c/n/o doped sputtering targets | |
AU2006243447B2 (en) | Method for coating a substrate surface and coated product | |
US4556607A (en) | Surface coatings and subcoats | |
US4009146A (en) | Method of and mixture for aluminizing a metal surface | |
Chen et al. | Oxidation behavior of a high Si content Al–Si composite coating fabricated on Ti–6Al–4V substrate by mechanical alloying method | |
Chen et al. | Investigation of Cr–Al composite coatings fabricated on pure Ti substrate via mechanical alloying method: effects of Cr–Al ratio and milling time on coating, and oxidation behavior of coating | |
US3989863A (en) | Slurry coating process | |
JPS60149787A (en) | Spherical aluminum particle in coating | |
Zhang et al. | Cold-spray processing of a high density nanocrystalline aluminum alloy 2009 coating using a mixture of as-atomized and as-cryomilled powders | |
WO2018116856A1 (en) | Method for forming sprayed film of intermetallic compound film, sprayed film, method for producing metal product having sprayed film, and glass conveying roll | |
US5980659A (en) | Surface-treated metallic part and processing method thereof | |
JP2002309364A (en) | Low-temperature thermal spray coated member and manufacturing method thereof | |
Siddique et al. | Enhanced electrochemical and tribological properties of AZ91D magnesium alloy via cold spraying of aluminum alloy | |
RU2008138721A (en) | METHOD FOR PRODUCING FUNCTIONAL NANOSTRUCTURED COATINGS | |
US3861938A (en) | Protective coating for metals | |
US6309699B2 (en) | Method of producing a metallic part exhibiting excellent oxidation resistance | |
JP2936144B2 (en) | Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method | |
Chen et al. | A comparative investigation on bi-layer Al–Cr/Al–Si coating and mono-layer Al–Cr–Si coating synthesized on Ti–6Al–4V alloy substrate by mechanical alloying method | |
Rokkala et al. | Comparative study of plasma spray and friction stir processing on wear properties of Mg-Zn-Dy alloy | |
US3959028A (en) | Process of working metals coated with a protective coating | |
Jian et al. | Microstructure and wear behaviours of laser-clad Cr13Ni5Si2-based metal-silicide coatings on a titanium alloy | |
JP3091690B2 (en) | Method for producing TiB2-based coating | |
Zhang et al. | Effects of post heat treatment on the interfacial characteristics of aluminum coated AZ91D magnesium alloy | |
JP2000282259A (en) | Method of manufacturing metal member having low friction coating | |
JP3358796B2 (en) | Method for modifying surface of Ti-Al alloy and Ti-Al alloy having modified layer on surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |