JP2917456B2 - Glowless glass - Google Patents
Glowless glassInfo
- Publication number
- JP2917456B2 JP2917456B2 JP20114890A JP20114890A JP2917456B2 JP 2917456 B2 JP2917456 B2 JP 2917456B2 JP 20114890 A JP20114890 A JP 20114890A JP 20114890 A JP20114890 A JP 20114890A JP 2917456 B2 JP2917456 B2 JP 2917456B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- transparent
- glass
- refractive index
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011521 glass Substances 0.000 title claims description 60
- 239000010408 film Substances 0.000 claims description 84
- 239000010409 thin film Substances 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 25
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 7
- 239000012788 optical film Substances 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 35
- 230000000694 effects Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000005340 laminated glass Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000005546 reactive sputtering Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910006249 ZrSi Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Landscapes
- Surface Treatment Of Glass (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は無光彩ガラスに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an achromatic glass.
[従来の技術] 従来より第3図のように、ガラス30の表面に高屈折率
透明薄膜31を形成し、機能性ガラスを作製する手法が多
く提案されている。機能性ガラスとしては例えば干渉フ
ィルタ、反射防止膜、熱線反射ガラス、透明導電性ガラ
ス、ヒートミラー、電磁遮蔽ガラス、電熱風防ガラス、
紫外線カットガラス等が挙げられる。[Prior Art] Conventionally, as shown in FIG. 3, many techniques for forming a high refractive index transparent thin film 31 on the surface of a glass 30 to produce a functional glass have been proposed. Examples of the functional glass include an interference filter, an antireflection film, a heat ray reflection glass, a transparent conductive glass, a heat mirror, an electromagnetic shielding glass, an electrothermal windshield,
UV cut glass and the like.
これらのうち、透明導電性ガラス、ヒートミラー、電
磁遮蔽ガラス、電熱風防ガラス等では透明な酸化物導電
体を主要構成層として形成する場合が多く、特に、イン
ジウム・スズ酸化物(ITO)やフッ素ドープ酸化スズ(S
nO2:F)またはアルミニウムドープ酸化亜鉛(ZnO:Al)
を用いることが多い。Of these, transparent conductive glass, heat mirrors, electromagnetic shielding glass, electrothermal windshield, and the like often form a transparent oxide conductor as a main constituent layer, particularly, indium tin oxide (ITO) and fluorine. Doped tin oxide (S
nO 2 : F) or aluminum doped zinc oxide (ZnO: Al)
Is often used.
また、紫外線カットガラスとしては酸化亜鉛(ZnO)
膜を紫外線吸収層としてガラス表面に被覆したものが挙
げられる。In addition, as an ultraviolet cut glass, zinc oxide (ZnO)
One in which the film is coated on the glass surface as an ultraviolet absorbing layer is exemplified.
ところが、これらの透明酸化物材料は、いずれも屈折
率が1.8〜2.2とガラスに比して大きいため、干渉条件を
満たす波長での反射率が大きくなり、分光反射(透過)
スペクトルにリップルが観測され、反射(透過)が極大
となる波長がある。このため、大面積のガラスにこれら
の薄膜がコーティングされた場合、面内の膜厚変動(ム
ラ)により、反射が極大となる波長がずれ、反射色の色
ムラとなって目に感知される。However, these transparent oxide materials all have a refractive index of 1.8 to 2.2, which is larger than that of glass, so that the reflectance at a wavelength that satisfies the interference condition increases, and the spectral reflection (transmission) occurs.
There is a wavelength at which a ripple is observed in the spectrum and the reflection (transmission) is maximized. For this reason, when these thin films are coated on a large-area glass, the wavelength at which the reflection becomes maximum shifts due to the in-plane film thickness variation (unevenness), and the color of the reflected color is perceived by the eye as unevenness. .
ガラス面上での膜厚分布は、膜の形成手法にもよる
が、例えば1m×1mのガラスを考えた場合、蒸着やCVDで
は±5%以内に抑えることは極めて困難である。本発明
者の研究によれば、この程度の膜厚分布を仮定すると、
前記の透明酸化物膜が0.15μm以上の膜厚でガラス基板
上に形成された場合、面内の色ムラが問題となるレベル
に達する。膜厚を厚くすると、反射色の彩度は落ち、0.
6μm以上の厚さでは鮮かさは減少してゆく。一方、色
ムラが問題とならないレベルに達するためには3μm以
上、好ましくは5μm以上の膜厚が必要である。Although the film thickness distribution on the glass surface depends on the film formation technique, for example, when considering a glass of 1 m × 1 m, it is extremely difficult to suppress it to within ± 5% by vapor deposition or CVD. According to the study of the present inventor, assuming such a film thickness distribution,
When the transparent oxide film is formed on a glass substrate with a thickness of 0.15 μm or more, in-plane color unevenness reaches a level at which a problem occurs. As the film thickness increases, the saturation of the reflected color decreases, and
At a thickness of 6 μm or more, the vividness decreases. On the other hand, a film thickness of 3 μm or more, preferably 5 μm or more is required to reach a level at which color unevenness does not cause a problem.
またたとえ、膜厚分布を極めて均一にコントロールで
きたとしても、分光スペクトルでの大きなリップルは残
るので鮮かな色彩として目に感知される。これが大面積
ガラスに形成されると、ガラス面と視線のなす角、すな
わち視覚により極大反射波長がずれ色彩が変化するため
やはり色ムラとして感知される。したがって、分光スペ
クトルのリップル自体を小さく抑えることが望ましいの
である。Even if the film thickness distribution can be controlled to be very uniform, large ripples in the spectrum remain and are perceived as bright colors by the eyes. When this is formed on a large-area glass, the angle between the glass surface and the line of sight, that is, the maximum reflection wavelength shifts due to visual perception, and the color changes, which is also sensed as color unevenness. Therefore, it is desirable to suppress the ripple itself of the spectrum.
膜厚が0.15μmより薄い場合には、膜厚分布の変化量
が±75Å以内となるので面内の色ムラはほとんど感知さ
れないが、視覚による色ムラはやはり問題となる。When the film thickness is smaller than 0.15 μm, the variation in the film thickness distribution is within ± 75 °, so that the color unevenness in the surface is hardly perceived, but the color unevenness due to visual vision still poses a problem.
このように、高屈折率透明薄膜をガラス基板へある程
度以上厚く形成する場合には、面内の膜厚分布や視角の
変化により、ガラスが光彩(色ムラ)を発してしまい、
商品性を著しく損なう場合がある。As described above, when a high-refractive-index transparent thin film is formed on a glass substrate so as to be thicker than a certain thickness, the glass emits glow (color unevenness) due to a change in an in-plane film thickness distribution and a viewing angle.
The merchantability may be significantly impaired.
これを防止するために、これまでにいくつかの提案が
なされている。Several proposals have been made to prevent this.
特公昭63−39535には、高屈折率透明薄膜として赤外
反射物質を用い、ガラスとの間に屈折率n=1.7〜1.8、
膜厚d=0.64〜0.080μmの層を設けることが示されて
いる。この層を与える具体的な手段については、混合物
の真空蒸着または常圧CVDが例記されており、大面積ガ
ラスへのコーティングを考えると常圧CVDが有利である
とし、実施例には、常圧CVDのみが記載されている。JP-B-63-39535 uses an infrared-reflective material as a high-refractive-index transparent thin film, and has a refractive index n = 1.7 to 1.8 with glass.
It is shown that a layer having a thickness d = 0.64 to 0.080 μm is provided. As a specific means for providing this layer, vacuum deposition or atmospheric pressure CVD of a mixture is described.Atmospheric pressure CVD is considered to be advantageous in consideration of coating on a large area glass. Only pressure CVD is described.
特開平1−201046には、この下地層を形成する現実的
な手段として、SiCxOyを形成する手法が示されている。
これは板ガラスの製造工程としてフロート法を想定し、
スズ槽中でシランと不飽和炭化水素化合物と二酸化炭素
の混合ガスをガラス表面に当てるもので、基本的には常
圧CVDにより、中間屈折率透明膜を形成する方法であ
る。Japanese Patent Application Laid-Open No. 1-201046 discloses a method of forming SiC x O y as a practical means of forming this underlayer.
This assumes the float method as a manufacturing process of sheet glass,
A method in which a mixed gas of silane, an unsaturated hydrocarbon compound and carbon dioxide is applied to a glass surface in a tin bath, and is basically a method of forming an intermediate refractive index transparent film by normal pressure CVD.
常圧CVDによる成膜は大量のガラスを製造プロセス中
で連続的に(いわゆるオンラインで)処理する場合に特
にコストの点で極めて有力な方法であるが、他方多品種
少量生産や多層成膜には不向きである。Atmospheric pressure CVD is an extremely effective method, especially in terms of cost, when processing a large amount of glass continuously (so-called on-line) during the manufacturing process. Is not suitable.
このため、現在の建築用、自動車用の熱線反射ガラス
はスパッタリング法による製造方式をとる場合が多い。
スパッタリング法による利点は、膜厚の均一性、制御性
に優れること、多品種少量生産や多層膜の成膜が容易で
あること等が挙げられる。また、蒸着やプラズマCVDな
ど他の真空成膜手段との組み合せが装置設計上容易であ
る利点もある。このため、スパッタリング法による光彩
防止のための中間屈折率下層膜の作製が望まれていた。For this reason, the current heat ray reflective glass for architectural and automotive use is often manufactured by a sputtering method.
Advantages of the sputtering method include excellent uniformity and controllability of film thickness, easy production of many kinds in small quantities, and easy formation of a multilayer film. Another advantage is that the combination with other vacuum film forming means such as vapor deposition and plasma CVD is easy in terms of apparatus design. For this reason, it has been desired to produce an intermediate refractive index lower layer film for preventing brilliancy by a sputtering method.
一方、スパッタリング法の欠点は、成膜スピードが遅
く、コストが高いことである。このため、スパッタリン
グ法の成膜スピードを上げるための研究が盛んに行なわ
れているが、金属酸化物被膜を金属ターゲットからの反
応性スパッタリングで形成する際の成膜速度は著しく遅
く、安定で耐久性に優れる中間屈折率透明材料をスパッ
タリング法で高速に成膜することは難しいとされてい
た。On the other hand, the disadvantages of the sputtering method are that the film formation speed is low and the cost is high. For this reason, studies to increase the film forming speed of the sputtering method have been actively conducted, but the film forming speed when forming a metal oxide film by reactive sputtering from a metal target is extremely slow, stable and durable. It has been said that it is difficult to form an intermediate refractive index transparent material having excellent properties at high speed by a sputtering method.
[発明の解決しようとする課題] 本発明の目的は0.15μm以上の厚さで高屈折率透明薄
膜をガラス基板に形成した場合に問題となる光彩(色ム
ラ)を防止した無光彩ガラスを提供することである。[Problems to be Solved by the Invention] An object of the present invention is to provide an achromatic glass in which glow (color unevenness) which is a problem when a high refractive index transparent thin film having a thickness of 0.15 μm or more is formed on a glass substrate is prevented. It is to be.
[課題を解決するための手段] 本発明は、ガラス基板上に屈折率n0が1.8以上で厚みd
0が0.15μm以上の高屈折率透明薄膜が形成され、該高
屈折率透明薄膜と該ガラス基板との間に、屈折率n2が1.
65〜1.8で光学膜厚n2d2が0.1〜0.18μmであって、かつ
Zr,Ti,Ta,Hf,Mo,W,Nb,Sn,La,Crのうち少なくとも1種と
Siとを含む複合酸化物を主成分とする透明下層膜が形成
され、該高屈折率透明薄膜の該透明下層膜とは反対側
に、透明上層膜が形成され、該透明上層膜の屈折率を
n1、光学膜厚をn1d1としたとし、4n1d1≧0.55μmかつ4
n2d2≦0.55μm、または、4n1d1≦0.55μmかつ4n2d2≧
0.55μmを満たすように該透明上層膜および該透明下層
膜の膜厚が設定されている無光彩ガラスを提供する。The present invention [SUMMARY OF] has a thickness in the refractive index n 0 on the glass substrate is 1.8 or more d
0 is formed a high refractive index transparent thin film of more than 0.15 [mu] m, between the high-refractive-index transparent thin film and the glass substrate, the refractive index n 2 1.
65 to 1.8, the optical film thickness n 2 d 2 is 0.1 to 0.18 μm, and
Zr, Ti, Ta, Hf, Mo, W, Nb, Sn, La, Cr
A transparent lower layer film containing a composite oxide containing Si as a main component is formed, and a transparent upper layer film is formed on a side of the high refractive index transparent thin film opposite to the transparent lower layer film, and a refractive index of the transparent upper layer film is formed. To
n 1 , the optical film thickness is n 1 d 1 , 4n 1 d 1 ≧ 0.55 μm and 4
n 2 d 2 ≦ 0.55 μm, or 4n 1 d 1 ≦ 0.55 μm and 4n 2 d 2 ≧
An achromatic glass in which the thicknesses of the transparent upper layer film and the transparent lower layer film are set so as to satisfy 0.55 μm.
第2図は本発明の無光彩ガラスの一例の断面図であ
る。第1図は比較例に相当するガラスの断面図である。
10、20はガラス基板、11、21はn0≧1.8、d0≧0.15μm
の高屈折率透明薄膜、12、22は透明下層膜、23は透明上
層膜である。FIG. 2 is a sectional view of an example of the achromatic glass of the present invention. FIG. 1 is a cross-sectional view of glass corresponding to a comparative example.
10 and 20 are glass substrates, 11 and 21 are n 0 ≧ 1.8, d 0 ≧ 0.15 μm
, A high refractive index transparent thin film, 12 and 22 are transparent lower layer films, and 23 is a transparent upper layer film.
高屈折率透明薄膜21としては、インジウム・スズ酸化
物、フッ素ドープ酸化スズ、酸化亜鉛等が挙げられるが
これらに限られない。Examples of the high refractive index transparent thin film 21 include, but are not limited to, indium tin oxide, fluorine-doped tin oxide, and zinc oxide.
透明下層膜22は、光彩を防止するために、屈折率n2=
1.65〜1.8、光学膜厚n2d2=0.1〜0.18μmの薄膜とされ
る。この薄膜は、Zr,Ti,Ta,Hf,Mo,W,Nb,Sn,La,Crのうち
少なくとも1種とSiとを含む複合酸化物を主成分とする
膜とされる。The transparent lower layer film 22 has a refractive index n 2 =
The thin film has a thickness of 1.65 to 1.8 and an optical thickness of n 2 d 2 = 0.1 to 0.18 μm. This thin film is a film mainly composed of a composite oxide containing at least one of Zr, Ti, Ta, Hf, Mo, W, Nb, Sn, La, and Cr and Si.
この膜は、上記Zr等の金属とSiとの合金ターゲットを
使用して酸素含有雰囲気中での直流の反応性スパッタリ
ング法により高速で成膜される。また、物理的耐久性お
よび化学的耐久性に優れている。なかでもZrとSiを含む
複合酸化物は、耐酸性、耐アルカリ性ともに優れている
ので好ましい。また、上記Zr等の金属とSiとの複合酸化
物は、その混合割合を変化させることで屈折率を所望の
値に調整できる利点もある。This film is formed at a high speed by a direct current reactive sputtering method in an oxygen-containing atmosphere using an alloy target of a metal such as Zr and Si and Si. Also, it has excellent physical durability and chemical durability. Among them, a composite oxide containing Zr and Si is preferable because it has excellent acid resistance and alkali resistance. Further, the composite oxide of a metal such as Zr and Si has an advantage that the refractive index can be adjusted to a desired value by changing the mixing ratio.
Zr−Si−O系の膜の場合、n2=1.65〜1.8とするため
には、Zr50原子に対してSi50原子以上150原子以下とす
るのが好ましい。In the case of a Zr—Si—O-based film, it is preferable that the number of Si atoms be not less than 50 atoms and not more than 150 atoms in order to make n 2 = 1.65 to 1.8.
上述の無光彩ガラスをプラスチック中間膜を介しても
う一枚のガラス基板と積層した合せガラスについても、
同様の効果が得られる。Regarding the laminated glass obtained by laminating the achromatic glass described above with another glass substrate via a plastic interlayer film,
Similar effects can be obtained.
[作用] そもそも色ムラの発現する原因は高屈折率透明薄膜の
上下界面における光の干渉作用である。このため、分光
スペクトルに極大、極小を生じ、該高屈折率透明薄膜の
膜厚変動による極大極小のずれが色ムラとして感知され
る。[Function] The cause of the color unevenness is the interference of light at the upper and lower interfaces of the high refractive index transparent thin film. For this reason, a maximum and a minimum are generated in the spectral spectrum, and a deviation between the maximum and the minimum due to a change in the thickness of the high refractive index transparent thin film is detected as color unevenness.
本発明における透明下層膜は、ガラス基板と高屈折率
透明薄膜の界面における反射を防止する働きをする。こ
の結果、この界面が消失したことと等価になり、反射、
透過における光の干渉がなくなる。すなわち分光スペク
トルにおけるリップルが消失し、膜厚が変動してもスペ
クトルが変化しなくなる。The transparent underlayer film in the present invention functions to prevent reflection at the interface between the glass substrate and the high refractive index transparent thin film. As a result, this interface is equivalent to the disappearance of the interface, and the reflection,
Light interference in transmission is eliminated. That is, the ripple in the spectral spectrum disappears, and the spectrum does not change even if the film thickness changes.
この光の干渉による反射防止作用は、厳密には特定の
1点の波長(主波長)でしか成立しないので、他の波長
では若干のリップルが残存する。Strictly, the anti-reflection effect due to the interference of light can be achieved only at a specific wavelength (main wavelength), so that a slight ripple remains at other wavelengths.
そこで、さらに効果的にリップルを防止する方法とし
て第2図のように該高屈折率透明薄膜の上層にも反射を
防止する透明上層膜を設ける。Therefore, as a method for more effectively preventing ripples, a transparent upper layer film for preventing reflection is provided also on the upper layer of the high refractive index transparent thin film as shown in FIG.
こうすると高屈折率透明薄膜の上下界面両方における
光の干渉作用を消失させることができ、ほぼ完全に光彩
のない無光彩ガラスを得ることができる。This makes it possible to eliminate the interference effect of light on both the upper and lower interfaces of the high refractive index transparent thin film, and to obtain an achromatic glass having almost no glow.
この透明上層膜23は、屈折率n1=1.35〜1.55、光学膜
厚n1d1=0.045〜0.075μmであることが好ましい。透明
上層膜の構成材料としては、特に限定されず、SiO2も使
用できるが、Zr,Ti,Ta,Hf,Mo,W,Nb,Sn,La,Crのうち少な
くとも1種とSiとを含む複合酸化物膜は、その組成割合
に応じてn1=1.35〜1.55の膜が直流の反応性スパッタリ
ング法により高速で成膜されるので好ましい。The transparent upper layer film 23 preferably has a refractive index n 1 = 1.35 to 1.55 and an optical thickness n 1 d 1 = 0.045 to 0.075 μm. The constituent material of the transparent upper layer film is not particularly limited, and SiO 2 can also be used, and includes at least one of Zr, Ti, Ta, Hf, Mo, W, Nb, Sn, La, and Cr and Si. The composite oxide film is preferable because a film of n 1 = 1.35 to 1.55 is formed at a high speed by a DC reactive sputtering method according to the composition ratio.
ZrとSiを含む混合酸化物膜に関しては、Zr20原子に対
してSi80原子以上の組成であればn1≦1.55となるので好
ましい。一方、Zr4原子に対してSi96原子以下であれ
ば、反応性スパッタリング時において上記Zr等と金属と
Siとの合金ターゲットの表面が酸化され導電性が低下す
ることを防止できるので、直流の反応性スパッタリング
を安定して行なうことができる。Regarding a mixed oxide film containing Zr and Si, a composition of 80 atoms or more of Si with respect to 20 atoms of Zr is preferable because n 1 ≦ 1.55. On the other hand, if Si atoms are 96 atoms or less with respect to Zr 4 atoms, the above Zr etc.
Since it can be prevented that the surface of the alloy target with Si is oxidized and the conductivity is lowered, DC reactive sputtering can be stably performed.
また、屈折率n1、光学膜厚n1d1の透明上層膜23、およ
び、屈折率n2、光学膜厚n2d2の透明下層膜22が反射を防
止できる主波長はそれぞれ4n1d1(以下、λ1という)
および4n2d2(以下、λ2という)で表される。λ1と
λ2を適当にずらすことにより、残存リップルが十分に
抑制されている波長範囲を拡大でき、光彩防止効果をさ
らに高めることができる。The main wavelengths at which the transparent upper layer 23 having a refractive index n 1 and an optical thickness n 1 d 1 and the transparent lower layer 22 having a refractive index n 2 and an optical thickness n 2 d 2 can prevent reflection are 4n 1 d 1 (hereinafter referred to as λ 1 )
And 4n 2 d 2 (hereinafter referred to as λ 2 ). By appropriately shifting λ 1 and λ 2 , the wavelength range in which the residual ripple is sufficiently suppressed can be expanded, and the effect of preventing glow can be further enhanced.
本発明においては、λ1≧0.55μmかつλ2≦0.55μ
m、またはλ1≦0.55μmかつλ2≧0.55μmとするこ
とにより可視域の広い波長範囲にわたって残存リップル
を十分に抑制する。この際、λ1とλ2が0.05μm以上
離れていると、なお好ましい。これは透明上層膜により
λ1付近の波長におけるリップルを抑制し、透明下層膜
によりλ2付近の波長のリップルを抑制できるためであ
る。In the present invention, λ 1 ≧ 0.55 μm and λ 2 ≦ 0.55 μm
By setting m or λ 1 ≦ 0.55 μm and λ 2 ≧ 0.55 μm, residual ripple is sufficiently suppressed over a wide wavelength range in the visible region. At this time, it is more preferable that λ 1 and λ 2 are separated by 0.05 μm or more. This is because the transparent by upper layer suppresses ripples in wavelength around lambda 1, can be suppressed ripple wavelength near lambda 2 by a transparent underlayer film.
また、特に、ある特定の波長範囲に相当する色調を嫌
うような場合には、その波長範囲内に2つの波長を設定
し、これらがλ1、λ2に相当するように透明上層膜お
よび透明下層膜の膜厚を調整できる。例えば、赤系統の
色調を嫌う場合にはλ1=0.58μm、λ2=0.65μm等
とすることにより、この範囲の波長域のリップルを抑制
できる。In particular, when a color tone corresponding to a specific wavelength range is disliked, two wavelengths are set within the wavelength range, and the transparent upper layer film and the transparent layer film are set so that they correspond to λ 1 and λ 2. The thickness of the lower layer film can be adjusted. For example, when the color tone of the red system is disliked, ripples in the wavelength range in this range can be suppressed by setting λ 1 = 0.58 μm, λ 2 = 0.65 μm, and the like.
このような無光彩ガラスを、薄膜が形成されている側
を内側にして、プラスチック中間膜を介してもう一枚の
ガラス基板と積層した無光彩合せガラスを形成すること
もできる。第4図は本発明の無光彩合せガラスの一例の
断面図である。40はガラス基板、41は高屈折率透明薄膜
(第1図11、第2図21と同じ)、42は透明下層膜(第1
図12、第2図22と同じ)、43は透明上層膜、44はプラス
チック中間膜である。Such an achromatic glass may be laminated with another glass substrate laminated via a plastic intermediate film, with the side on which the thin film is formed being on the inside, to form an achromatic laminated glass. FIG. 4 is a cross-sectional view of one example of the non-glazed laminated glass of the present invention. 40 is a glass substrate, 41 is a high-refractive-index transparent thin film (same as FIG. 11 and FIG. 21), and 42 is a transparent underlayer film (first
12, 43 are a transparent upper layer film, and 44 is a plastic intermediate film.
この場合には、透明上層膜43は、高屈折率透明薄膜41
とプラスチック中間膜44との界面での干渉による反射を
抑制するために、屈折率n3=1.65〜1.8、光学膜厚n3d3
=0.1〜0.18μmであることが望ましい。材料として
は、透明下層膜22と同様の膜を採用できる。In this case, the transparent upper layer film 43 is a high refractive index transparent thin film 41.
To suppress the reflection due to interference at the interface between the plastic intermediate layer 44 and a refractive index n 3 = from 1.65 to 1.8, the optical thickness n 3 d 3
= 0.1 to 0.18 μm. As the material, a film similar to the transparent lower film 22 can be adopted.
また、第2図の例と同様に、透明上層膜43(屈折率
n3、光学膜厚n3d3)、および透明下層膜42(屈折率n4、
光学膜厚n4d4)がそれぞれ反射を防止できる主波長λ3
(=4n3d3)、λ4(=4n4d4)を、λ3≧0.55μmかつ
λ4≦0.55μm、またはλ3≦0.55μmかつλ4≧0.55
μmとすることにより、残存リップルが十分に抑制され
ている波長範囲を拡大できる。Further, similarly to the example of FIG. 2, the transparent upper layer film 43 (refractive index
n 3 , optical film thickness n 3 d 3 ), and transparent underlayer film 42 (refractive index n 4 ,
The main wavelength λ 3 at which the optical film thickness n 4 d 4 ) can prevent reflection.
(= 4n 3 d 3 ) and λ 4 (= 4n 4 d 4 ) are defined as λ 3 ≧ 0.55 μm and λ 4 ≦ 0.55 μm, or λ 3 ≦ 0.55 μm and λ 4 ≧ 0.55
By setting it to μm, the wavelength range in which the residual ripple is sufficiently suppressed can be expanded.
[実施例] 「例1(比較例)」 Zr:Si=1:2の合金ターゲットを用い、アルゴンと酸素
の混合雰囲気の1×10-3〜1×10-2Torrの真空中で直流
の反応性スパッタリング法により、ZrSixOyの膜をガラ
ス基板上に900Å形成した。この膜の屈折率は1.74であ
り、光学膜厚は0.16μm、λ2は0.63μmに相当する。
この上にイオンプレーティング法によりITO薄膜を8000
Å形成した。別に同様にして成膜したITO膜の屈折率を
測定したところ2.0であった。この試料をサンプル1と
した(第1図の構成)。[Example] [Example 1 (Comparative Example)] Using an alloy target of Zr: Si = 1: 2, applying a direct current in a vacuum of 1 × 10 −3 to 1 × 10 −2 Torr in a mixed atmosphere of argon and oxygen. By a reactive sputtering method, a ZrSi x O y film was formed on a glass substrate by 900 μm. The refractive index of this film is 1.74, the optical film thickness is 0.16 μm, and λ 2 is 0.63 μm.
On top of this, an ITO thin film of 8000 was formed by ion plating.
Å formed. Separately, when the refractive index of the ITO film formed in the same manner was measured, it was 2.0. This sample was designated as Sample 1 (the configuration in FIG. 1).
「例2(実施例)」 サンプル1の上に蒸着によりSiO2膜を900Å形成し
た。別に同様に成膜したSiO2薄膜の屈折率は1.47であ
り、光学膜厚は0.13μm、λ1は0.52μmに相当する。
この試料をサンプル2とした(第2図の構成)。“Example 2 (Example)” An SiO 2 film was formed on Sample 1 by vapor deposition at 900 °. A SiO 2 refractive index of the thin film 1.47 was deposited separately Similarly, optical film thickness 0.13 [mu] m, lambda 1 is equivalent to 0.52 .mu.m.
This sample was designated as Sample 2 (the configuration in FIG. 2).
「例3(比較例)」 サンプル1をPVB(ポリビニルブチラール)の中間膜
を介しもう1枚のガラス基板と接着して合せガラスとし
サンプル3とした。"Example 3 (Comparative Example)" Sample 1 was bonded to another glass substrate via a PVB (polyvinyl butyral) interlayer to form a laminated glass, thereby obtaining Sample 3.
「例4(実施例)」 サンプル1のITO膜の上に例1と同じ条件で、ZrSixOy
の膜に700Å形成した。この膜の屈折率は1.74であり、
光学膜厚は0.12μm、λ2は0.49μmに相当する。この
試料をPVBの中間膜を介しもう1枚のガラス基板と接着
して合せガラスを作製した。この試料をサンプル4とし
た(第4図の構成)。"Example 4 (Example)" ZrSi x O y was formed on the ITO film of sample 1 under the same conditions as in example 1.
700 に was formed on the film. The refractive index of this film is 1.74,
Optical thickness is 0.12 .mu.m, lambda 2 is equivalent to 0.49 .mu.m. This sample was bonded to another glass substrate via a PVB interlayer to produce a laminated glass. This sample was designated as Sample 4 (the configuration in FIG. 4).
「例5(比較例)」 ガラス基板上にイオンプレーティング法によりITO薄
膜を直接8000Å形成した。この膜の屈折率は2.0であっ
た。この試料をサンプル5とした(第3図の構成)。"Example 5 (Comparative Example)" An ITO thin film was formed directly on a glass substrate by ion plating at 8000 mm. The refractive index of this film was 2.0. This sample was designated as Sample 5 (the configuration in FIG. 3).
「例6(比較例)」 サンプル5をPVBの中間膜を介しもう1枚のガラス基
板と接着して合せガラスを作製した。この試料をサンプ
ル6とした。Example 6 (Comparative Example) Sample 5 was bonded to another glass substrate via a PVB interlayer to produce a laminated glass. This sample was designated as Sample 6.
「評価」 サンプル1、2、5の分光反射スペクトルを図5に示
す。図中51、52、53がサンプル1、2、5に対応してい
る。図5より、透明下層膜を形成した場合(51)は、透
明下層膜がない場合(53)に比べて明らかにリップルが
減少しており、光彩防止効果のあることがわかる。透明
上層膜を形成した場合(52)はさらに効果が著しいこと
もわかる。“Evaluation” Spectral reflection spectra of Samples 1, 2, and 5 are shown in FIG. In the figure, reference numerals 51, 52, and 53 correspond to samples 1, 2, and 5, respectively. As can be seen from FIG. 5, when the transparent underlayer film is formed (51), the ripple is clearly reduced as compared with the case where the transparent underlayer film is not provided (53), and it has an effect of preventing glow. It can also be seen that the effect is more remarkable when the transparent upper layer film is formed (52).
サンプル3、4、6の分光反射スペクトルを図6に示
す。図中61、62、63がサンプル3、4、6に対応してい
る。図5の場合と同様に高屈折率透明薄膜の上下に透明
下層膜および透明上層膜を形成した場合がリップル防止
の効果が最も大きいことがわかる。FIG. 6 shows the spectral reflection spectra of Samples 3, 4, and 6. In the figure, 61, 62, and 63 correspond to samples 3, 4, and 6, respectively. As in the case of FIG. 5, it can be seen that the effect of preventing the ripple is greatest when the transparent lower layer film and the transparent upper layer film are formed above and below the high refractive index transparent thin film.
[発明の効果] 本発明は、大面積ガラスに高屈折率透明薄膜をある程
度以上の厚みに形成した場合に問題となる光彩を防止す
る。[Effects of the Invention] The present invention prevents glow which becomes a problem when a high-refractive-index transparent thin film is formed on a large-area glass to a certain thickness or more.
以上、実施例からも明らかなように、本発明は、ガラ
ス基板に高屈折率透明薄膜をある程度以上の厚みに形成
した場合、分光スペクトルに発現するリップルを抑制す
る効果がある。As is clear from the above examples, the present invention has an effect of suppressing ripples appearing in a spectrum when a high refractive index transparent thin film is formed on a glass substrate to a certain thickness or more.
これにより高屈折率透明薄膜の膜厚ムラや視覚変化に
よる色ムラ(光彩)を防止する効果が得られる。特に大
面積のガラス基板に適用された場合に顕著な効果を有す
る。As a result, an effect of preventing the unevenness of the thickness of the high refractive index transparent thin film and the unevenness of color (glow) due to a visual change can be obtained. In particular, it has a remarkable effect when applied to a large-area glass substrate.
本発明において、透明下層膜や透明上層膜として、上
記Zr等の金属とSiとを含む複合酸化物を主成分とする膜
を用いると、直流の反応性スパッタリング法により成膜
でき、したがって高屈折率透明薄膜を含めて全薄膜を、
連続してインラインで真空プロセスにより無光彩ガラス
を形成でき、製造効率が著しく向上する。In the present invention, when a film mainly composed of a composite oxide containing a metal such as Zr and Si is used as the transparent lower layer film or the transparent upper layer film, the film can be formed by a DC reactive sputtering method, and thus has a high refractive index. All thin films, including transparent thin films,
Achromatic glass can be formed by a vacuum process continuously and in-line, and the production efficiency is significantly improved.
また、本発明に用いうるZrSixOy膜は非晶質膜であ
り、ガラス基板からのアルカリのマイグレーション防止
の効果もある。これは、表示用の透明導電基板として適
用された場合に大きなメリットとなる。Further, the ZrSi x O y film that can be used in the present invention is an amorphous film, and has an effect of preventing migration of alkali from a glass substrate. This is a great merit when applied as a transparent conductive substrate for display.
本発明を用い、大面積ガラスに高屈折率透明膜を色ム
ラなく形成することにより、建築用ヒートミラー、電磁
遮蔽ガラス、自動車用電熱用風防ガラス、表示用透明導
電基板、太陽電池用透明導電基板、紫外線カットガラス
等を外観を損なうことなく大面積の用途に応用できる。By using the present invention and forming a high refractive index transparent film on a large area glass without color unevenness, a heat mirror for construction, an electromagnetic shielding glass, a windshield for automobile electric heating, a transparent conductive substrate for display, and a transparent conductive substrate for solar cell are provided. Substrates, UV cut glass, etc. can be applied to large area applications without damaging the appearance.
第1図は比較例に相当するガラスの断面の模式図であ
る。 第2図は本発明の一実施例の断面の模式図である。 第3図は従来例の断面の模式図である。 第4図は本発明の無光彩合せガラスの一例の断面図であ
る。 第5図および第6図は本発明の実施例および比較例にお
けるサンプルの分光反射スペクトルを示す図である。 10、20、30、40:ガラス基板、 11、21、31:高屈折率透明薄膜、 12、22、42:透明下層膜、 23、43:透明上層膜、 44:プラスチック中間膜。FIG. 1 is a schematic diagram of a cross section of glass corresponding to a comparative example. FIG. 2 is a schematic sectional view of one embodiment of the present invention. FIG. 3 is a schematic sectional view of a conventional example. FIG. 4 is a cross-sectional view of one example of the non-glazed laminated glass of the present invention. FIG. 5 and FIG. 6 are views showing the spectral reflection spectra of the samples in the examples and comparative examples of the present invention. 10, 20, 30, 40: glass substrate, 11, 21, 31: high refractive index transparent thin film, 12, 22, 42: transparent lower layer film, 23, 43: transparent upper layer film, 44: plastic intermediate film.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C03C 17/34 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C03C 17/34
Claims (1)
0が0.15μm以上の高屈折率透明薄膜が形成され、 該高屈折率透明薄膜と該ガラス基板との間に、屈折率n2
が1.65〜1.8で光学膜厚n2d2が0.1〜0.18μmであって、
かつZr,Ti,Ta,Hf,Mo,W,Nb,Sn,La,Crのうち少なくとも1
種とSiとを含む複合酸化物を主成分とする透明下層膜が
形成され、 該高屈折率透明薄膜の該透明下層膜とは反対側に、透明
上層膜が形成され、 該透明上層膜の屈折率をn1、光学膜厚をn1d1としたと
き、4n1d1≧0.55μmかつ4n2d2≦0.55μm、または、4n
1d1≦0.55μmかつ4n2d2≧0.55μmを満たすように該透
明上層膜および該透明下層膜の膜厚が設定されている無
光彩ガラス。1. A glass substrate having a refractive index n 0 of 1.8 or more and a thickness d
0 forms a high-refractive-index transparent thin film having a refractive index of not less than 0.15 μm, and a refractive index n 2 between the high-refractive-index transparent thin film and the glass substrate.
Is 1.65 to 1.8 and the optical thickness n 2 d 2 is 0.1 to 0.18 μm,
And at least one of Zr, Ti, Ta, Hf, Mo, W, Nb, Sn, La, and Cr
A transparent lower layer film containing a complex oxide containing a seed and Si as a main component is formed, and a transparent upper layer film is formed on a side of the high refractive index transparent thin film opposite to the transparent lower layer film. When the refractive index is n 1 and the optical film thickness is n 1 d 1 , 4n 1 d 1 ≧ 0.55 μm and 4n 2 d 2 ≦ 0.55 μm, or 4n
An achromatic glass in which the thicknesses of the transparent upper layer film and the transparent lower layer film are set so as to satisfy 1 d 1 ≦ 0.55 μm and 4n 2 d 2 ≧ 0.55 μm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-197993 | 1989-08-01 | ||
JP19799389 | 1989-08-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03164449A JPH03164449A (en) | 1991-07-16 |
JP2917456B2 true JP2917456B2 (en) | 1999-07-12 |
Family
ID=16383731
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16141490A Expired - Lifetime JP2917432B2 (en) | 1989-08-01 | 1990-06-21 | Method for producing conductive glass |
JP2161413A Expired - Fee Related JPH0780692B2 (en) | 1988-03-03 | 1990-06-21 | Conductive glass and manufacturing method thereof |
JP20114890A Expired - Fee Related JP2917456B2 (en) | 1989-08-01 | 1990-07-31 | Glowless glass |
JP2201149A Expired - Fee Related JP2669120B2 (en) | 1989-08-01 | 1990-07-31 | Method for forming a film containing silicon dioxide as a main component |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16141490A Expired - Lifetime JP2917432B2 (en) | 1989-08-01 | 1990-06-21 | Method for producing conductive glass |
JP2161413A Expired - Fee Related JPH0780692B2 (en) | 1988-03-03 | 1990-06-21 | Conductive glass and manufacturing method thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2201149A Expired - Fee Related JP2669120B2 (en) | 1989-08-01 | 1990-07-31 | Method for forming a film containing silicon dioxide as a main component |
Country Status (1)
Country | Link |
---|---|
JP (4) | JP2917432B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0780691B2 (en) * | 1989-12-26 | 1995-08-30 | 旭硝子株式会社 | Glass with anti-reflection film with excellent durability |
JP3486640B2 (en) * | 1993-03-26 | 2004-01-13 | 独立行政法人産業技術総合研究所 | Target for manufacturing superconducting thin film, method for manufacturing the same, and method for manufacturing superconductor using the same |
US5403458A (en) * | 1993-08-05 | 1995-04-04 | Guardian Industries Corp. | Sputter-coating target and method of use |
FR2730990B1 (en) * | 1995-02-23 | 1997-04-04 | Saint Gobain Vitrage | TRANSPARENT SUBSTRATE WITH ANTI-REFLECTIVE COATING |
JPH08268732A (en) * | 1995-03-30 | 1996-10-15 | Central Glass Co Ltd | Heat ray reflecting glass |
JP4295833B2 (en) * | 1995-07-31 | 2009-07-15 | 東芝ライテック株式会社 | Method for producing glass molded body |
US7167309B2 (en) * | 2004-06-25 | 2007-01-23 | Northrop Grumman Corporation | Optical compensation of cover glass-air gap-display stack for high ambient lighting |
US7153578B2 (en) * | 2004-12-06 | 2006-12-26 | Guardian Industries Corp | Coated article with low-E coating including zirconium silicon oxynitride and methods of making same |
WO2010048975A1 (en) * | 2008-10-31 | 2010-05-06 | Leybold Optics Gmbh | Hafnium oxide coating |
JP5559483B2 (en) * | 2009-03-17 | 2014-07-23 | 株式会社ブリヂストン | Heat ray shielding glass and multilayer glass using the same |
JP5620334B2 (en) * | 2011-05-18 | 2014-11-05 | 株式会社神戸製鋼所 | CIGS solar cells |
JP2014004700A (en) * | 2012-06-22 | 2014-01-16 | Kyushu Institute Of Technology | Method of decorative treatment of metal surface |
KR102213047B1 (en) * | 2013-02-27 | 2021-02-05 | 로터스 어플라이드 테크놀로지, 엘엘씨 | A moisture barrier comprising mixed metal-silicon-oxide barriers and use thereof |
JP6619139B2 (en) * | 2014-12-26 | 2019-12-11 | 株式会社マテリアル・コンセプト | Protective glass for solar cell and method for producing the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52138512A (en) * | 1976-05-14 | 1977-11-18 | Kogyo Gijutsuin | Glass having excellent alkali resistance and production thereof |
JPS57100943A (en) * | 1980-12-10 | 1982-06-23 | Asahi Glass Co Ltd | Substrate coated with silicon oxide having excellent durability |
DE3417732A1 (en) * | 1984-05-12 | 1986-07-10 | Leybold-Heraeus GmbH, 5000 Köln | METHOD FOR APPLYING SILICON-CONTAINING LAYERS TO SUBSTRATES BY CATODIZING AND SPRAYING CATODE FOR CARRYING OUT THE METHOD |
JPS6151333A (en) * | 1984-08-20 | 1986-03-13 | 積水化学工業株式会社 | Transparent synrhetic resin body having permeability resistance |
JPS6273202A (en) * | 1985-09-27 | 1987-04-03 | Hamamatsu Photonics Kk | Production of thin optical film |
DE3543178A1 (en) * | 1985-12-06 | 1987-06-11 | Leybold Heraeus Gmbh & Co Kg | METHOD FOR PRODUCING WINDOWS WITH HIGH TRANSMISSION BEHAVIOR IN THE VISIBLE SPECTRAL AREA AND WITH HIGH REFLECTION BEHAVIOR FOR HEAT RADIATION, AND WINDOWS PRODUCED BY THE PROCESS |
JPS61167546A (en) * | 1985-12-25 | 1986-07-29 | 東レ株式会社 | Laminated film |
-
1990
- 1990-06-21 JP JP16141490A patent/JP2917432B2/en not_active Expired - Lifetime
- 1990-06-21 JP JP2161413A patent/JPH0780692B2/en not_active Expired - Fee Related
- 1990-07-31 JP JP20114890A patent/JP2917456B2/en not_active Expired - Fee Related
- 1990-07-31 JP JP2201149A patent/JP2669120B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03164449A (en) | 1991-07-16 |
JP2917432B2 (en) | 1999-07-12 |
JPH03232745A (en) | 1991-10-16 |
JPH03232746A (en) | 1991-10-16 |
JPH03177568A (en) | 1991-08-01 |
JPH0780692B2 (en) | 1995-08-30 |
JP2669120B2 (en) | 1997-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5772862A (en) | Film comprising silicon dioxide as the main component and method for its productiion | |
US6124026A (en) | Anti-reflective, reduced visible light transmitting coated glass article | |
EP0980850B1 (en) | Colour suppressed anti-reflective glass | |
EP0436741A1 (en) | DC sputtering method and target for producing films based on silicon dioxide | |
KR100563419B1 (en) | Light absorbing antireflective material and manufacturing method therefor | |
US5776603A (en) | Glazing pane equipped with at least one thin film and method of manufacturing the same | |
EP0791562B1 (en) | Multilayered thin film-coated transparent substrate | |
JP2917456B2 (en) | Glowless glass | |
US5756192A (en) | Multilayer coating for defrosting glass | |
US20080199671A1 (en) | Glass sheet with antireflection film and laminated glass for windows | |
JP2024098985A (en) | Articles with high visible light reflectance and neutral color | |
JPH05193994A (en) | Rainbow color preventive transparent fixed window glass article | |
JP2000233947A (en) | Transparent substrate equipped with thin film laminated body | |
MXPA06001624A (en) | Transparent substrate comprising an antireflection coating. | |
JP2000229381A (en) | Glass laminate and production thereof | |
JPH05254969A (en) | Functional article | |
JPS63206333A (en) | Heat ray reflecting glass of single plate | |
JP4013329B2 (en) | Laminate and glass laminate for window | |
JPH04154647A (en) | Transparent electrically conductive laminate | |
US5298312A (en) | Non-iridescent transparent product | |
US6838178B1 (en) | Glass article with anti-reflective coating | |
JP2535350B2 (en) | High transmission solar control glass | |
JP3357087B2 (en) | Glow prevention transparent body | |
JPH0682163B2 (en) | Optical body with excellent durability | |
JP3189277B2 (en) | Heat ray shielding glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |