JP2928033B2 - Manufacturing method of thin film solar cell - Google Patents
Manufacturing method of thin film solar cellInfo
- Publication number
- JP2928033B2 JP2928033B2 JP4266387A JP26638792A JP2928033B2 JP 2928033 B2 JP2928033 B2 JP 2928033B2 JP 4266387 A JP4266387 A JP 4266387A JP 26638792 A JP26638792 A JP 26638792A JP 2928033 B2 JP2928033 B2 JP 2928033B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- solar cell
- xyz
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000011669 selenium Substances 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 32
- 239000010408 film Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- 229910052711 selenium Inorganic materials 0.000 claims description 12
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 9
- 238000000427 thin-film deposition Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000010949 copper Chemical group 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Chemical group 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 229910052733 gallium Chemical group 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052951 chalcopyrite Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 claims 1
- 238000001704 evaporation Methods 0.000 description 11
- 230000008020 evaporation Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 6
- 238000003795 desorption Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- -1 Chalcopyrite compound Chemical class 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、太陽光等の光エネルギ
ーをカルコパイライト型三元系半導体化合物薄膜を用い
た接合により電気エネルギーに変換する薄膜太陽電池の
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin-film solar cell in which light energy such as sunlight is converted into electric energy by bonding using a chalcopyrite-type ternary semiconductor compound thin film.
【0002】[0002]
【従来の技術】化学式XYZ2 を有し、XがAgあるいは
Cu、YがInあるいはGa、ZがSeあるいはSであるカルコ
パイライト型三元系化合物薄膜、特にCuInSe2 、CuInS
2 、AgInSe2 、AgInS2 は、光学ギャップが1.0〜1.8
eVの範囲にあり、光学変換素子としての利用が期待され
る。近年、これらの材料の薄膜形成技術の進展により、
薄膜太陽電池素子材料としてのこれらの物質は一層注目
され、多くの研究機関で研究が行われている。以下、最
も研究の進んでいるCuInSe2 を例にとり従来技術につい
て説明する。図2は、CuInSe2 薄膜を用いた従来技術の
太陽電池の一部の断面図である。図において、厚さ1〜
4mmのガラス基板1の上には厚さ0.2〜2μmのモリブ
デン (Mo) からなる金属電極2が形成されている。半導
体層は、p形半導体層として厚さ2〜4μmのCuInSe2
薄膜3、n形半導体層として厚さ250 〜500 Åの硫化カ
ドミウム (CdS) 薄膜4および広いバンドギャップを有
し、窓層として役立つn形半導体層である厚さ2〜4μ
mの酸化亜鉛 (ZnO) 薄膜5からなる。層5の上にはス
パッタリング、蒸着またはめっき法によりアルミニウム
(Al) からなる金属電極6が設けられている。CuInSe2
薄膜を成膜する一般的な方法として三元同時蒸着法があ
る。三元同時蒸着法では、Ci、In、Seの各元素を三つの
るつぼから基板に同時に蒸着させてCuInSe2 膜を形成す
る方法である。 2. Description of the Related Art X has the formula XYZ 2 and X is Ag or
Chalcopyrite-type ternary compound thin film in which Cu and Y are In or Ga and Z is Se or S, particularly CuInSe 2 and CuInS
2 , AgInSe 2 and AgInS 2 have an optical gap of 1.0 to 1.8.
It is in the range of eV and is expected to be used as an optical conversion element. In recent years, with the development of thin film formation technology for these materials,
These substances as thin-film solar cell element materials are receiving more and more attention and are being studied by many research institutions. Hereinafter, taking a CuInSe 2 has progressed most studied example is described prior art. FIG. 2 is a cross-sectional view of a part of a conventional solar cell using a CuInSe 2 thin film. In the figure, thickness 1 ~
On a 4 mm glass substrate 1, a metal electrode 2 made of molybdenum (Mo) having a thickness of 0.2 to 2 μm is formed. The semiconductor layer is a CuInSe 2 layer having a thickness of 2 to 4 μm as a p-type semiconductor layer.
A thin film 3, a cadmium sulfide (CdS) thin film 4 having a thickness of 250 to 500 .mu.m as an n-type semiconductor layer and a thickness of 2 to 4 .mu.m which is an n-type semiconductor layer having a wide band gap and serving as a window layer;
m of zinc oxide (ZnO) thin film 5. Aluminum is deposited on layer 5 by sputtering, evaporation or plating.
A metal electrode 6 made of (Al) is provided. CuInSe 2
As a general method of forming a thin film, there is a ternary simultaneous vapor deposition method. In the ternary simultaneous evaporation method, each element of Ci, In, and Se is simultaneously evaporated from three crucibles on a substrate to form a CuInSe 2 film.
【0003】[0003]
【発明が解決しようとする課題】基板上に三元同時蒸着
法によりCuInSe2 薄膜を形成する場合、基板温度400 〜
550 ℃程度で形成するが、膜形成後基板を冷却する際に
は、各々のるつぼを同時に冷却している。したがって基
板冷却中は、高真空中で冷却することになる。このよう
な方法だと基板冷却中に基板温度が高い段階でCuInSe2
薄膜表面からSeが脱離し、半導体接合をつくるCuInSe2
薄膜表面がSe不足となり良好な接合が出来にくい結果と
なる。そのため高い変換効率の太陽電池が得られにく
い。あるいは、Se脱離のあとをO2 で埋めるために太陽
電池作成後に基板温度200 ℃程度で酸素雰囲気中でアニ
ールする処理が必要であった。同じ問題はスパッタリン
グ法によりCuInSe2 成膜を行ったときにも生じていた。When a CuInSe 2 thin film is formed on a substrate by a ternary co-evaporation method, a substrate temperature of 400 to 400 ° C.
The film is formed at about 550 ° C., and when the substrate is cooled after the film is formed, each crucible is cooled simultaneously. Therefore, during the cooling of the substrate, the substrate is cooled in a high vacuum. With such a method, CuInSe 2
Se is desorbed from the film surface, CuInSe 2 making semiconductor junction
As a result, the surface of the thin film becomes insufficient for Se, and it is difficult to perform good bonding. Therefore, it is difficult to obtain a solar cell with high conversion efficiency. Alternatively, it is necessary to perform annealing at a substrate temperature of about 200 ° C. in an oxygen atmosphere after the formation of the solar cell in order to fill O 2 after Se desorption. The same problem also occurred when CuInSe 2 was formed by a sputtering method.
【0004】本発明の目的は、上述の問題を解決し、表
面にZ元素が不足していない化学式XYZ2 のカルコパ
イライト型化合物薄膜を有する薄膜太陽電池の製造方法
を提供することにある。An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a thin-film solar cell having a chalcopyrite-type compound thin film of the formula XYZ 2 in which the Z element is not deficient on the surface.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、化学式XYZ2を有し、Xが銀
あるいは銅、Yがインジウムあるいはガリウム、Zがセ
レンあるいは硫黄であるカルコパイライト型三元化合物
薄膜を活性層に用いた薄膜太陽電池の製造方法におい
て、XYZ2薄膜成膜後、Zを含む雰囲気中で処理する
ものであり、該処理をXYZ2薄膜成膜の際加熱した被
成膜基板を、Zを含む雰囲気中で冷却するものとする。
ここで、XYZ2薄膜成膜に、X、Y、Zそれぞれの蒸
気を供給し、被成膜基板を加熱して行う三元同時蒸着法
を適用し、XYZ2薄膜成膜後の基板の冷却時に、Xお
よびY蒸気の供給を止め、Z蒸気のみを供給することが
有効である。また、Zを含む雰囲気中での処理を、冷却
される被成膜基板の温度が250℃以上の時点で停止す
ることが好ましい。尚、ZがセレンであるXYZ2薄膜
成膜後、セレンを含む雰囲気中で処理すること、Zがセ
レンであるXYZ2薄膜成膜後、硫黄を含む雰囲気中で
処理することが有効である。To achieve the above object, according to the solution to ## according to the present invention, has the formula XYZ 2, X is silver or copper, Y is indium or gallium, Z is a selenium or sulfur in the method for manufacturing a thin-film solar cells using a chalcopyrite-type ternary compound thin film on the active layer, after XYZ 2 thin film deposition, which is treated with an atmosphere containing Z, when the process of the XYZ 2 thin film deposition The heated deposition target substrate is cooled in an atmosphere containing Z.
Here, the XYZ 2 thin film deposition, X, Y, Z each steam supply, to apply the three-way simultaneous evaporation method in which evaporation is performed by heating the film formation substrate, cooling the substrate after XYZ 2 thin film deposition At times, it is effective to stop the supply of the X and Y vapors and supply only the Z vapor. In addition, it is preferable that the process in the atmosphere containing Z be stopped at a time when the temperature of the substrate to be cooled is 250 ° C. or higher. Incidentally, after XYZ 2 thin film deposition Z is selenium, treating in an atmosphere containing selenium, after XYZ 2 thin film deposition Z is selenium, it is effective to treatment in an atmosphere containing sulfur.
【0006】[0006]
【作用】XYZ2 カルコパイライト型化合物薄膜成膜
後、Z雰囲気中で処理すれば、Zの脱離が防止される
か、脱離したZの補充が行われ、表面のZ不足のないX
YZ 2 薄膜が完全に生成する。カルコパイライト型化合
物がCuInSe2 のとき、成膜後S雰囲気中で処理すれば、
膜表面のみの禁制帯幅を変えることができ、製造された
太陽電池の効率が向上する。[Action] XYZTwoChalcopyrite type compound thin film deposition
Later, if the treatment is performed in a Z atmosphere, Z desorption is prevented.
Alternatively, replenishment of the desorbed Z is performed, and X having no Z deficiency on the surface is obtained.
YZ TwoA thin film is completely formed. Chalcopyrite compound
Thing is CuInSeTwoAt this time, if the film is treated in an S atmosphere after the film formation,
The forbidden band width only on the film surface can be changed,
The efficiency of the solar cell is improved.
【0007】[0007]
【実施例】図2に示した構造の太陽電池の製造のため
に、表面にMo層2を形成したガラス基板1の上にCuInSe
2 薄膜3を、それぞれシャッタにより開口部を閉鎖でき
るCu、In、Se各蒸発源を備えた蒸着装置を用いて三元同
時蒸着法により成膜した。図1はその成膜プロフィルを
示し、基板および各蒸発源の温度を上昇させ、基板温度
が所定の550 ℃を超える温度となったA時点で各蒸発源
のシャッタを開け、ついで40分間の成膜時間を経てB時
点に達したときにCuの蒸発源、Inの蒸発源のシャッタを
閉じるが、Seの蒸発源のシャッタは開いたままでおい
た。そして、基板のヒータのスイッチを切り、基板を冷
却させた。これにより基板冷却中のSeの脱離を防ぐこと
ができた。約20分たったC時点で基板温度が300 ℃に達
したときにSeの蒸発源のシャッタを閉じた。この場合、
基板温度が余り低くなるまでSeを供給し続けると今度
は、Se過剰となり余分なSeが太陽電池特性を低下させ
る。これを防ぐために、Seの供給をSeの融点より高い30
0 ℃程度で供給を停止することによりSe過剰を防いだ。
Seの融点は217 ℃であるから、低くとも250 ℃以上でSe
の供給を止める必要がある。DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to manufacture a solar cell having the structure shown in FIG. 2, CuInSe was formed on a glass substrate 1 having a Mo layer 2 formed on the surface.
(2) The thin film 3 was formed by a ternary simultaneous vapor deposition method using a vapor deposition apparatus provided with a Cu, In, and Se evaporation source capable of closing an opening by a shutter. FIG. 1 shows the film forming profile, in which the temperature of the substrate and each evaporation source is increased, and at the time A when the substrate temperature exceeds a predetermined temperature of 550 ° C., the shutter of each evaporation source is opened, and then the deposition is performed for 40 minutes. When reaching the point B after the film time, the shutters of the evaporation source of Cu and the evaporation source of In were closed, but the shutter of the evaporation source of Se was kept open. Then, the heater of the substrate was turned off to cool the substrate. As a result, desorption of Se during cooling of the substrate could be prevented. When the substrate temperature reached 300 ° C. at about 20 minutes C, the shutter of the evaporation source of Se was closed. in this case,
If the supply of Se is continued until the substrate temperature becomes too low, then Se becomes excessive, and the excess Se degrades the solar cell characteristics. In order to prevent this, the supply of Se should be 30 higher than the melting point of Se.
The excess of Se was prevented by stopping the supply at about 0 ° C.
Since the melting point of Se is 217 ° C,
Supply needs to be stopped.
【0008】この実施例で得られたCuInSe2 薄膜を活性
層に用いて太陽電池を試作した結果、作成直後で変換効
率として10%以上の値を示した。また、酸素雰囲気中ア
ニールをしても特性は、ほとんど変化せず酸素雰囲気中
アニールの必要がないことを示している。以上のように
膜形成後の基板温度を冷却する場合にSeを供給してやる
とSeの脱離が抑制され良好な膜を得ることが出来る。As a result of trial production of a solar cell using the CuInSe 2 thin film obtained in this example as an active layer, a conversion efficiency of 10% or more was shown immediately after the production. In addition, even if annealing was performed in an oxygen atmosphere, the characteristics were hardly changed, indicating that annealing in an oxygen atmosphere was unnecessary. As described above, when Se is supplied when the substrate temperature after film formation is cooled, desorption of Se is suppressed, and a good film can be obtained.
【0009】別の実施例では、従来技術の蒸着法あるい
はスパッタリング法でCuInSe2 薄膜成膜をした基板をH
2 Se雰囲気中で600 ℃に30分間保ち、その後基板を冷却
し、300 ℃程度になったときにH2 Seの供給を止め、H
2 雰囲気をした。これによって脱離したSeが補われ、同
様の効果が得られた。基板温度を成膜時の温度より高く
してSe雰囲気中で加熱することにより効果が得られる
が、基板あるいはその上の膜の耐熱性の点から600 ℃を
超える温度まで高めることはできない。また、処理する
雰囲気をSe雰囲気ではなく例えばH2 SなどのS雰囲気
中で行えば、Seの脱離した欠陥部にSが入り、膜表面の
みの禁制帯幅を変えることも可能であり、より高い効率
を得ることも期待できる。In another embodiment, a substrate on which a CuInSe 2 thin film is formed by a conventional vapor deposition method or sputtering method is H
The substrate is kept at 600 ° C. for 30 minutes in an atmosphere of 2 Se, and then the substrate is cooled. When the temperature reaches about 300 ° C., the supply of H 2 Se is stopped.
2 atmosphere. This compensated for the Se removed, and the same effect was obtained. The effect can be obtained by heating the substrate in a Se atmosphere at a temperature higher than the temperature at the time of film formation, but it cannot be increased to a temperature exceeding 600 ° C. in view of the heat resistance of the substrate or the film thereon. Further, if the processing is performed in an S atmosphere such as H 2 S instead of the Se atmosphere, S enters the defect portion where Se is desorbed, and the forbidden band width only on the film surface can be changed. Higher efficiency can also be expected.
【0010】[0010]
【発明の効果】本発明によれば、化学式XYZ2を有
し、Xが銀あるいは銅、Yがインジウムあるいはガリウ
ム、Zがセレンあるいは硫黄であるカルコパイライト型
三元化合物薄膜を活性層に用いた薄膜太陽電池の製造方
法において、XYZ2薄膜成膜後、基板温度冷却時に、
Z雰囲気を保持することにより、膜表面からのZの脱離
を防ぐ。この方法により、太陽電池のCIS薄膜表面の
欠陥等が抑制でき、良好な接合を形成可能となるので、
太陽電池の効率が改善される。According to the present invention, a chalcopyrite-type ternary compound thin film having the chemical formula XYZ 2 , wherein X is silver or copper, Y is indium or gallium, and Z is selenium or sulfur, is used for the active layer. In the method of manufacturing a thin film solar cell, after the XYZ 2 thin film is formed, when the substrate temperature is cooled,
By maintaining the Z atmosphere, Z desorption from the film surface is prevented. According to this method, defects and the like on the surface of the CIS thin film of the solar cell can be suppressed, and a good junction can be formed.
The efficiency of the solar cell is improved.
【図1】本発明の一実施例のCuInSe2 成膜工程における
各元素成膜速度、基板温度の変化を示す線図FIG. 1 is a diagram showing a change in a film formation rate of each element and a change in a substrate temperature in a CuInSe 2 film formation process according to an embodiment of the present invention.
【図2】本発明により製造されるCuInSe2 薄膜太陽電池
の断面図FIG. 2 is a cross-sectional view of a CuInSe 2 thin film solar cell manufactured according to the present invention.
1 ガラス基板 2 金属電極 3 CuInSe2 薄膜 4 CdS薄膜 5 ZnO薄膜 6 金属電極DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Metal electrode 3 CuInSe 2 thin film 4 CdS thin film 5 ZnO thin film 6 Metal electrode
Claims (5)
銅、Yがインジウムあるいはガリウム、Zがセレンある
いは硫黄であるカルコパイライト型三元化合物薄膜を活
性層に用いた薄膜太陽電池の製造方法において、XYZ
2薄膜成膜後、Zを含む雰囲気中で処理するものであ
り、該処理をXYZ2薄膜成膜の際加熱した被成膜基板
を、Zを含む雰囲気中で冷却するものとしたことを特徴
とする薄膜太陽電池の製造方法。1. A method for manufacturing a thin film solar cell using a chalcopyrite type ternary compound thin film having the chemical formula XYZ 2 , wherein X is silver or copper, Y is indium or gallium, and Z is selenium or sulfur, as an active layer. In, XYZ
After 2 thin film deposition, which is treated with an atmosphere containing Z, characterized in that the processing target substrate heated during the XYZ 2 thin film deposition, and shall be cooled in an atmosphere containing Z Of manufacturing a thin film solar cell.
の蒸気を供給し、被成膜基板を加熱して行う三元同時蒸
着法を適用し、XYZ2薄膜成膜後の基板の冷却時に、
XおよびY蒸気の供給を止め、Z蒸気のみを供給する請
求項1記載の薄膜太陽電池の製造方法。2. The XYZ 2 thin film is formed by applying a ternary simultaneous vapor deposition method in which vapors of X, Y, and Z are supplied to heat the substrate on which the XYZ 2 thin film is formed. When cooling
2. The method according to claim 1, wherein the supply of the X and Y vapors is stopped and only the Z vapor is supplied.
被成膜基板の温度が250℃以上の時点で停止する請求
項1または請求項2記載の薄膜太陽電池の製造方法。3. The method for manufacturing a thin-film solar cell according to claim 1, wherein the treatment in the atmosphere containing Z is stopped when the temperature of the substrate to be cooled is 250 ° C. or higher.
レンを含む雰囲気中で処理する請求項1ないし3のいず
れかに記載の薄膜太陽電池の製造方法。4. The method for producing a thin-film solar cell according to claim 1, wherein after forming an XYZ 2 thin film in which Z is selenium, the film is treated in an atmosphere containing selenium.
黄を含む雰囲気中で処理する請求項1ないし3のいずれ
かに記載の薄膜太陽電池の製造方法。5. The method for producing a thin-film solar cell according to claim 1, wherein after forming the XYZ 2 thin film wherein Z is selenium, the film is treated in an atmosphere containing sulfur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4266387A JP2928033B2 (en) | 1992-10-06 | 1992-10-06 | Manufacturing method of thin film solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4266387A JP2928033B2 (en) | 1992-10-06 | 1992-10-06 | Manufacturing method of thin film solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06120545A JPH06120545A (en) | 1994-04-28 |
JP2928033B2 true JP2928033B2 (en) | 1999-07-28 |
Family
ID=17430233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4266387A Expired - Fee Related JP2928033B2 (en) | 1992-10-06 | 1992-10-06 | Manufacturing method of thin film solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2928033B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4620105B2 (en) | 2007-11-30 | 2011-01-26 | 昭和シェル石油株式会社 | Method for manufacturing light absorption layer of CIS thin film solar cell |
JP5121678B2 (en) * | 2008-11-26 | 2013-01-16 | 京セラ株式会社 | Compound semiconductor thin film manufacturing method and thin film solar cell manufacturing method |
JP5174248B2 (en) * | 2009-10-27 | 2013-04-03 | 京セラ株式会社 | Method for producing chalcogen compound semiconductor layer and method for producing photoelectric conversion device |
CN102870224B (en) * | 2010-05-31 | 2015-07-15 | 京瓷株式会社 | Photoelectric conversion device |
JP2012015314A (en) * | 2010-06-30 | 2012-01-19 | Fujifilm Corp | Manufacturing method of cis-based film |
JP2012015328A (en) * | 2010-06-30 | 2012-01-19 | Fujifilm Corp | Manufacturing method of cis-based film |
JP5709652B2 (en) * | 2011-06-03 | 2015-04-30 | ソーラーフロンティア株式会社 | CZTS thin film solar cell manufacturing method |
JP5762148B2 (en) * | 2011-06-03 | 2015-08-12 | ソーラーフロンティア株式会社 | CZTS thin film solar cell manufacturing method |
WO2014136921A1 (en) * | 2013-03-07 | 2014-09-12 | 国立大学法人大阪大学 | Compound-semiconductor thin-film manufacturing method and manufacturing device |
KR101922065B1 (en) * | 2017-10-11 | 2019-02-20 | 영남대학교 산학협력단 | Manufacturing method of thin film solar cell |
-
1992
- 1992-10-06 JP JP4266387A patent/JP2928033B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06120545A (en) | 1994-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6323417B1 (en) | Method of making I-III-VI semiconductor materials for use in photovoltaic cells | |
Braunger et al. | An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer | |
US7179677B2 (en) | ZnO/Cu(InGa)Se2 solar cells prepared by vapor phase Zn doping | |
US8709856B2 (en) | Enhancement of semiconducting photovoltaic absorbers by the addition of alkali salts through solution coating techniques | |
Momose et al. | Cu2ZnSnS4 thin film solar cells utilizing sulfurization of metallic precursor prepared by simultaneous sputtering of metal targets | |
JP4620105B2 (en) | Method for manufacturing light absorption layer of CIS thin film solar cell | |
Basol et al. | Deposition of CuInSe/sub 2/films by a two-stage process utilizing E-beam evaporation | |
US20090050208A1 (en) | Method and structures for controlling the group iiia material profile through a group ibiiiavia compound layer | |
JP2928033B2 (en) | Manufacturing method of thin film solar cell | |
US8912037B2 (en) | Method for making photovoltaic devices using oxygenated semiconductor thin film layers | |
JP2011129631A (en) | Method of manufacturing cis thin film solar cell | |
KR101542343B1 (en) | Thin film solar cell and method of fabricating the same | |
KR101060180B1 (en) | Method of manufacturing absorbing layer of solar cell | |
EP2702615B1 (en) | Method of preparing a solar cell | |
JP2992159B2 (en) | Method of forming compound semiconductor thin film layer | |
JP2000087234A (en) | Device for producing compound film and production of compound film | |
JPH0555615A (en) | Method of manufacturing thin film solar cell | |
JPWO2013172253A1 (en) | Alloy for n-type light absorption layer, method for producing the same, and solar cell | |
Zweigart et al. | CuInSe 2 film growth using precursors deposited at low temperature | |
US10014431B2 (en) | Thin film solar cell and method of fabricating the same | |
CN102117862B (en) | Method for preparing chalcopyrite solar cell light absorption layer and cell thereof | |
KR101583027B1 (en) | Method of manufacturimg of CZTS-based solar cell light absorber and CZTS-based solar cell light absorber thereby | |
WO2023109712A1 (en) | Wide bandgap copper-gallium-selenium light absorption layer and preparation method therefor, and solar cell | |
KR20190010483A (en) | Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same | |
CN110565060A (en) | Preparation method of light absorption layer of thin-film solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080514 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 13 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |