[go: up one dir, main page]

JP2928020B2 - Silicon recovery method - Google Patents

Silicon recovery method

Info

Publication number
JP2928020B2
JP2928020B2 JP12402392A JP12402392A JP2928020B2 JP 2928020 B2 JP2928020 B2 JP 2928020B2 JP 12402392 A JP12402392 A JP 12402392A JP 12402392 A JP12402392 A JP 12402392A JP 2928020 B2 JP2928020 B2 JP 2928020B2
Authority
JP
Japan
Prior art keywords
silicon
water
silicon particles
particles
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12402392A
Other languages
Japanese (ja)
Other versions
JPH08164304A (en
Inventor
正年 位地
貞彦 横山
實 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12402392A priority Critical patent/JP2928020B2/en
Publication of JPH08164304A publication Critical patent/JPH08164304A/en
Application granted granted Critical
Publication of JP2928020B2 publication Critical patent/JP2928020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微細なシリコン粒子が
懸濁した水溶液からシリコンを回収する方法に関する。
The present invention relates to a method for recovering silicon from an aqueous solution in which fine silicon particles are suspended.

【0002】[0002]

【従来の技術】半導体のシリコンチップは、シリコンイ
ンゴットから切断及び研磨加工することによって製造さ
れる。このインゴットの切断や、切断されたウエファー
の研磨工程で発生する削り屑は、切断,研磨工程に使用
される水中に、シリコンの微細な粒子の懸濁した状態と
なって含まれる。半導体の発展に伴って、この量は膨大
なものになっている。
2. Description of the Related Art A semiconductor silicon chip is manufactured by cutting and polishing a silicon ingot. The shavings generated in the step of cutting the ingot and the step of polishing the cut wafer are contained in a state where fine silicon particles are suspended in water used in the step of cutting and polishing. This quantity has become enormous with the development of semiconductors.

【0003】[0003]

【発明が解決しようとする課題】上記工程で発生したよ
うな微細なシリコン粒子は、凝集しにくくて容易に沈降
しない。この理由は一般に次の二つと考えられており、
一つは、シリコン粒子表面が帯電しているので、粒子間
に電気的反発力があるためである。もう一つは、シリコ
ン粒子表面が酸化されているので表面が水和されてお
り、この水和層による立体障害によって粒子間結合が阻
害されるためである。
The fine silicon particles generated in the above steps are hard to aggregate and do not settle easily. This is generally thought to be for the following two reasons.
One is that since the surface of the silicon particles is charged, there is an electrical repulsion between the particles. The other is that the surface of the silicon particles is oxidized because the surface is oxidized, and steric hindrance by the hydrated layer inhibits interparticle bonding.

【0004】これに対して、このようなシリコン粒子を
回収する方法としては、物理的方法と化学的方法が知ら
れている。
On the other hand, as a method for recovering such silicon particles, a physical method and a chemical method are known.

【0005】物理的方法としては濾過や遠心分離する方
法があるが、上記シリコン粒子は粒径が細かすぎるため
濾過に目詰まりしやすく、実用的でない。また、遠心分
離法もあるが、水分に対してシリコン粒子の濃度が薄す
ぎて遠心分離の効率が悪く、さらに設備や運転にコスト
がかかり、この方法も実用的に乏しい。
[0005] As a physical method, there is a method of filtration or centrifugation, but the silicon particles are too practical to be clogged with filtration because the particle size is too small, which is not practical. There is also a centrifugal separation method. However, the concentration of silicon particles is too low with respect to moisture, so that the efficiency of centrifugal separation is low, and equipment and operation are costly.

【0006】化学的方法としては各種凝集剤による凝集
沈澱法がある。表面電荷を除去するものとしては、硫
酸、塩酸などの無機酸や硫酸アルミニウムなどの無機塩
があるが、水和層があるため効率が悪く、大量に添加す
る必要がある。そのため回収したシリコンの品位が低下
し、洗浄する場合も大きな手間がかかる。またこれらを
水洗等で洗い落とすと再び表面が帯電するので懸濁して
しまい、回収に大きな支障をきたす。水和層を除去する
ものとしてはアルコール類があるが、電荷消失効果があ
まりないため効率が悪く問題がある。さらに粒子間を架
橋結合するための高分子凝集剤もあるが、回収したシリ
コンから除去するのが困難でありシリコンの品位を向上
しにくい。これらに対し、フッ酸を添加してシリコン粒
子表面の酸化層を溶解し、水和しにくくして凝集沈澱さ
せることも報告されている(特開昭61−215211
号公報)。しかし効率的に凝集沈澱させるためには、も
うひとつの要因である電荷消失効果も必要であるが、フ
ッ酸をこのために必要な量添加すると、フッ酸によって
シリコンが溶解してしまいシリコンの回収率が低下して
しまう。
As a chemical method, there is a coagulation precipitation method using various coagulants. In order to remove the surface charge, there are inorganic acids such as sulfuric acid and hydrochloric acid and inorganic salts such as aluminum sulfate. However, since there is a hydrated layer, the efficiency is low and it is necessary to add a large amount. As a result, the quality of the recovered silicon deteriorates, and a great deal of time is required for cleaning. Also, if these are washed off with water or the like, the surface is charged again, so that they are suspended, which greatly hinders the recovery. Alcohols may be used to remove the hydrated layer, but have a problem in that the efficiency is poor because the effect of eliminating charges is not so high. There is also a polymer flocculant for cross-linking between particles, but it is difficult to remove it from the recovered silicon, and it is difficult to improve the quality of silicon. On the other hand, it has been reported that hydrofluoric acid is added to dissolve an oxide layer on the surface of silicon particles, thereby making it difficult to hydrate and causing coagulation and precipitation (Japanese Patent Laid-Open No. 61-215211).
No.). However, for efficient coagulation and sedimentation, the charge quenching effect, which is another factor, is also necessary.If hydrofluoric acid is added in an amount necessary for this purpose, the silicon is dissolved by the hydrofluoric acid and the silicon is recovered. The rate drops.

【0007】本発明はかかる事情に対してなされたもの
であり、水中に懸濁しているシリコン粒子の表面電荷を
消失させると供に、表面を疎水的に改質して水和層を形
成させないようにし、しかもシリコンの溶解量を最小限
にするようにして凝集分離した後、容易に除去できる様
な凝集剤によって、シリコンを効率的にかつ高収率で回
収し、その後必要に応じて回収したシリコンを高純度化
することを目的としている。
The present invention has been made in view of the above circumstances, and eliminates the surface charge of silicon particles suspended in water and, at the same time, does not form a hydrated layer by hydrophobically modifying the surface. And then collect the silicon efficiently and in high yield with a coagulant that can be easily removed after the coagulation and separation have been performed to minimize the amount of dissolved silicon. The purpose is to purify purified silicon.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明によるシリコン回収方法においては、シリコ
ン粒子が懸濁した水溶液に、フッ酸および水溶性無機電
解質を凝集剤としてを添加し、シリコン粒子を凝集分離
するものである。
In order to achieve the above object, in the method for recovering silicon according to the present invention, hydrofluoric acid and a water-soluble inorganic electrolyte are added as an aggregating agent to an aqueous solution in which silicon particles are suspended. It aggregates and separates particles.

【0009】また、前記水溶液より分離したシリコン粒
子に水洗処理を施して、回収されたシリコンを高純度化
するものである。
Further, the silicon particles separated from the aqueous solution are subjected to a water washing treatment to purify the recovered silicon.

【0010】[0010]

【作用】本発明におけるシリコン粒子の懸濁液とは、例
えば、シリコンインゴットの切削工程やシリコンウエフ
ァーの研磨工程などで発生する微細なシリコン粒子を含
む水溶液が挙げられる。
The suspension of silicon particles in the present invention includes, for example, an aqueous solution containing fine silicon particles generated in a step of cutting a silicon ingot or a step of polishing a silicon wafer.

【0011】これら実際のシリコン粒子の平均粒径は、
一般的に10μm程度から0.1μm程度である。この
他、懸濁して沈降しにくいシリコン粒子が、全体的また
は部分的に存在する水溶液の全てに本発明は適用可能で
ある。
The average particle size of these actual silicon particles is
Generally, it is about 10 μm to about 0.1 μm. In addition, the present invention can be applied to all aqueous solutions in which silicon particles that are suspended and hardly settle exist wholly or partially.

【0012】次に、この懸濁液に添加するフッ酸とは通
常のものを指し、特に、制限はない。これを水で希釈し
ても使用できる。
Next, hydrofluoric acid to be added to this suspension refers to a normal one, and there is no particular limitation. It can be used by diluting it with water.

【0013】水溶性無機電解質とは、水中で解離し溶解
することができる、無機酸や無機塩を指す。例えば、無
機酸としては塩酸、硫酸などが挙げられる。無機塩とは
無機酸と無機塩基との塩のことであり、例えば、フッ化
アンモニウム、フッ化ナトリウム、フッ化カリウムなど
のフッ化物やフルオロ珪酸鉄、フルオロ珪酸カリウムな
どのフルオロ珪酸塩、塩化カルシウム、塩化第二鉄など
の塩化物、硫酸第一鉄、硫酸第二鉄などの鉄塩、硫酸ア
ムミニウムなどのアルミニウム塩、などが挙げられる。
[0013] The water-soluble inorganic electrolyte refers to an inorganic acid or an inorganic salt which can be dissociated and dissolved in water. For example, examples of the inorganic acid include hydrochloric acid and sulfuric acid. The inorganic salt is a salt of an inorganic acid and an inorganic base, for example, fluorides such as ammonium fluoride, sodium fluoride, and potassium fluoride; And iron salts such as ferrous sulfate and ferric sulfate, and aluminum salts such as ammonium sulfate.

【0014】本発明の懸濁液に対するフッ酸の添加量
は、好ましくは0.01mol/l以上で、かつ0.5
mol/l未満、さらに好ましくは0.2mol/l未
満である。0.01mol/l未満だと、シリコン粒子
の沈降速度を向上させる効果が小さくなる。また、0.
5mol/l以上だとシリコンを溶解する傾向が強くな
ってシリコンの回収率が低下する。よってこの添加量は
必要最小限にするのが好ましい。
The amount of hydrofluoric acid added to the suspension of the present invention is preferably at least 0.01 mol / l, and
mol / l, more preferably less than 0.2 mol / l. If it is less than 0.01 mol / l, the effect of improving the sedimentation speed of the silicon particles will be small. Also, 0.
If it is 5 mol / l or more, the tendency to dissolve silicon becomes strong, and the recovery rate of silicon decreases. Therefore, it is preferable to minimize the amount of addition.

【0015】またフッ酸と一緒に添加する水溶性無機電
解質の添加量は、好ましくは0.01mol/l以上で
あり、これ未満だとシリコン粒子の沈降速度を向上させ
る効果が少なくなる。また添加量の上限については効率
的な凝集分離ができる量である限り特に制限は無いが、
必要最小限にしたほうが回収したシリコンを水洗してこ
れらを除去するのに手間がかからず効率的である。
The amount of the water-soluble inorganic electrolyte to be added together with the hydrofluoric acid is preferably at least 0.01 mol / l, and if it is less than 0.01 mol / l, the effect of improving the sedimentation speed of the silicon particles is reduced. The upper limit of the addition amount is not particularly limited as long as it is an amount capable of efficient coagulation separation,
It is more efficient and less troublesome to remove the recovered silicon by washing it with water if it is minimized.

【0016】本発明で凝集沈澱させて分離したシリコン
に付着したフッ酸や水溶性無機電解質を除去して、シリ
コンの純度を向上化させることは、水洗によって行え
る。具体的には水によるデカンテーションを繰り返す
か、濾過の際にシリコンの残渣に水を加えることによっ
て行うことができる。
In the present invention, the hydrofluoric acid and the water-soluble inorganic electrolyte attached to the silicon separated by coagulation and precipitation can be removed to improve the purity of the silicon by washing with water. Specifically, it can be performed by repeating decantation with water or adding water to the silicon residue during filtration.

【0017】以上から、本発明のフッ酸と水溶性無機電
解質の併用系を凝集剤として使用すると、シリコンを効
率的でしかも損失が少なく回収ができる。この様な効果
は、フッ酸のシリコン粒子の表面疎水化効果と、フッ酸
および水溶性無機電解質によるシリコン粒子表面の電荷
消失効果が組み合わさり、しかもフッ酸の添加量をこの
ような無機電解質と併用したことにより、大幅に低減化
できた結果と考えられる。また回収したシリコンを容易
に高純度化でき、しかも洗浄後も再懸濁しにくく効率的
に分離し回収できるが、これはフッ酸や水溶性無機電解
質は水に溶けるので、水洗によって容易にこれらを除去
でき、しかもシリコン粒子表面が疎水的に改質されてい
るので、凝集しやすいためと考えられる。
As described above, when the combined use of hydrofluoric acid and a water-soluble inorganic electrolyte of the present invention is used as a flocculant, silicon can be recovered efficiently and with little loss. Such an effect combines the hydrophobizing effect of hydrofluoric acid on the surface of silicon particles with the charge elimination effect of the hydrofluoric acid and the water-soluble inorganic electrolyte on the silicon particle surface. It is considered that the use of the combination significantly reduced the amount of the compound. In addition, the recovered silicon can be easily purified to a high degree, and it is difficult to resuspend even after washing, and can be efficiently separated and collected.However, since hydrofluoric acid and water-soluble inorganic electrolyte are soluble in water, these can be easily washed by water. This is probably because the silicon particles can be removed and the surface of the silicon particles is hydrophobically modified, so that they are easily aggregated.

【0018】[0018]

【実施例】以下本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0019】シリコン粒子が懸濁した水溶液にフッ酸お
よび水溶性無機電解質からなる凝集剤を添加して、実施
例1から10に示す混合物を作成した。各実施例につい
てのシリコン粒子の平均粒径、シリコン濃度、添加した
フッ酸、水溶性無機電解質の種類及び添加量を表1に示
す。
A coagulant consisting of hydrofluoric acid and a water-soluble inorganic electrolyte was added to the aqueous solution in which the silicon particles were suspended to prepare the mixtures shown in Examples 1 to 10. Table 1 shows the average particle size of the silicon particles, the silicon concentration, the type of the added hydrofluoric acid, and the type and amount of the water-soluble inorganic electrolyte for each example.

【0020】次に、各実施例の試料80mlを3分間攪
拌した後放置して、シリコンの沈降速度を測定した。沈
降速度は、上澄み液を定時間で分取し、これの濁度を測
定することで求めた。濁度の測定法は、JIS K01
01 9.2に準じ、カオリン標準液を用いて検量線を
作成した。この測定結果を表3に示す。
Next, 80 ml of each sample was stirred for 3 minutes and then left to measure the sedimentation rate of silicon. The sedimentation speed was determined by collecting the supernatant at a fixed time and measuring the turbidity. The method for measuring turbidity is JIS K01
According to 01 9.2, a calibration curve was prepared using a kaolin standard solution. Table 3 shows the measurement results.

【0021】またこれらの凝集剤を添加したことによっ
ての溶解するシリコン量は、凝集剤添加後10時間経過
した試料液を0.1μmの目の濾紙で濾過し、濾液を原
子吸光分析することによって求めた。この溶解量からシ
リコンの溶解率を計算し、結果を表3に示す。
The amount of silicon dissolved by the addition of these flocculants can be determined by filtering a sample solution 10 hours after the addition of the flocculant with a 0.1 μm filter paper, and subjecting the filtrate to atomic absorption analysis. I asked. The dissolution rate of silicon was calculated from the dissolution amount, and the results are shown in Table 3.

【0022】実施例1、6の試料については沈降分離し
たシリコンをそれぞれ濾過した後、濾紙上のシリコン残
渣に純水を100ml添加して吸引する操作を3回繰り
返して洗浄した。この洗浄したシリコンをビーカーに移
して純水を80ml加え、3分間攪拌した後の再沈降性
を測定した。沈降速度の測定は、前記と同じ方法で測定
した。測定結果を実施例11、12として表3に示す。
With respect to the samples of Examples 1 and 6, the precipitated silicon was filtered, and the operation of adding 100 ml of pure water to the silicon residue on the filter paper and suctioning was repeated three times to wash. The washed silicon was transferred to a beaker, and 80 ml of pure water was added. After stirring for 3 minutes, the re-sedimentation property was measured. The measurement of the sedimentation velocity was measured by the same method as described above. Table 3 shows the measurement results as Examples 11 and 12.

【0023】また、実施例9の試料については沈降分離
したシリコン上澄みをデカンテーションし、さらに純水
100mlを添加した後、攪拌して放置し、デカンテー
ションする操作を3回繰り返した。そして純水を80m
l添加して攪拌した後、前実施例と同様に沈降速度を測
定した。測定結果を実施例13として表3に示す。
For the sample of Example 9, the operation of decanting the sedimented and separated silicon supernatant, adding 100 ml of pure water, stirring and leaving, and decanting was repeated three times. And 80m of pure water
After the addition and stirring, the sedimentation velocity was measured in the same manner as in the previous example. Table 3 shows the measurement results as Example 13.

【0024】さらに実施例11〜13について、沈降性
を見た時の上澄み液の電気伝導度を測定して、シリコン
の洗浄度を調べた。その結果を表5に示す。
Further, with respect to Examples 11 to 13, the electric conductivity of the supernatant liquid when the sedimentation property was observed was measured, and the cleaning degree of silicon was examined. Table 5 shows the results.

【0025】比較のため、表2に示すような凝集剤を添
加しない試料、フッ酸、またはそれ以外の凝集剤を添加
した試料を比較例1から10として、これらについて、
その懸濁液を3分間攪拌した後のシリコンの沈降速度と
シリコンの溶解率を実施例と同様に測定した。この結果
を表4に示す。そして比較例1、2のシリコン懸濁液の
電気伝導度を測定し、結果をそれぞれ比較例11、12
として表5に示す。
For comparison, the samples shown in Table 2 to which no coagulant was added, the samples to which hydrofluoric acid or other coagulants were added were designated as Comparative Examples 1 to 10, and
After the suspension was stirred for 3 minutes, the sedimentation rate of silicon and the dissolution rate of silicon were measured in the same manner as in the example. Table 4 shows the results. Then, the electrical conductivity of the silicon suspensions of Comparative Examples 1 and 2 was measured, and the results were compared with Comparative Examples 11 and 12, respectively.
As shown in Table 5.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】以上実施例と比較例とを比較して明かなと
おり、フッ酸および水溶性無機電解質を凝集剤としてシ
リコン粒子の懸濁液に添加すると、他の凝集剤に比べ、
効率的にしかも損失少なくシリコン粒子を凝集沈澱さ
せ、分離できることがわかった。また、回収したシリコ
ンを水洗して高純度化することが可能となり、さらに水
洗後の沈降分離性も良好で、再懸濁しにくいことが判明
した。
As is clear from the comparison between the examples and the comparative examples, when hydrofluoric acid and a water-soluble inorganic electrolyte are added to the suspension of silicon particles as a flocculant,
It has been found that silicon particles can be coagulated and precipitated efficiently and with little loss and can be separated. In addition, it was found that the recovered silicon could be washed with water to be highly purified, and the sedimentation and separability after washing with water was good, and it was difficult to resuspend.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、シ
リコン粒子の懸濁液からシリコンを効率的にしかも高収
率で分離回収することができる。また必要に応じて回収
したシリコンを高純度化することができ、その結果、こ
れらを有効に再資源化できる効果を有する。
As described above, according to the present invention, silicon can be efficiently separated and recovered from a suspension of silicon particles at a high yield. In addition, it is possible to purify the recovered silicon as needed, and as a result, it is possible to effectively recycle them.

フロントページの続き (72)発明者 鶴見 實 神奈川県横浜市緑区榎ケ丘30−2−1− 103 (56)参考文献 特開 平4−358594(JP,A) 特開 平4−27425(JP,A) 特開 平3−84098(JP,A) 特開 昭61−215211(JP,A) 特開 昭48−37958(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 21/01 C02F 1/52 C01B 33/02 - 33/039 Continuation of front page (72) Inventor Minoru Tsurumi 30-2-1-103 Enokaoka, Midori-ku, Yokohama-shi, Kanagawa Prefecture (56) References JP-A-4-358594 (JP, A) JP-A-4-27425 ( JP, A) JP-A-3-84098 (JP, A) JP-A-61-215211 (JP, A) JP-A-48-37958 (JP, A) (58) Fields investigated (Int. Cl. 6 , (DB name) B01D 21/01 C02F 1/52 C01B 33/02-33/039

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコン粒子が懸濁した水溶液に、フッ
酸および水溶性無機電解質を凝集剤として添加してシリ
コン粒子を凝集沈澱させシリコンを分離することを特徴
とするシリコンの回収方法。
1. A method for recovering silicon, characterized in that hydrofluoric acid and a water-soluble inorganic electrolyte are added as an aggregating agent to an aqueous solution in which silicon particles are suspended, whereby silicon particles are aggregated and precipitated to separate silicon.
【請求項2】 前記水溶液から分離したシリコン粒子に
水洗処理を施して、回収されたシリコンを高純度化する
請求項1記載のシリコンの回収方法。
2. The method for recovering silicon according to claim 1, wherein the silicon particles separated from the aqueous solution are subjected to a water washing treatment to purify the recovered silicon.
JP12402392A 1992-05-18 1992-05-18 Silicon recovery method Expired - Fee Related JP2928020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12402392A JP2928020B2 (en) 1992-05-18 1992-05-18 Silicon recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12402392A JP2928020B2 (en) 1992-05-18 1992-05-18 Silicon recovery method

Publications (2)

Publication Number Publication Date
JPH08164304A JPH08164304A (en) 1996-06-25
JP2928020B2 true JP2928020B2 (en) 1999-07-28

Family

ID=14875124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12402392A Expired - Fee Related JP2928020B2 (en) 1992-05-18 1992-05-18 Silicon recovery method

Country Status (1)

Country Link
JP (1) JP2928020B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584117B2 (en) * 2005-11-09 2010-11-17 日本エコロジー株式会社 Method for treating waste liquid containing silicon particles, and method for recovering silicon from waste liquid containing silicon particles
JP4690263B2 (en) * 2006-07-21 2011-06-01 エム・セテック株式会社 Wafer backside grinding method and apparatus
JP5188923B2 (en) * 2008-10-07 2013-04-24 株式会社ディスコ Mill recovery method
EP2381017B1 (en) * 2008-12-26 2019-11-20 Mitsubishi Materials Corporation Method for washing polycrystalline silicon, washing device, and method for producing polycrystalline silicon
JP2012081385A (en) * 2010-10-07 2012-04-26 Disco Corp Separation apparatus
JP5868150B2 (en) 2011-12-06 2016-02-24 株式会社ディスコ Waste liquid treatment equipment

Also Published As

Publication number Publication date
JPH08164304A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
JP2012514349A5 (en)
JP2928020B2 (en) Silicon recovery method
JP4168520B2 (en) Method for treating CMP drainage
JP2001508697A (en) Physicochemical treatment of runoff for consumption, especially surface water
HU211777B (en) Process for purifying plaster
JPH0687607A (en) Method for recovering silicon
JP2000087154A (en) Method for recovering rare earth element from used rare earth element type abrasive material
JPH05237481A (en) Treatment of wastewater containing fluorine and silicon
JP3413394B2 (en) Method for recovering cerium oxide from cerium oxide abrasive waste liquid for optical polishing and method for eliminating pollution from cerium oxide abrasive waste liquid for optical polishing
TWI523817B (en) The recovery method of diamond abrasive grain
JP2001009723A (en) Abrasive recovery equipment
JP4657172B2 (en) Method for purifying metal silicon
JP6372059B2 (en) Collection method of cerium abrasive grains
KR100582524B1 (en) Recycling method of phosphate-containing waste etching solution
JP5370598B2 (en) Method for recovering abrasive components containing cerium oxide from used abrasive slurry
JP4296706B2 (en) Method for producing palladium powder
JP2003147455A (en) Method of recovering tantalum compound from wire saw slurry
JPH07316846A (en) Method for regenerating chemical and mechanical polishing solution
JP3937273B2 (en) Method for treating slurry containing colloidal silica
JPS62294491A (en) Treatment of waste water incorporating gallium and arsenic
CN115739402B (en) A method for flotation of silicon from silicon slag
JP2003236559A (en) Method for recovering pollutant in polluted water
CN104603356A (en) Purification process for partly-hydrolyzed cellulose
JP3401179B2 (en) Silica-containing geothermal hydrothermal treatment method
KR20060002636A (en) Recycling method of phosphate-containing waste etching solution

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990413

LAPS Cancellation because of no payment of annual fees