JP2915687B2 - Exhaust gas denitration equipment for diesel engines - Google Patents
Exhaust gas denitration equipment for diesel enginesInfo
- Publication number
- JP2915687B2 JP2915687B2 JP4102226A JP10222692A JP2915687B2 JP 2915687 B2 JP2915687 B2 JP 2915687B2 JP 4102226 A JP4102226 A JP 4102226A JP 10222692 A JP10222692 A JP 10222692A JP 2915687 B2 JP2915687 B2 JP 2915687B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- exhaust
- catalytic reduction
- ammonia
- ammonia catalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 86
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 46
- 239000003054 catalyst Substances 0.000 claims description 44
- 229910021529 ammonia Inorganic materials 0.000 claims description 43
- 230000003197 catalytic effect Effects 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 10
- 230000002378 acidificating effect Effects 0.000 description 10
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 9
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 9
- 235000011130 ammonium sulphate Nutrition 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 231100000572 poisoning Toxicity 0.000 description 4
- 230000000607 poisoning effect Effects 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000010763 heavy fuel oil Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 description 1
- OXSWKJLAKXNIFG-UHFFFAOYSA-N azane sulfuric acid Chemical compound N.N.N.OS(O)(=O)=O OXSWKJLAKXNIFG-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- -1 fuel oil C Chemical compound 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/025—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は大型2サイクルディーゼ
ル機関の排ガス脱硝用の接触還元脱硝触媒装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalytic reduction denitration catalyst device for exhaust gas denitration of a large two-cycle diesel engine.
【0002】[0002]
【従来の技術】従来例を図2によって説明する。図2は
従来のC重油を燃料とする大型2サイクルディーゼル機
関の排ガス脱硝用のアンモニア接触還元触媒装置の構成
図である。従来C重油を燃料とする大型2サイクルディ
ーゼル機関の排ガス脱硝用のアンモニア接触還元触媒装
置は触媒装置を被毒する酸性硫安の生成をさけるため排
ガス温度の高い排気マニホルドの出口で排気ターボ過給
機の入口側に設置される。図において1は大型2サイク
ルディーゼル機関本体、2は排気マニホルドで大型2サ
イクルディーゼル機関本体1の排気口に接続されてい
る。3はアンモニア接触還元触媒装置で排気マニホルド
2に接続されている。4は排気ターボ過給機でアンモニ
ア接触還元触媒装置3の吐出口に接続されている。2. Description of the Related Art A conventional example will be described with reference to FIG. FIG. 2 is a configuration diagram of a conventional ammonia catalytic reduction catalytic converter for exhaust gas denitration of a large two-cycle diesel engine using heavy fuel oil C as fuel. Conventionally, an ammonia catalytic reduction catalyst device for denitration of exhaust gas from a large two-cycle diesel engine using heavy fuel oil C is an exhaust turbocharger at the outlet of an exhaust manifold with a high exhaust gas temperature in order to avoid the generation of acidic ammonium sulfate which poisons the catalyst device. It is installed at the entrance side of. In the figure, 1 is a large two-stroke diesel engine main body, and 2 is an exhaust manifold connected to an exhaust port of the large two-stroke diesel engine main body 1. Reference numeral 3 denotes an ammonia catalytic reduction catalyst device which is connected to the exhaust manifold 2. Reference numeral 4 denotes an exhaust turbocharger which is connected to a discharge port of the ammonia catalytic reduction catalyst device 3.
【0003】前記従来例の作用を説明する。大型2サイ
クルディーゼル機関本体1が運転されると排気マニホル
ド2は排ガスを集めてアンモニア接触還元触媒装置3へ
流す。排ガスはアンモニア接触還元触媒装置2で脱硝さ
れ排気ターボ過給機4に入って之を駆動した後排出され
る。アンモニア接触還元触媒装置3内の温度が高いので
酸性硫安は生成されず触媒は被毒しない。The operation of the conventional example will be described. When the large two-stroke diesel engine body 1 is operated, the exhaust manifold 2 collects the exhaust gas and passes it to the ammonia catalytic reduction catalyst device 3. The exhaust gas is denitrated by the ammonia catalytic reduction catalyst device 2, enters the exhaust turbocharger 4, drives it, and is discharged. Since the temperature in the ammonia catalytic reduction catalyst device 3 is high, acidic ammonium sulfate is not generated and the catalyst is not poisoned.
【0004】[0004]
【発明が解決しようとする課題】C重油を燃料とする大
型低速ディーゼル機関では簡単に付加的設置のしやすい
排気ターボ過給機の後では排ガス温度が低く、酸性硫安
の生成による触媒被毒のためアンモニア接触還元触媒装
置は設置できない。したがって排ガス温度の高い排気マ
ニホルドと排気ターボ過給機の間に設置されているが、
エンジン開発の際触媒装置を含んだ性能試験を行う必要
があり、多大の工数を要するなど簡単には脱硝装置を付
加することができない不具合があった。本発明の目的は
C重油のように硫黄分の多い燃料を使用ししかも排気タ
ーボ過給機出口の排ガス温度の低い大型低速2サイクル
ディーゼルエンジンにも排気ターボ過給機の出口側に酸
性硫安による触媒の被毒を解消して簡単に付加的に設置
されるアンモニア接触還元触媒装置を提供することであ
る。In a large low-speed diesel engine using fuel oil C as fuel, the temperature of exhaust gas is low after an exhaust turbocharger which can be easily installed additionally, and catalyst poisoning due to the production of ammonium acid sulfate. Therefore, an ammonia catalytic reduction catalyst device cannot be installed. Therefore, it is installed between the exhaust manifold with high exhaust gas temperature and the exhaust turbocharger,
At the time of engine development, it was necessary to perform a performance test including a catalyst device, and there was a problem that a denitration device could not be easily added, such as a large number of man-hours. An object of the present invention is to provide a large low-speed two-stroke diesel engine using a sulfur-rich fuel such as fuel oil C and having a low exhaust gas temperature at the outlet of an exhaust turbocharger, using an acidic ammonium sulfate at the outlet side of the exhaust turbocharger. An object of the present invention is to provide an ammonia catalytic reduction catalyst device which is easily installed additionally by eliminating poisoning of the catalyst.
【0005】[0005]
【課題を解決するための手段】本発明に係るディーゼル
エンジンの排ガス脱硝装置はアンモニア接触還元触媒装
置を用いた排ガス温度の低いディーゼルエンジンの排ガ
ス脱硝装置において、エンジン1の排気ターボ過給機4
の排ガスの吐出口に設置されたアンモニア接触還元触媒
装置3と、該アンモニア接触還元触媒装置3の下流側の
排ガス通路に設けられて該排ガス通路のNO x 濃度を検
出するNOx センサ5と、エンジン排気マニホルド2と
前記アンモニア接触還元触媒装置3の入口側とを排気タ
ーボ過給機4をバイパスして結ぶ高温ガス通路6と、該
高温ガス通路を開閉する開閉弁7と、前記NOx センサ
5からのNO x 濃度の検出信号により前記開閉弁7を開
閉制御するコントローラ9とを有してなり、前記アンモ
ニア接触還元触媒装置出口の排ガス中のNOx 濃度に応
じて前記開閉弁7を開閉制御し高温排ガスの一部を排気
マニホルド2から前記排気ターボ過給機4を通さず直接
前記アンモニア接触還元触媒装置に導くことを特徴とし
ている。SUMMARY OF THE INVENTION An exhaust gas denitration system for a diesel engine according to the present invention is a diesel engine exhaust gas denitration system having a low exhaust gas temperature using an ammonia catalytic reduction catalyst device.
Test with ammonia catalytic reduction catalytic device 3 installed in the discharge port of the exhaust gas, provided in an exhaust gas passage downstream of the ammonia catalytic reduction catalytic device 3 a concentration of NO x of the exhaust gas passage of
A NO x sensor 5 for output, the hot gas path 6 connecting the inlet side of the engine exhaust manifold 2 ammonia catalytic reduction catalytic device 3 bypassing the exhaust turbo supercharger 4, closing for opening and closing the high-temperature gas passage the valve 7, it has a controller 9 which controls the opening and closing of the said opening and closing valve 7 by the detection signal of the NO x concentration from the NO x sensor 5, the concentration of NO x in the exhaust gas of the ammonia catalytic reduction catalytic device outlet Accordingly, the on-off valve 7 is controlled to open and close, and a portion of the high-temperature exhaust gas is directly guided from the exhaust manifold 2 to the ammonia catalytic reduction catalyst device without passing through the exhaust turbocharger 4.
【0006】[0006]
【作用】本発明の装置を設けた大型低速2サイクルディ
ーゼル機関を運転するとエンジンの排ガスは排気マニホ
ルドに集まり次に排気ターボ過給機を駆動した後アンモ
ニア接触還元触媒装置に流入し前記アンモニア接触還元
触媒装置によって脱硝され低いNOx 濃度で排出され
る。しかし前記アンモニア接触還元触媒装置に流入する
排ガス温度は比較的低いので酸性硫安を生成し、この液
体で触媒の表面を覆うので触媒が被毒してアンモニア接
触還元触媒装置の性能が低下し、排ガス中のNOx 濃度
が増加する。前記排ガス中のNOx 濃度はNOx センサ
により検出され、その濃度が定められた値に達するとコ
ントローラにより排ガス中のNOx 濃度に応じて開閉弁
が開閉制御され排気マニホルドの排ガスの一部は高温ガ
ス通路、開閉弁を通ってアンモニア接触還元触媒装置へ
導入される。これによりアンモニア接触還元触媒装置の
温度が上昇し酸性硫安は分解気化して飛散しアンモニア
接触還元触媒装置の性能は再生される。また、アンモニ
ア接触還元触媒装置下流の排ガス通路のNO x 濃度の変
化に即応して高温ガスのバイパス通路を開閉するので、
過給機出口の排気ガス温度が低くなっても常時前記触媒
装置のNO x 低減作用が最良になるように該触媒装置の
温度を保持できる。 When a large low-speed two-stroke diesel engine equipped with the device of the present invention is operated, the exhaust gas of the engine collects in the exhaust manifold, and then drives the exhaust turbocharger, flows into the ammonia catalytic reduction catalyst device, and flows into the ammonia catalytic reduction catalyst device. are denitration by the catalyst device is discharged at a low concentration of NO x. However, the temperature of the exhaust gas flowing into the ammonia catalytic reduction catalyst device is relatively low, so that acidic ammonium sulfate is generated. Since the surface of the catalyst is covered with this liquid, the catalyst is poisoned and the performance of the ammonia catalytic reduction catalyst device is reduced. concentration of NO x in is increased. Concentration of NO x in the exhaust gas is detected by the NO x sensor, a portion of the exhaust gas of the exhaust manifold-off valve is opened and closed controlled in accordance with the concentration of NO x in the exhaust gas by the controller reaches a value where the concentration is determined in It is introduced into the ammonia catalytic reduction catalyst device through the hot gas passage and the on-off valve. As a result, the temperature of the ammonia catalytic reduction catalyst device rises, and the acidic ammonium sulfate is decomposed and vaporized and scattered, and the performance of the ammonia catalytic reduction catalyst device is regenerated. Also Ammoni
Varying the concentration of NO x A catalytic reduction catalytic device downstream of the exhaust gas passage
Opening and closing the hot gas bypass passage in response to
Even if the exhaust gas temperature at the turbocharger outlet becomes low, the catalyst
In order to optimize the NO x reduction effect of the device,
Can maintain temperature.
【0007】[0007]
【実施例】実施例を図1によって説明する。図1は実施
例のディーゼルエンジンの排ガス脱硝装置の構成図であ
る。図において1は大型2サイクルディーゼル機関本
体、2は排気マニホルドで大型2サイクルディーゼル機
関本体1に取付けられている。4は排気ターボ過給機で
排気マニホルド2に接続されている。3はアンモニア接
触還元触媒装置で排気ターボ過給機の排気吐出口に接続
されている。5はNOX センサでアンモニア接触還元触
媒装置3の出口側の排ガス管路内に設けられている。6
は高温ガス通路で排気ターボ過給機をバイパスし排気マ
ニホルドとアンモニア接触還元触媒装置3の入口側を連
通する。7は開閉弁で高温ガス通路6に設けられて居り
常時閉になっている。8は開閉弁駆動アクチュエータで
開閉弁7に結合されている。9はコントローラでNOX
センサ5と開閉弁駆動アクチュエータ8が接続されてい
る。An embodiment will be described with reference to FIG. FIG. 1 is a configuration diagram of an exhaust gas denitration apparatus for a diesel engine according to an embodiment. In the figure, 1 is a large two-stroke diesel engine main body, and 2 is an exhaust manifold mounted on the large two-stroke diesel engine main body 1. Reference numeral 4 denotes an exhaust turbocharger which is connected to the exhaust manifold 2. Reference numeral 3 denotes an ammonia catalytic reduction catalyst device which is connected to an exhaust discharge port of an exhaust turbocharger. 5 is provided to the ammonia catalytic reduction catalytic device 3 on the outlet side of the exhaust gas conduit with NO X sensor. 6
A high-temperature gas passage bypasses the exhaust turbocharger and communicates the exhaust manifold with the inlet side of the ammonia catalytic reduction catalyst device 3. Reference numeral 7 denotes an on-off valve which is provided in the high-temperature gas passage 6 and is normally closed. Reference numeral 8 denotes an on-off valve drive actuator, which is connected to the on-off valve 7. 9 is the controller NO X
The sensor 5 and the on-off valve drive actuator 8 are connected.
【0008】前記実施例の作用を説明する。大型2サイ
クルディーゼル機関本体1が運転されるとエンジン排ガ
スは排気マニホルド2に集められ排気ターボ過給機4に
入って之を駆動してアンモニア接触還元触媒装置3に入
りアンモニア接触還元触媒装置3によって脱硝されNO
X の濃度が規定値以下になって排出される。前記排ガス
中にはSO3 、NH3 、H2 Oが含まれているので次式
で示す反応が起りこの反応は可逆反応で温度が高い程左
へ進む、しかし排気ターボ過給機の後の排ガスの温度は
比較的低いので前記反応は右へ進みNH4 HSO4 酸性
硫安が生成される。これは液体である。 SO3 +NH3 +H2 O ←→ NH4 HSO4 従って、前記酸性硫安により触媒が覆われて被毒しアン
モニア接触還元触媒装置3の脱硝性能が低下してアンモ
ニア接触還元触媒装置出口の排ガスのNOX の濃度が増
す。コントローラ9はNOX センサ5によってNOX 濃
度を検知しその検知した値が定められた値に達すると開
閉弁駆動アクチュエータ8を起動させて開閉弁7を開か
せる。開閉弁7が開かれると排気マニホルド2内の排ガ
スの一部は高温ガス通路6、開閉弁7を通ってアンモニ
ア接触還元触媒装置3に流れ残りの排ガスは排気ターボ
過給機へ流れる。The operation of the above embodiment will be described. When the large two-cycle diesel engine main body 1 is operated, the engine exhaust gas is collected in the exhaust manifold 2, enters the exhaust turbocharger 4, drives the exhaust turbocharger 4, enters the ammonia catalytic reduction catalyst device 3, and enters the ammonia catalytic reduction catalyst device 3. NOx denitration
It is discharged when the concentration of X falls below the specified value. Since SO 3 , NH 3 , and H 2 O are contained in the exhaust gas, a reaction represented by the following equation takes place. This reaction is a reversible reaction and proceeds to the left as the temperature increases, but after the exhaust turbocharger. Since the temperature of the exhaust gas is relatively low, the reaction proceeds to the right to form NH 4 HSO 4 acidic ammonium sulfate. This is a liquid. SO 3 + NH 3 + H 2 O ← → NH 4 HSO 4 Accordingly, the catalyst is covered and poisoned by the acidic ammonium sulfate, and the deNOx performance of the ammonia catalytic reduction catalyst device 3 is reduced, so that NO in the exhaust gas at the outlet of the ammonia catalytic reduction catalyst device is reduced. The concentration of X increases. The controller 9 detects the NO X concentration by the NO X sensor 5 and, when the detected value reaches a predetermined value, activates the on / off valve driving actuator 8 to open the on / off valve 7. When the on-off valve 7 is opened, a part of the exhaust gas in the exhaust manifold 2 flows through the high-temperature gas passage 6 and the on-off valve 7 to the ammonia catalytic reduction catalytic device 3, and the remaining exhaust gas flows to the exhaust turbocharger.
【0009】アンモニア接触還元接触装置3は排気マニ
ホールド2内の排ガスの流入により温度が高くなって前
記可逆反応が左へ進み生成されていた酸性硫安は分解し
て気体になってとび去り触媒は解毒されてアンモニア接
触還元触媒装置3は再生される。アンモニア接触還元触
媒装置3内の酸性硫安の生成速度即ち脱硝性能の劣化速
度はエンジンの運転状態によって変化するためコントロ
ーラ9はアンモニア接触還元触媒装置3の後の排ガスの
NOX の濃度の値或はその変化速度等により脱硝性能の
劣化度合を判定し、開閉弁7の開度をコントロールしア
ンモニア接触還元触媒装置3に導く排ガス量をコントロ
ールするようにしており、触媒の脱硝性能の劣化度合に
応じた再生能力が得られ常に良好な脱硝性能を得るよう
にしている。In the ammonia catalytic reduction contact device 3, the temperature rises due to the inflow of exhaust gas in the exhaust manifold 2, the reversible reaction proceeds to the left, and the produced acidic ammonium sulfate is decomposed into a gas, and the catalyst is detoxified. Thus, the ammonia catalytic reduction catalyst device 3 is regenerated. Degradation rate of the production rate i.e. denitrification performance of acidic ammonium sulfate ammonia catalytic reduction catalyst device 3 is the value of the concentration of the NO X in the exhaust gas after the controller 9 ammonia catalytic reduction catalytic device 3 for changing the operating state of the engine or The degree of deterioration of the denitration performance is determined based on the change speed and the like, and the opening degree of the on-off valve 7 is controlled to control the amount of exhaust gas guided to the ammonia catalytic reduction catalyst device 3. Regenerative performance and always obtain good denitration performance.
【0010】[0010]
【発明の効果】本発明は前記のとおり構成されているの
でC重油のように硫黄分の多い燃料を使用し、しかも排
気ターボ過給機出口の排ガス温度の低い大型2サイクル
ディーゼルエンジンにも排気ターボ過給機出口に簡単に
付加的にアンモニア接触還元触媒装置を設置することが
でき且酸性硫安による被毒を解消し高い脱硝性能を常に
維持することができる。又エンジン開発の際も従来どお
りに排気ターボ過給機までを含んだ性能試験で十分であ
り開発時の工数増大等の問題を回避できる。また、前記
触媒装置出口のNO x 濃度の変化に即応して高温ガスの
バイパス通路を開閉するので、過給機出口の排気ガス温
度が低くなっても、常時触媒装置のNO x 低減作用が最
良になるように触媒装置の温度を保持できる。よって本
発明はC重油のように硫黄分の多い燃料を使用ししかも
排気ターボ過給機出口の排ガス温度の低い大型低速2サ
イクルディーゼル機関にも排気ターボ過給機の出口に触
媒被毒を解消して簡単に付加的に設置されるアンモニア
接触還元触媒装置を提供できる。As described above, the present invention uses a fuel containing a large amount of sulfur, such as fuel oil C, and emits a large two-stroke diesel engine having a low exhaust gas temperature at the exhaust turbocharger outlet. An ammonia catalytic reduction catalyst device can be easily and additionally installed at the turbocharger outlet, and poisoning by acidic ammonium sulfate can be eliminated and high denitration performance can always be maintained. Also, when developing the engine, a performance test including the exhaust turbocharger as in the past is sufficient, and problems such as an increase in man-hours during development can be avoided. In addition,
Hot gas is responsive to changes in the concentration of NO x catalyzer outlet
Since the bypass passage is opened and closed, the exhaust gas temperature at the turbocharger outlet
Even degree is lowered, NO x reduction effect constantly catalytic device top
The temperature of the catalyst device can be maintained to be good. Accordingly, the present invention eliminates catalyst poisoning at the outlet of the exhaust turbocharger even in a large low-speed two-cycle diesel engine that uses a fuel with a high sulfur content such as heavy oil C and has a low exhaust gas temperature at the outlet of the exhaust turbocharger. Thus, it is possible to provide an ammonia catalytic reduction catalyst device which is easily additionally installed.
【図1】実施例の排ガス脱硝酸装置の構成図。FIG. 1 is a configuration diagram of an exhaust gas denitrification apparatus of an embodiment.
【図2】従来例の排ガス脱硝装置の構成図。FIG. 2 is a configuration diagram of a conventional exhaust gas denitration apparatus.
1…大型2サイクルディーゼル機関本体、2…排気マニ
ホルド、3…アンモニア接触還元触媒装置、4…排気タ
ーボ過給機、5…NOX センサ、6…高温ガス通路、7
…開閉弁、8…開閉弁駆動アクチュエータ、9…コント
ローラ。1 ... large two-stroke diesel engine body, 2 ... exhaust manifold, 3 ... ammonia catalytic reduction catalytic device, 4 ... exhaust turbocharger, 5 ... NO X sensor, 6 ... hot gas path, 7
... on-off valve, 8 ... on-off valve drive actuator, 9 ... controller.
フロントページの続き (56)参考文献 特開 平2−286817(JP,A) 特開 昭62−153546(JP,A) 実開 昭56−157665(JP,U) (58)調査した分野(Int.Cl.6,DB名) F01N 3/08 B01D 53/94 F01N 3/24 Continuation of the front page (56) References JP-A-2-286817 (JP, A) JP-A-62-153546 (JP, A) JP-A-56-157665 (JP, U) (58) Fields investigated (Int .Cl. 6 , DB name) F01N 3/08 B01D 53/94 F01N 3/24
Claims (1)
ガス温度の低いディーゼルエンジンの排ガス脱硝装置に
おいて、エンジン(1)の排気ターボ過給機(4)の排
ガス吐出口に設置されたアンモニア接触還元触媒装置
(3)と、該アンモニア接触還元触媒装置(3)の下流
側の排ガス通路に設けられて該排ガス通路のNO x 濃度
を検出するNO x センサ(5)と、エンジン排気マニホ
ルド(2)と前記アンモニア接触還元触媒装置(3)の
入口側とを排気ターボ過給機(4)をバイパスして結ぶ
高温ガス通路(6)と、該高温ガス通路を開閉する開閉
弁(7)と、前記NOx センサ(5)からのNO x 濃度
の検出信号により前記開閉弁(7)を開閉制御するコン
トローラ(9)とを有してなり、前記アンモニア接触還
元触媒装置出口の排ガス中のNOx 濃度に応じて前記開
閉弁(7)を開閉制御し、高温排ガスの一部を排気マニ
ホルド(2)から前記排気ターボ過給機(4)を通さず
直接前記アンモニア接触還元触媒装置に導くことを特徴
とするディーゼルエンジンの排ガス脱硝装置。In an exhaust gas denitration system for a diesel engine having a low exhaust gas temperature using an ammonia catalytic reduction catalyst device, an ammonia catalytic reduction catalyst installed at an exhaust gas discharge port of an exhaust turbocharger (4) of the engine (1). apparatus and (3), NO x concentration of the exhaust gas passage provided in the exhaust gas passage downstream of the ammonia catalytic reduction catalytic device (3)
A NO x sensor which detects a (5), hot gas path (6 connecting to bypass the engine exhaust manifold (2) and the ammonia catalytic reduction catalytic device (3) on the inlet side and the exhaust turbocharger (4) a), on-off valve for opening and closing the high-temperature gas passage and (7), NO x concentration from the NO x sensor (5)
Detection signals by the result and a controller (9) for opening and closing controls the on-off valve (7) of opening and closing the on-off valve (7) depending on the concentration of NO x in the exhaust gas of the ammonia catalytic reduction catalytic device outlet controlled, the exhaust gas denitration apparatus of a diesel engine, characterized in that leads to the ammonia catalytic reduction catalytic device directly without passing through the exhaust turbocharger (4) from the exhaust manifold (2) a portion of the hot exhaust gases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4102226A JP2915687B2 (en) | 1992-03-27 | 1992-03-27 | Exhaust gas denitration equipment for diesel engines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4102226A JP2915687B2 (en) | 1992-03-27 | 1992-03-27 | Exhaust gas denitration equipment for diesel engines |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06294318A JPH06294318A (en) | 1994-10-21 |
JP2915687B2 true JP2915687B2 (en) | 1999-07-05 |
Family
ID=14321746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4102226A Expired - Lifetime JP2915687B2 (en) | 1992-03-27 | 1992-03-27 | Exhaust gas denitration equipment for diesel engines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2915687B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010185349A (en) * | 2009-02-12 | 2010-08-26 | Mitsubishi Heavy Ind Ltd | Exhaust gas denitration device and internal combustion engine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001303934A (en) | 1998-06-23 | 2001-10-31 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
-
1992
- 1992-03-27 JP JP4102226A patent/JP2915687B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010185349A (en) * | 2009-02-12 | 2010-08-26 | Mitsubishi Heavy Ind Ltd | Exhaust gas denitration device and internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPH06294318A (en) | 1994-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5517820A (en) | Exhaust gas purifying apparatus and method for internal combustion engine | |
JP5363345B2 (en) | Control method for controlling exhaust aftertreatment system and exhaust aftertreatment system | |
US5089236A (en) | Variable geometry catalytic converter | |
US6484495B2 (en) | Device for purifying exhaust gas of diesel engines | |
CN102165157B (en) | Method for operating an exhaust emission control system having a SCR-catalyst and an upstream oxidation catalyst exhaust emission control component | |
US9574482B2 (en) | Method for operating components for exhaust gas after-treatment and exhaust gas after-treatment apparatus | |
CN101949318A (en) | The condition of ammonia leakage during the identification selection catalytic reduction is used | |
CN1989321A (en) | Method for determining nox reduction ratio in exhaust emission control device | |
US7624571B2 (en) | Exhaust gas purifying apparatus for internal combustion engine and method for estimating collected amount of exhaust particles | |
CN109441597A (en) | Post-process protection system and post-processing guard method | |
US5375414A (en) | Automotive engine exhaust aftertreatment system including hydrocarbon adsorber with internal engine purge flow control | |
JP3620291B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2915687B2 (en) | Exhaust gas denitration equipment for diesel engines | |
JP3695378B2 (en) | Exhaust gas purification device | |
JP4618508B2 (en) | Exhaust gas purification apparatus and exhaust gas purification method using the same | |
JP2543736Y2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2003129825A (en) | Exhaust emission control device | |
JPS5974319A (en) | Exhaust gas purifier for diesel engine | |
JPH0374515A (en) | Exhaust gas purification device for engine | |
JPH02199214A (en) | Engine exhaust gas purification device | |
JPH11257125A (en) | Method for controlling temperature of catalyst | |
JP3401955B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH11200849A (en) | Engine exhaust gas purification device | |
KR100507507B1 (en) | Methold of controlling secondary air supplying for internal combustion engine | |
JPH0716012Y2 (en) | Exhaust purification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990316 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080416 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |