JP2910752B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JP2910752B2 JP2910752B2 JP423898A JP423898A JP2910752B2 JP 2910752 B2 JP2910752 B2 JP 2910752B2 JP 423898 A JP423898 A JP 423898A JP 423898 A JP423898 A JP 423898A JP 2910752 B2 JP2910752 B2 JP 2910752B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- film
- hydrogen
- predetermined
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 52
- 239000004065 semiconductor Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 239000010408 film Substances 0.000 description 67
- 238000010438 heat treatment Methods 0.000 description 49
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 30
- 239000001257 hydrogen Substances 0.000 description 30
- 229910052739 hydrogen Inorganic materials 0.000 description 30
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 29
- 230000003647 oxidation Effects 0.000 description 24
- 238000007254 oxidation reaction Methods 0.000 description 24
- 238000000137 annealing Methods 0.000 description 22
- 239000010410 layer Substances 0.000 description 21
- 239000007790 solid phase Substances 0.000 description 19
- 230000007547 defect Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 239000013078 crystal Substances 0.000 description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 description 12
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 8
- 238000003795 desorption Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体装置の製造方法
に係わり、特に、絶縁性非晶質材料上に半導体素子を形
成する製造方法に関する。The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a semiconductor element on an insulating amorphous material.
【0002】[0002]
【従来の技術】ガラス、石英等の絶縁性非晶質基板や、
SiO2等の絶縁性非晶質層上に、高性能な半導体素子
を形成する試みが成されている。2. Description of the Related Art Insulating amorphous substrates such as glass and quartz,
Attempts have been made to form a high-performance semiconductor element on an insulating amorphous layer such as SiO 2 .
【0003】近年、大型で高解像度の液晶表示パネル
や、高速で高解像度の密着型イメージセンサや三次元I
C等へのニーズが高まるにつれて、上述のような絶縁性
非晶質材料上の高性能な半導体素子の実現が待望されて
いる。In recent years, large and high-resolution liquid crystal display panels, high-speed and high-resolution contact type image sensors,
As the need for C and the like increases, realization of a high-performance semiconductor device on an insulating amorphous material as described above has been desired.
【0004】絶縁性非晶質材料上に薄膜トランジスタ
(TFT)を形成する場合を例にとると、(1)プラズ
マCVD法等で形成した非晶質シリコンを素子材とした
TFT、(2)CVD法等で形成した多結晶シリコンを
素子材としたTFT,(3)溶融再結晶化法等で形成し
た単結晶シリコンを素子材としたTFT等が検討されて
いる。[0004] Taking the case of forming a thin film transistor (TFT) on an insulating amorphous material as an example, (1) a TFT using amorphous silicon as an element material formed by a plasma CVD method or the like; A TFT using a polycrystalline silicon formed by a method or the like as an element material, and (3) a TFT using a single crystal silicon formed by a melt recrystallization method or the like as an element material are being studied.
【0005】ところが、これらのTFTのうち非晶質シ
リコンもしくは多結晶シリコンを素子材としたTFT
は、単結晶シリコンを素子材とした場合に比べてTFT
の電界効果移動度が大幅に低く(非晶質シリコンTFT
<lcm2/V・sec,多結晶シリコンTFT〜10
cm2/V・sec)、高性能なTFTの実現は困難で
あった。However, of these TFTs, TFTs using amorphous silicon or polycrystalline silicon as an element material
Is compared with the case where single crystal silicon is used as the element material.
Field effect mobility is significantly lower (amorphous silicon TFT
<Lcm 2 / V · sec, polycrystalline silicon TFT-10
cm 2 / V · sec), and it was difficult to realize a high-performance TFT.
【0006】一方、レーザビーム等による溶融再結晶化
法は、未だに十分に完成した技術とは言えず、また、液
晶表示パネルの様に、大面積に素子を形成する必要があ
る場合には技術的困難が特に大きい。On the other hand, the melt recrystallization method using a laser beam or the like cannot be said to be a technique that has been sufficiently completed yet, and it is necessary to form an element in a large area such as a liquid crystal display panel. Especially difficult.
【0007】[0007]
【発明が解決しようとする課題】そこで、絶縁性非晶質
材料上に高性能な半導体素子を形成する簡便かつ実用的
な方法として、大粒径の多結晶シリコンを固相成長させ
る方法が注目され、研究が進められている。(Thin So
lid Films 100(1983) p.227 ,JJAP Vol.25No.2
(1986) p.L121) しかし、従来の技術では、多結晶シリコンをCVD法で
形成し、Si+をイオンインプラして該多結晶シリコン
を非晶質化した後、600℃程度の熱処理を100時間
近く行っていた。そのため、高価なイオン注入装置を必
要としたほか、熱処理時間も極めて長いという欠点があ
った。Therefore, as a simple and practical method for forming a high-performance semiconductor device on an insulating amorphous material, a method of growing polycrystalline silicon having a large grain size in a solid phase has attracted attention. And research is ongoing. (Thin So
lid Films 100 (1983) p.227, JJAP Vol. 25No.2
(1986) p.L121) However, according to the conventional technique, polycrystalline silicon is formed by a CVD method, Si + is ion-implanted to make the polycrystalline silicon amorphous, and then a heat treatment at about 600 ° C. is performed for 100 hours. I was going for almost an hour. Therefore, an expensive ion implantation apparatus is required, and the heat treatment time is extremely long.
【0008】そこで、本発明はより簡便かつ実用的な方
法で、大粒径で結晶化率が高い多結晶シリコンを形成す
る製造方法を提供するものである。Therefore, the present invention provides a method for forming polycrystalline silicon having a large grain size and a high crystallization rate by a simpler and more practical method.
【0009】[0009]
【課題を解決するための手段】本発明は、基板にシリコ
ン層を形成し、前記基板を550℃〜650℃の所定の
温度に昇温させ、前記基板を700℃以上に昇温した
後、再び前記基板を550℃〜650℃にして前記シリ
コン層をアニールすることを特徴とする。According to the present invention, a silicon layer is formed on a substrate, and the substrate is heated to a predetermined temperature of 550 ° C. to 650 ° C .; The method is characterized in that the substrate is again heated to 550 ° C. to 650 ° C. and the silicon layer is annealed.
【0010】[0010]
【0011】[0011]
【実施例】図1は、本発明の実施例における半導体装置
の製造工程図の一例である。尚、図1では半導体素子と
して薄膜トランジスタ(TFT)を形成する場合を例と
している。FIG. 1 is an example of a manufacturing process diagram of a semiconductor device according to an embodiment of the present invention. FIG. 1 shows an example in which a thin film transistor (TFT) is formed as a semiconductor element.
【0012】図1において、(a)は、ガラス、石英等
の絶縁性非晶質基板、もしくはSiO2等の絶縁性非晶
質材料層等の絶縁性非晶質材料101上にシリコン層102を
形成する工程である。成膜条件の一例としては、プラズ
マCVD法で基板温度を室温〜600℃程度に保持し、
モノシラン若しくはモノシランを水素、アルゴン、へリ
ウム等で希釈したガスを反応室内に導入し、高周波エネ
ルギー等を加えガスを分解して所望の基板上にシリコン
層を膜厚l00オンク゛ストローム〜2000オンク゛ストローム程度形成
する等の方法がある。ただし、成膜方法はこれに限定さ
れるものではない。In FIG. 1, (a) shows a silicon layer 102 on an insulating amorphous material 101 such as an insulating amorphous substrate such as glass or quartz or an insulating amorphous material layer such as SiO 2. Is a step of forming As an example of film forming conditions, the substrate temperature is kept at about room temperature to about 600 ° C. by a plasma CVD method,
Monosilane or a gas obtained by diluting monosilane with hydrogen, argon, helium, or the like is introduced into the reaction chamber, and high-frequency energy or the like is applied to decompose the gas to form a silicon layer on a desired substrate with a thickness of about 100 angstroms to 2000 angstroms. And so on. However, the film formation method is not limited to this.
【0013】(b)は、該シリコン層102を熱処理等に
より結晶成長させ多結晶シリコン層103を形成する工程
である。熱処理条件は、工程(a)のシリコン層の成膜
方法によってその最適条件が異なる。例えば、成膜時の
基板温度によって以下に述べるような違いがある。FIG. 2B shows a step of forming a polycrystalline silicon layer 103 by crystal growth of the silicon layer 102 by heat treatment or the like. The optimum conditions for the heat treatment differ depending on the method of forming the silicon layer in step (a). For example, there are the following differences depending on the substrate temperature during film formation.
【0014】(1)基板温度が室温〜l50℃程度の比
較的低温で成膜した膜は、膜中に多量の水素を含む非晶
質シリコンになるが、200〜300℃程度で成膜した
膜と比べてより低温の熱処理で膜中の水素を抜くことが
出来る。熱処理条件の一例を以下に述べる。プラズマC
VD反応室内で成膜後の非晶質シリコン膜に第一のアニ
ールを行う。成膜温度が低い非晶質シリコン膜はポーラ
スな膜であるため、成膜後そのまま大気中に取り出すと
膜中に酸素等が取り込まれ易く、膜質低下の原因となる
が、大気中に取り出す前に適切な熱処理を行うと膜の緻
密化が成され、酸素等の取り込みが防止される。熱処理
温度は300℃以上が望ましく、400〜500℃程度
まで温度を上げると特に効果が大きい。尚、熱処理温度
が300℃未満であっても熱処理による膜の緻密化の効
果はある。但し、真空を破らずに連続してアニールを行
う場合は第一のアニールを省くこともできる。(1) A film formed at a relatively low substrate temperature of room temperature to about 150 ° C. becomes amorphous silicon containing a large amount of hydrogen in the film, but is formed at about 200 to 300 ° C. Hydrogen in the film can be removed by heat treatment at a lower temperature than that of the film. An example of the heat treatment condition is described below. Plasma C
First annealing is performed on the formed amorphous silicon film in the VD reaction chamber. Since an amorphous silicon film having a low film formation temperature is a porous film, if the film is taken out to the atmosphere as it is after film formation, oxygen and the like are easily taken into the film, which causes a deterioration in film quality. When the heat treatment is performed appropriately, the film is densified, and the incorporation of oxygen and the like is prevented. The heat treatment temperature is desirably 300 ° C. or higher, and increasing the temperature to about 400 to 500 ° C. is particularly effective. Even if the heat treatment temperature is lower than 300 ° C., there is an effect of densification of the film by the heat treatment. However, if annealing is performed continuously without breaking vacuum, the first annealing can be omitted.
【0015】続いて、第ニのアニールを行う。低い成膜
温度で形成された非晶質シリコン膜は550℃〜650
℃程度の比較的低温の熱処理を数時間〜20時間程度行
なうと、水素の脱離と結晶成長が起こり、結晶粒径1〜
2μm程度の大粒径の多結晶シリコンが形成される。
尚、第一のアニール及び第二のアニールとも所定のアニ
ール温度まで昇温する際に短時間で急激に温度を上昇さ
せるのは好ましくない。その理由は、温度を上昇するに
つれて(特に、300℃を越えると)膜中の水素の脱離
が起こり、昇温速度が急激であると膜中に欠陥を形成し
易くなる。場合によってはピンホールができたり、膜が
剥離することもある。少なくとも300℃以上の温度で
は20℃/分よりも遅い昇温速度(5℃/分よりも遅い
昇温速度が特に望ましい)で温度を徐々に上昇すると膜
中の欠陥は少なくなる。尚、昇温方法の詳細は後述す
る。Subsequently, a second annealing is performed. An amorphous silicon film formed at a low film formation temperature is 550 ° C. to 650 ° C.
When the heat treatment at a relatively low temperature of about ° C. is performed for several hours to about 20 hours, desorption of hydrogen and crystal growth occur, and
Polycrystalline silicon having a large grain size of about 2 μm is formed.
In addition, it is not preferable that both the first annealing and the second annealing rapidly increase the temperature in a short time when the temperature is increased to a predetermined annealing temperature. The reason is that as the temperature is increased (especially when the temperature exceeds 300 ° C.), hydrogen in the film is desorbed, and when the rate of temperature rise is rapid, defects are easily formed in the film. In some cases, pinholes are formed or the film is peeled off. When the temperature is gradually increased at a temperature of at least 300 ° C. at a rate of temperature rise lower than 20 ° C./min (particularly desirable is a rate of temperature rise lower than 5 ° C./min), defects in the film are reduced. The details of the heating method will be described later.
【0016】(2)基板温度がl50℃〜300℃程度
で成膜した膜は、上述の低温で形成した非晶質シリコン
膜に比べて、膜中の水素量は減少するが水素が脱離する
温度はより高温側にシフトする。ただし、成膜後の膜は
低温で形成した膜に比べて緻密であるため上述の第一の
アニールを省くこともできる。第二のアニール条件は、
550℃〜650℃程度の熱処理を数時間〜40時間程
度行うと、水素の脱離と結晶成長が起こり、結晶粒径l
〜2μmの大粒径の多結晶シリコンが形成される。尚、
550℃〜650℃までの昇温方法の詳細は後述する
が、(1)の場合と同様に少なくとも300℃以上の温
度では20℃/分(望ましくは、5℃/分)よりも遅い
昇温速度で温度を徐々に上昇すると膜中の欠陥が少なく
なり望ましい。(2) A film formed at a substrate temperature of about 150 ° C. to 300 ° C. has a smaller amount of hydrogen in the film than the above-described amorphous silicon film formed at a low temperature, but desorbs hydrogen. Temperature shifts to higher temperatures. However, since the film after film formation is denser than a film formed at a low temperature, the first annealing described above can be omitted. The second annealing condition is
When heat treatment at about 550 ° C. to 650 ° C. is performed for several hours to about 40 hours, desorption of hydrogen and crystal growth occur, and the crystal grain size l
Polycrystalline silicon having a large grain size of about 2 μm is formed. still,
The details of the method of raising the temperature from 550 ° C. to 650 ° C. will be described later, but the temperature rise is slower than 20 ° C./min (preferably 5 ° C./min) at a temperature of at least 300 ° C. as in the case of (1). Increasing the temperature gradually at a speed is desirable because defects in the film are reduced.
【0017】(3)基板温度が300℃を越えると膜中
の水素量はさらに減少するが、550℃〜650℃程度
のアニールでは水素の脱離が起こり難くなるため、前記
温度よりもより高い温度での熱処理が重要となる。その
方法に関しては、図1(c)に示す工程に関する説明の
中で述べる。(3) When the substrate temperature exceeds 300.degree. C., the amount of hydrogen in the film further decreases, but the annealing at about 550.degree. C. to 650.degree. Heat treatment at temperature is important. The method will be described in the description of the step shown in FIG.
【0018】続いて、熱処理条件、特に所定の温度まで
の昇温方法について述べる。図2は本発明の実施例及び
参考例における昇温方法の模式図の一例である。第2図
において、図2(a)は参考例であり、所定の温度(T
1)まで所定の昇温速度で昇温して、所定の温度(Tl)
でアニールする場合を示す。昇温速度は、前述の通り2
0℃/分(望ましくは5℃/分)より遅い方が水素の脱
離に伴う欠陥の発生が抑制され望ましい。尚、昇温速度
は常に一定である必要はなく、上述の値の範囲で変動し
ても無論構わない。図2(b)も参考例であり、は所定
の温度(T2)まで所定の昇温速度で昇温し、続いて、
アニール温度である所定の温度(T1)まで昇温速度を
遅くして昇温する場合を示す。昇温速度をT2の前後で
変える理由は、前述のように300℃程度より高い温度
で膜中より水素の脱離が始まるため、その前後で昇温速
度を変え、水素の脱離が始まった後は、昇温速度を20
℃/分(望ましくは5℃/分)よりも遅くして、欠陥の
発生を抑制するためである。(昇温時間の短縮にもな
る。)従って、T2は250℃〜400℃程度にするの
が望ましい。尚、図2(a)の場合と同様に、昇温速度
は常に一定である必要はない。またT2の前後での昇温
速度の変化もステップ的である必要はなく徐々に昇温速
度を変えてもよい。また昇温速度を変える温度(T2)
は複数あってもよい。図2(c)も参考例であり、所定
の温度(T2)まで昇温した後、T2で所定の時間保持
し、続いてアニール温度である所定の温度T1まで昇温
する場合を示す。アニール温度より低い温度で所定時間
(例えば20分〜2時間程度)保持することで多結晶核
を発生させずに膜中の水素の多くを抜くことができる。
従って、T2で所定時間保待した後でアニール温度まで
昇温する際は昇温速度を早くしても水素の脱離に伴う欠
陥の発生は起こり難い。T2は350℃〜550℃程度
が望ましい。尚、所定の温度(T2)は一定に保つ必要
はない。例えば5℃/分よりも遅い昇温速度でゆっくり
昇温させてもよい。また所定の温度に保持する温度(T
2)は複数あってもよい。例えば350℃程度で一旦保
持した後で500℃程度で再び保持する等の方法もあ
り、膜中の欠陥発生を抑制しつつ、水素をより完全に抜
くことが出来る。図2(d)は本発明の実施例であり、
アニール温度(T1)まで一旦昇温した後でT1よりも高
い温度(T3)まで数分程度の短時間で昇温し、再びT1
まで数分程度の短時間で冷却し、T1でアニールする場
合を示す。T3まで昇温する段階を設けることで前述の
通り550℃〜650℃程度の温度T1でのアニールで
は膜中の水素が十分に抜けず、結晶成長が阻害される場
合に、水素をより完全に抜き結晶成長を促進させること
ができる。T3は前述の通り700℃〜800℃程度が
望ましい。また昇温冷却に要する時間は多結晶核の発生
を抑制するために短時間(l0分以内が望ましい)であ
る必要がある。尚、図2(a)〜(d)の内の複数を組
み合わせて用いることで、より欠陥の発生を抑制するこ
とも可能である。また、図2(a)〜(d)は本実施例
及び参考例の一例であり、本発明はこれに限定されるも
のではない。所定のアニール温度まで昇温させる際に、
膜中の水素を欠陥を発生させずに抜くために、成膜条
件、昇温方法、昇温速度等を最適化することで、従来困
難と考えられていたプラズマCVD法によって形成した
非晶質シリコンを大粒径の多結晶シリコンに固相成長さ
せる製造方法を実現した点が重要である。(プラズマC
VD法で形成した非晶質シリコン膜は、量産性に富み、
大面積化が容易等のメリットがあるものの、膜中に多く
の水素を含んでおりその水素が固相成長を阻害するた
め、固相成長させる非晶質シリコン膜の成膜方法として
は好ましくないと従来考えられていた。)図1(c)
は、該多結晶シリコン層103を熱酸化法によって酸化
し、ゲート絶縁膜104を形成する工程である。ゲート酸
化温度はl000℃〜l200℃程度である。多結晶シ
リコン層103は、工程(b)で固相成長法で結晶成長さ
せたものであるが、その結晶化率は必ずしも高くない。
特に、プラズマCVD法で形成したシリコン膜(非晶質
シリコン、若しくは非晶質相中に微少な結晶領域が存在
する微結晶シリコンになっている。)を熱処理で固相成
長させた場台は、その結晶化率は、40%〜65%程度
と低い。その為、該多結晶シリコン層を熱酸化法で酸化
する場合に、1000℃〜1200℃程度の高温まで短
時間に急激に昇温すると、60%〜35%程度残ってい
る未結晶化領域の結晶性が損なわれることが、我々の検
討の結果明らかとなった。現在のところ明確な因果関係
は明らかではないが、昇温が急激な場合は、(l)未結
晶化領域で多数の結晶核が発生し、微細な結晶粒が多数
成長する。Next, conditions for heat treatment, particularly a method for raising the temperature to a predetermined temperature, will be described. FIG. 2 is an example of a schematic diagram of the temperature raising method in the embodiment and the reference example of the present invention. In FIG. 2, FIG. 2 (a) is a reference example, and a predetermined temperature (T
1 ) Raise the temperature at a predetermined rate to a predetermined temperature ( Tl )
Shows the case of annealing. The heating rate is 2 as described above.
Slower than 0 ° C./min (preferably 5 ° C./min) is preferable because generation of defects due to desorption of hydrogen is suppressed. It is to be noted that the heating rate does not need to be always constant, and may be changed within the above range. FIG. 2B is also a reference example, in which the temperature is raised at a predetermined temperature rising rate to a predetermined temperature (T 2 ).
A case is shown in which the temperature is raised to a predetermined temperature (T 1 ), which is the annealing temperature, by lowering the heating rate. The reason for changing the heating rate before and after T 2 is that the desorption of hydrogen from the film starts at a temperature higher than about 300 ° C. as described above. After that, increase the heating rate to 20
This is because the generation of defects is suppressed at a rate lower than C / min (preferably 5 C / min). (Temperature rise time is also shortened.) Therefore, T 2 is desirably set to about 250 ° C. to 400 ° C. As in the case of FIG. 2A, the heating rate does not need to be always constant. Or it may be gradually changed heating rate need not change in the heating rate before and after T 2 is also a step manner. The temperature at which the heating rate is changed (T 2 )
May be plural. FIG. 2C is also a reference example, in which the temperature is raised to a predetermined temperature (T 2 ), then maintained at T 2 for a predetermined time, and then raised to a predetermined temperature T 1 which is an annealing temperature. Show. By keeping the temperature lower than the annealing temperature for a predetermined time (for example, about 20 minutes to 2 hours), much of the hydrogen in the film can be removed without generating polycrystalline nuclei.
Accordingly, the hardly occurs generation of defects resulting from removal of hydrogen be faster heating rate is when the temperature is raised to the annealing temperature after a predetermined time perquisite at T 2. T 2 is desirably about 350 ° C. to 550 ° C. The predetermined temperature (T 2 ) does not need to be kept constant. For example, the temperature may be raised slowly at a temperature rising rate lower than 5 ° C./min. Further, the temperature (T
2 ) There may be more than one. For example, there is a method of once holding at about 350 ° C. and then holding again at about 500 ° C., and hydrogen can be more completely removed while suppressing the occurrence of defects in the film. FIG. 2D shows an embodiment of the present invention.
After the temperature is once increased to the annealing temperature (T 1 ), the temperature is increased to a temperature (T 3 ) higher than T 1 in a short time of about several minutes, and again T 1.
Until it cooled in a short time of about several minutes, shows the case of annealing at T 1. If the hydrogen in the film is annealed at a temperature T 1 of the order as described above 550 ° C. to 650 ° C. by providing a step of raising the temperature to T 3 is not sufficiently escape, crystal growth is inhibited, more hydrogen The crystal growth can be completely promoted. T 3 is desirably about previously described 700 ° C. to 800 ° C.. Further, the time required for heating and cooling needs to be short (preferably within 10 minutes) in order to suppress the generation of polycrystalline nuclei. In addition, it is also possible to suppress generation | occurrence | production of a defect more by combining and using two or more of FIG.2 (a)-(d). FIGS. 2A to 2D are examples of the present embodiment and a reference example, and the present invention is not limited thereto. When raising the temperature to the predetermined annealing temperature,
In order to remove hydrogen in the film without generating defects, the film formation conditions, the heating method, the heating rate, etc. were optimized, and the amorphous film formed by the plasma CVD method, which was conventionally considered difficult, was used. It is important to realize a manufacturing method in which silicon is solid-phase grown on polycrystalline silicon having a large grain size. (Plasma C
The amorphous silicon film formed by the VD method is rich in mass productivity,
Although there is a merit such as easy area enlargement, a large amount of hydrogen is contained in the film, and the hydrogen inhibits solid-phase growth, which is not preferable as a method for forming an amorphous silicon film for solid-phase growth. It was previously thought. ) FIG. 1 (c)
Is a step of oxidizing the polycrystalline silicon layer 103 by a thermal oxidation method to form a gate insulating film 104. The gate oxidation temperature is about 1000 ° C. to 1200 ° C. The polycrystalline silicon layer 103 has been grown by the solid phase growth method in the step (b), but its crystallization ratio is not always high.
In particular, a silicon substrate formed by a plasma CVD method (amorphous silicon or microcrystalline silicon in which a fine crystal region exists in an amorphous phase) is solid-phase grown by heat treatment. The crystallization ratio is as low as about 40% to 65%. Therefore, when the polycrystalline silicon layer is oxidized by the thermal oxidation method, if the temperature is rapidly increased to a high temperature of about 1000 ° C. to 1200 ° C. in a short time, about 60% to 35% of the remaining uncrystallized region Our investigations have shown that the crystallinity is impaired. Although a clear causal relationship is not clear at present, when the temperature rises rapidly, (1) many crystal nuclei are generated in the uncrystallized region, and many fine crystal grains grow.
【0019】(2)昇温〜熱酸化過程中に進行する未結
晶領域の結晶化があまり進まない。(2) The crystallization of the non-crystalline region, which proceeds during the temperature raising to thermal oxidation process, does not progress very much.
【0020】(3)昇温途中で膜中に残留している水素
が急激に脱離し、欠陥が発生する。(3) During the temperature rise, the hydrogen remaining in the film is rapidly desorbed, causing defects.
【0021】等の原因が考えられる。そこで、我々は、
この様な問題を解決する手段として、1000℃〜12
00℃程度の熱酸化温度まで昇温する際の昇温速度及び
昇温方法を制御することで、多結晶シリコン層の結晶性
を大幅に向上させる方法を見いだした。The causes can be considered. So, we
As a means for solving such a problem, 1000 ° C. to 12 ° C.
By controlling the heating rate and the heating method when the temperature is raised to a thermal oxidation temperature of about 00 ° C., a method for greatly improving the crystallinity of the polycrystalline silicon layer has been found.
【0022】さらに、プラズマCVD法で形成した膜の
基板温度とゲート酸化時の昇温方法にも重要な相関があ
ることを見いだした。即ち、(1)基板温度が高温にな
るほど膜中の水素量は少なくなり、基板温度を350℃
以上、好ましくは400℃以上にすると、膜中の水素量
は激減する。その為、550℃〜650℃程度の固相成
長温度まで昇温する際に発生する水素の脱離に伴う欠陥
の発生が低減される。但し、低温で形成した膜と比べ
て、膜中の水素がほぼ完全に脱離する温度がより高温側
にシフトする為、l000℃〜l200℃程度のゲート
酸化温度まで昇温する際は、後述するように、昇温速度
及び昇温方法等を最適化することが重要である。又、基
板温度が500℃程度以上で形成した膜を固相成長した
場合は、<110>に配向した多結晶シリコンが得られ
る為、TFTの界面準位密度の低減や電界効果移動度の
向上等の効果がある。(2)基板温度が350℃程度以
下で形成した膜には水素が多量に含まれている。従っ
て、前述のように、550℃〜650℃程度の固相成長
を行う前に、膜中の水素を膜に多数の欠陥が発生しない
ように抜くことが重要となる。水素の脱離が好適な条件
で行われた場合は、成膜温度が低いほど多結晶シリコン
の結晶粒径が大きくなる傾向がある。但し、低温ほど、
固相成長後の結晶化率が低くなる傾向があるため、後述
するように、固相成長後の昇温速度、昇温方法等を最適
化することが重要である。Furthermore, it has been found that there is also an important correlation between the substrate temperature of the film formed by the plasma CVD method and the method of increasing the temperature during gate oxidation. That is, (1) As the substrate temperature becomes higher, the amount of hydrogen in the film becomes smaller, and the substrate temperature becomes 350 ° C.
When the temperature is set to 400 ° C. or higher, the amount of hydrogen in the film is drastically reduced. Therefore, generation of defects due to desorption of hydrogen generated when the temperature is raised to a solid phase growth temperature of about 550 ° C. to 650 ° C. is reduced. However, since the temperature at which hydrogen in the film is almost completely desorbed shifts to a higher temperature side as compared with a film formed at a low temperature, when the temperature is increased to a gate oxidation temperature of about 1000 ° C. to 1200 ° C., it will be described later. Therefore, it is important to optimize the heating rate and the heating method. When a film formed at a substrate temperature of about 500 ° C. or higher is subjected to solid phase growth, polycrystalline silicon oriented in <110> can be obtained, so that the interface state density of the TFT can be reduced and the field effect mobility can be improved. And so on. (2) A film formed at a substrate temperature of about 350 ° C. or less contains a large amount of hydrogen. Therefore, as described above, it is important to remove hydrogen from the film so as not to generate many defects in the film before performing the solid phase growth at about 550 ° C. to 650 ° C. When desorption of hydrogen is performed under favorable conditions, the crystal grain size of polycrystalline silicon tends to increase as the film formation temperature decreases. However, the lower the temperature,
Since the crystallization rate after solid-phase growth tends to be low, it is important to optimize the rate of temperature rise and the method of temperature rise after solid-phase growth, as described later.
【0023】本発明はプラズマCVD法で形成した膜に
限らず、蒸着法、CVD法、EB蒸着法、MBE法、ス
パッタ法等で非晶質シリコンもしくは微結晶シリコンを
成膜した場合や、微結晶シリコンもしくは多結晶シリコ
ン等をプラズマCVD法、CVD法、蒸着法、EB蒸着
法、MBE法、スパッタ法等で形成後、Si,Ar,
B,P,He,Ne,Kr,H等の元素をイオン打ち込
みして、該微結晶シリコンもしくは多結晶シリコン等を
完全もしくは一部を非晶質化する等の方法で形成した場
合にも有効である。中でも特に、as−depoの膜の
非晶質相の割合が高く、多結晶核発生密度の低い(即
ち、固相成長法で大粒径の多結晶シリコンを形成し易
い)膜ほど、本発明はその効果が大きい。The present invention is not limited to a film formed by a plasma CVD method, but also includes a method in which amorphous silicon or microcrystalline silicon is formed by an evaporation method, a CVD method, an EB evaporation method, an MBE method, a sputtering method, or the like. After forming crystalline silicon or polycrystalline silicon by a plasma CVD method, a CVD method, an evaporation method, an EB evaporation method, an MBE method, a sputtering method, or the like, Si, Ar,
It is also effective when the element such as B, P, He, Ne, Kr, or H is ion-implanted to form the microcrystalline silicon or the polycrystalline silicon by completely or partially amorphizing. It is. In particular, a film in which the proportion of the amorphous phase in the as-depo film is high and the density of polycrystalline nuclei generated is low (that is, a polycrystalline silicon having a large grain size is easily formed by the solid phase growth method) is the present invention. Has a great effect.
【0024】続いて、本発明における熱処理条件特に所
定の温度(例えば、ゲート酸化温度)までの昇温方法に
ついて述べる。図3は本発明の実施例における昇温方法
の模式図の一例である。第3図において,(a)は図1
(b)に示したように所定の温度(T1)で、例えばア
ルゴン、窒素等不活性ガス雰囲気中でアニールしてシリ
コン層102を固相成長させて多結晶シリコン層103を形成
し、続いて、所定のゲート酸化温度(T2)まで所定の
昇温速度で昇温してゲート酸化を行う場合を示す。T1
からT2への昇温速度は、20℃/分程度(望ましくは
5℃/分)より遅い方が、ゲート酸化後の結晶化率が高
く望ましい。また、昇温の途中でアルゴン、窒素等の不
活性ガス雰囲気から酸素、水蒸気、塩化水素等のうちの
少なくとも1種以上を含む雰囲気に切り換え酸化を進行
させながら昇温させる方法もある。(この方法は、以下
に述べる昇温方法にも適用できる。)尚、昇温速度は常
に一定である必要はなく、上述の値の範囲で変動しても
無論構わない。また、温度T1で熱処理した後、一旦試
料を取り出して、再び所定の昇温速度でT2まで昇温す
る方法もある。(ただし、連続的に熱処理した方が、時
間的に有利であるほか、結晶性も優れていた。) 図3(b)は図1(b)に示したように所定の温度(T
1)でアニールしてシリコン層102を固相成長させて多結
晶シリコン層103を形成し、続いて、所定のゲート酸化
温度(T2)まで高温になるほど昇温速度を小さくして
昇温し、ゲート酸化を行う場合を示す。特に、温度が8
00℃〜1000℃程度を越えた領域では昇温速度を5
℃/分より小さくした方が望ましい。また、逆に700
℃程度以下では昇温速度をl0℃/分より大きくしても
よい。Next, a description will be given of a heat treatment condition in the present invention, in particular, a method of raising the temperature to a predetermined temperature (for example, a gate oxidation temperature). FIG. 3 is an example of a schematic view of a temperature raising method according to the embodiment of the present invention. In FIG. 3, FIG.
As shown in (b), annealing is performed at a predetermined temperature (T 1 ) in an atmosphere of an inert gas such as argon, nitrogen, or the like, so that the silicon layer 102 is solid-phase grown to form a polycrystalline silicon layer 103. The case where the gate oxidation is performed by increasing the temperature to a predetermined gate oxidation temperature (T 2 ) at a predetermined temperature rising rate will be described. T 1
The rate of temperature rise from T 2 to T 2 is preferably lower than about 20 ° C./min (preferably 5 ° C./min) because the crystallization rate after gate oxidation is high. Further, there is a method in which the temperature is increased while switching the atmosphere from an inert gas atmosphere such as argon or nitrogen to an atmosphere containing at least one of oxygen, water vapor, hydrogen chloride, etc. during the oxidation, while the oxidation proceeds. (This method can also be applied to the heating method described below.) The heating rate does not need to be constant at all times, and may vary within the above-described range. Further, after heat treatment at a temperature T 1, there once the sample is removed, a method of raising the temperature to T 2 again at a predetermined heating rate. (However, continuous heat treatment is advantageous in terms of time and crystallinity.) FIG. 3B shows a predetermined temperature (T) as shown in FIG. 1B.
Annealing in 1 ) to form the polycrystalline silicon layer 103 by solid-phase growth of the silicon layer 102, and then increasing the temperature at a lower rate as the temperature increases to a predetermined gate oxidation temperature (T 2 ). And the case of performing gate oxidation. Especially when the temperature is 8
In the region exceeding about 00 ° C. to 1000 ° C., the heating rate is 5
It is desirable that the temperature be lower than ° C / min. On the other hand, 700
At about ° C or lower, the temperature raising rate may be higher than 10 ° C / min.
【0025】図3(c)は図1(b)に示したように所
定の温度(T1)でアニールしてシリコン層102を固相成
長させて多結晶シリコン層103を形成し、続いて、所定
の温度(T2)まで所定の昇温速度で昇温し、一定時間
保持した後、所定のゲート酸化温度(T3)まで所定の
昇温速度で昇温する場合を示す。ゲート酸化温度
(T3)より低い温度(T2)で所定時間(例えばl0分
〜1時間程度)保持することで、結晶性を損なわずに、
結晶化率を高めることが出来る。従って、T2で所定時
間保持した後でゲート酸化温度まで昇温する際は昇温速
度を早くしても欠陥の発生は起こり難い。T2は700
℃〜900℃程度が望ましい。尚、所定の温度(T2)
は一定に保つ必要はない。例えば5℃/分よりも遅い昇
温速度でゆっくり昇温させてもよい。また所定の温度に
保持する温度(T2)は複数あってもよい。例えば70
0℃程度で一旦保持した後で800℃程度で再び保持す
る等の方法もあり、より膜中の欠陥が低減される効果が
ある。FIG. 3 (c) shows a polycrystalline silicon layer 103 by annealing at a predetermined temperature (T 1 ) to solid-phase-grow the silicon layer 102 as shown in FIG. 1 (b). A case is shown in which the temperature is raised to a predetermined temperature (T 2 ) at a predetermined heating rate, held for a predetermined time, and then raised to a predetermined gate oxidation temperature (T 3 ) at a predetermined heating rate. By maintaining the temperature (T 2 ) lower than the gate oxidation temperature (T 3 ) for a predetermined time (for example, about 10 minutes to 1 hour), the crystallinity is not impaired.
The crystallization rate can be increased. Therefore, hardly occur generation of defects by faster heating rate is when the temperature is raised to the gate oxidation temperature after a predetermined time held at T 2. T 2 is 700
C. to about 900.degree. C. is desirable. In addition, a predetermined temperature (T 2 )
Need not be kept constant. For example, the temperature may be raised slowly at a temperature rising rate lower than 5 ° C./min. Further, there may be a plurality of temperatures (T 2 ) maintained at the predetermined temperature. For example, 70
There is also a method of once holding at about 0 ° C. and then holding again at about 800 ° C., which has the effect of further reducing defects in the film.
【0026】図3(d)は、所定のゲート酸化温度(T
1)まで所定の昇温速度で昇温してゲート酸化を行う場
合であり、所定の温度に保持して固相成長を行う段階を
特に設けずに昇温しつつ固相成長を進行させる場合であ
り、処理時間の短縮ができる。T1への昇温速度は、昇
温しつつ固相成長を進めるため、5〜10℃/分(望ま
しくは2℃/分)より遅い方が、結晶化率が高く望まし
い。尚、昇温速度は常に一定である必要はなく、上述の
値の範囲で変動しても無論構わない。FIG. 3D shows a predetermined gate oxidation temperature (T
1 ) The case where the gate oxidation is performed by increasing the temperature at a predetermined temperature raising rate until the solid temperature growth is performed, and the solid phase growth is performed while increasing the temperature without particularly providing a step of performing the solid phase growth while maintaining the predetermined temperature. And the processing time can be reduced. The rate of temperature rise to T 1 is preferably lower than 5 to 10 ° C./min (preferably 2 ° C./min) to increase the crystallization rate in order to promote solid phase growth while increasing the temperature. It is to be noted that the heating rate does not need to be always constant, and may be changed within the above range.
【0027】図3(e)は、所定のゲート酸化温度(T
1)まで、高温になるほど昇温速度を小さくして昇温
し、ゲート酸化を行う場合を示す。特に、温度が700
℃〜1000℃程度を越えた領域では昇温速度を5℃/
分(望ましくは2℃/分)より小さくした方が、多結晶
シリコンの結晶性が改善され望ましい。また逆に温度が
250℃以下の領域では昇温速度を40℃/分より大き
くしても多結晶シリコンの結晶性に影響はほとんどな
く、昇温時間の短縮につながる。300℃〜500℃程
度の領域では、膜中の水素の脱離が進行するため、5〜
10℃/分(望ましくは2〜4℃/分)より昇温速度を
小さくした方が望ましい。500℃〜700℃の領域は
固相成長が進行するため、5℃/分(望ましくは2℃/
分)より昇温速度を小さくした方が望ましい。FIG. 3E shows a predetermined gate oxidation temperature (T
Until 1 ), the case where the temperature is increased at a lower temperature as the temperature becomes higher and the temperature is increased to perform gate oxidation is shown. In particular, when the temperature is 700
In the region exceeding about 1000 ° C. to 1000 ° C., the heating rate is set to 5 ° C. /
It is desirable to set the time to be smaller than the minute (preferably 2 ° C./min) because the crystallinity of the polycrystalline silicon is improved. On the other hand, in the region where the temperature is 250 ° C. or less, even if the rate of temperature rise is higher than 40 ° C./min, there is almost no effect on the crystallinity of polycrystalline silicon, which leads to a reduction in the time required for temperature rise. In the region of about 300 ° C. to 500 ° C., the desorption of hydrogen in the film proceeds.
It is desirable that the rate of temperature rise be lower than 10 ° C./min (preferably 2 to 4 ° C./min). Since solid phase growth proceeds in the region of 500 ° C. to 700 ° C., 5 ° C./min (preferably 2 ° C./min.
It is desirable that the heating rate be lower than that of (minute).
【0028】尚、図3(a)〜(e)の内の複数を組み
合わせて用いることで、より欠陥の発生を抑制し、結晶
性及び結晶化率を向上させることも可能である。また、
図3(a)〜(e)は本実施例の一例であり、本発明は
これに限定されるものではない。It should be noted that the use of a plurality of the combinations shown in FIGS. 3A to 3E can further suppress the occurrence of defects and improve the crystallinity and the crystallization ratio. Also,
FIGS. 3A to 3E are examples of the present embodiment, and the present invention is not limited thereto.
【0029】図1(d)は、半導体素子を形成する工程
である。尚、図1(d)では、半導体素子としてTFT
を形成する場合を例としている。図において、104はゲ
ート絶縁膜、105はゲー卜電極、106はソース・ドレイン
領域、107 は層間絶縁膜、108はコンタクト穴、109は配
線を示す。TFT形成法の一例としては、ゲート電極を
形成後、ソース・ドレイン領域をイオン注入法、熱拡散
法、プラズマドーピング法等で形成し、層間絶縁膜をC
VD法、スパッタ法、プラズマCVD法等で形成する。
さらに、該層間絶縁膜にコンタクト穴を開け、配線を形
成することでTFTが形成される。FIG. 1D shows a step of forming a semiconductor element. In FIG. 1D, a TFT is used as a semiconductor element.
Is formed as an example. In the figure, 104 indicates a gate insulating film, 105 indicates a gate electrode, 106 indicates a source / drain region, 107 indicates an interlayer insulating film, 108 indicates a contact hole, and 109 indicates a wiring. As an example of a TFT forming method, after forming a gate electrode, a source / drain region is formed by an ion implantation method, a thermal diffusion method, a plasma doping method, etc.
It is formed by a VD method, a sputtering method, a plasma CVD method, or the like.
Further, a TFT is formed by forming a contact hole in the interlayer insulating film and forming a wiring.
【0030】尚、本実施例では高温の熱処理として、ゲ
ート酸化を行う場合を例としたが本発明はこれに限定さ
れるものではない。例えば、所定の温度(例えば、70
0℃〜1200℃程度)まで所定の昇温速度で昇温した
後、該所定の温度で単に熱処理を行なうだけでもよい。
ただし、絶縁ゲート型半導体素子を形成する場合は、ゲ
ート酸化工程で上述の熱処理を兼ねることが、工程の短
縮にもなり有効である。In this embodiment, the case where gate oxidation is performed as the high-temperature heat treatment is described as an example, but the present invention is not limited to this. For example, a predetermined temperature (for example, 70
After the temperature is raised at a predetermined temperature rising rate to about 0 ° C. to 1200 ° C.), the heat treatment may be simply performed at the predetermined temperature.
However, in the case of forming an insulated gate type semiconductor element, it is effective to use the above-described heat treatment in the gate oxidation step, because the step can be shortened.
【0031】本発明に基づく半導体装置の製造方法で作
製した多結晶シリコンTFT(Nチャンネル)の電界効
果移動度は、l50〜200cm2/V・secであ
り、高性能な多結晶シリコンTFTを簡便なプロセスで
形成することが出来る。The field-effect mobility of a polycrystalline silicon TFT (N-channel) manufactured by the method of manufacturing a semiconductor device according to the present invention is 150 to 200 cm 2 / V · sec. It can be formed by a process.
【0032】さらに、前記TFT製造工程に水素ガスも
しくはアンモニアガスを少なくとも含む気体のプラズマ
雰囲気に半導体素子をさらす工程等を設け、前記TFT
を水素化すると、結晶粒界に存在する欠陥密度が低減さ
れ、前記電界効果移動度はさらに向上する。Further, a step of exposing the semiconductor element to a plasma atmosphere of a gas containing at least hydrogen gas or ammonia gas is provided in the TFT manufacturing step,
Is hydrogenated, the density of defects existing in the crystal grain boundaries is reduced, and the field-effect mobility is further improved.
【0033】また、チャンネル領域に不純物をドーピン
グして、Vth(しきい値電圧)を制御する手段も極め
て有効である。固相成長法で形成した多結晶シリコンT
FTでは、Nチャンネルトランジスタがデプレッション
方向にVthがシフトし、Pチャンネルトランジスタが
エンハンスメント方向にシフトする傾向がある。又、上
記TFTを水素化した場合、その傾向がより顕著にな
る。そこで、チャンネル領域に1015〜1019/cm3
程度の不純物をドープすると、Vthのシフトを抑える
ことができる。例えば、第1図において、ゲート電極を
形成する前に、イオンインプラ法等でB(ボロン)等の
不純物をl011〜10l3/cm2程度のドーズ量で打ち
込む等の方法がある。特に、ドーズ量が前述の値程度で
あれば、Pチャンネルトランジスタ、Nチャンネルトラ
ンジスタ共オフ電流が最小になるように、Vthを制御
することができる。従って、CMOS型のTFT素子を
形成する場合においてもPch,Nchを選択的にチャ
ンネルドープせずに、全面を同一の工程でチャンネルド
ープすることもできる。A means for doping an impurity in the channel region to control Vth (threshold voltage) is also very effective. Polycrystalline silicon T formed by solid phase growth method
In FT, the Nth transistor tends to shift Vth in the depletion direction, and the P channel transistor tends to shift in the enhancement direction. When the TFT is hydrogenated, the tendency becomes more remarkable. Therefore, 10 15 to 10 19 / cm 3 is set in the channel region.
By doping a certain amount of impurities, the shift of Vth can be suppressed. For example, in FIG. 1, there is a method of implanting an impurity such as B (boron) with a dose of about 10 11 to 10 13 / cm 2 by ion implantation or the like before forming the gate electrode. In particular, when the dose is about the above-described value, Vth can be controlled so that the off-state current of both the P-channel transistor and the N-channel transistor is minimized. Therefore, even when a CMOS type TFT element is formed, the entire surface can be channel-doped in the same step without selectively channel-doping Pch and Nch.
【0034】尚、本発明は、図1の実施例に示したTF
T以外にも、絶縁ゲート型半導体素子全般に応用できる
ほか、バイポーラトランジスタ、静電誘導型トランジス
タ、太陽電池・光センサをはじめとする光電変換素子等
の半導体素子を多結晶半導体を素子材として形成する場
合にきわめて有効な製造方法となる。It should be noted that the present invention relates to the TF shown in the embodiment of FIG.
In addition to T, it can be applied to insulated gate semiconductor devices in general, and semiconductor devices such as bipolar transistors, static induction transistors, photoelectric conversion devices such as solar cells and optical sensors are formed using polycrystalline semiconductors as device materials. This is an extremely effective manufacturing method.
【0035】[0035]
【発明の効果】以上述べたように、本発明によれば下記
の効果を奏することができる。 (a)本発明によれば簡単な製造プロセスで大粒径の多
結晶シリコン膜を形成することができる。 (b)550℃〜650℃程度の温度ではシリコン膜中
の水素が十分に抜けず、結晶成長が阻害されるが、70
0℃以上の温度にすることにより水素を十分に抜くこと
ができる。さらに水素を抜いた後に再び550℃〜65
0℃でシリコン膜をアニールすることにより結晶成長を
促進させることができる。As described above, according to the present invention, the following effects can be obtained. (A) According to the present invention, a large grain polycrystalline silicon film can be formed by a simple manufacturing process. (B) At a temperature of about 550 ° C. to 650 ° C., hydrogen in the silicon film is not sufficiently removed, and crystal growth is hindered.
By setting the temperature to 0 ° C. or higher, hydrogen can be sufficiently removed. 550 ° C.-65
Annealing the silicon film at 0 ° C. can promote crystal growth.
【0036】また、本発明は、図1の実施例に示したT
FT以外にも、絶縁ゲート型半導体素子全般に応用でき
るほか、バイポーラトランジスタ、静電誘導型トランジ
スタ、太陽電池・光センサをはじめとする光電変換素子
等の半導体素子を多結晶半導体を素子材として形成する
場合にきわめて有効な製造方法となる。The present invention is also applicable to the T shown in FIG.
In addition to FT, it can be applied to insulated gate semiconductor devices in general, and semiconductor devices such as bipolar transistors, electrostatic induction transistors, photoelectric conversion devices such as solar cells and optical sensors, etc. are formed using polycrystalline semiconductors as device materials. This is an extremely effective manufacturing method.
【図1】(a)〜(d)は本発明の実施例における半導
体装置の製造工程図である。1 (a) to 1 (d) are manufacturing process diagrams of a semiconductor device according to an embodiment of the present invention.
【図2】(a)〜(d)は本発明の実施例及び参考例に
おける昇温方法の模式図である。FIGS. 2A to 2D are schematic diagrams of a temperature raising method in Examples and Reference Examples of the present invention.
【図3】(a)〜(e)は本発明の実施例における昇温
方法の模式図である。FIGS. 3A to 3E are schematic diagrams of a temperature raising method according to an embodiment of the present invention.
101 絶縁性非晶質材料 102 シリコン層 103 多結晶シリコン層 104 ゲート絶縁膜 105 ゲート電極 106 ソース・ドレイン領域 107 層間絶縁膜 108 コンタクト穴 109 配線 101 Insulating amorphous material 102 Silicon layer 103 Polycrystalline silicon layer 104 Gate insulating film 105 Gate electrode 106 Source / drain region 107 Interlayer insulating film 108 Contact hole 109 Wiring
Claims (1)
550℃〜650℃の所定の温度に昇温させ、前記基板
を700℃以上に昇温した後、再び前記基板を550℃
〜650℃にして前記シリコン層をアニールすることを
特徴とする半導体装置の製造方法。1. A silicon layer is formed on a substrate, the substrate is heated to a predetermined temperature of 550 ° C. to 650 ° C., and the substrate is heated to 700 ° C. or higher.
A method for manufacturing a semiconductor device, wherein the silicon layer is annealed at a temperature of about 650 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP423898A JP2910752B2 (en) | 1998-01-12 | 1998-01-12 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP423898A JP2910752B2 (en) | 1998-01-12 | 1998-01-12 | Method for manufacturing semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1074229A Division JP2773203B2 (en) | 1989-02-14 | 1989-03-27 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10177955A JPH10177955A (en) | 1998-06-30 |
JP2910752B2 true JP2910752B2 (en) | 1999-06-23 |
Family
ID=11578981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP423898A Expired - Lifetime JP2910752B2 (en) | 1998-01-12 | 1998-01-12 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2910752B2 (en) |
-
1998
- 1998-01-12 JP JP423898A patent/JP2910752B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10177955A (en) | 1998-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0608503B1 (en) | A semiconductor device and its manufacturing method | |
JP2961375B2 (en) | Method for manufacturing semiconductor device | |
JP2811762B2 (en) | Method for manufacturing insulated gate field effect transistor | |
JP2773203B2 (en) | Method for manufacturing semiconductor device | |
JP2910752B2 (en) | Method for manufacturing semiconductor device | |
JP3203746B2 (en) | Semiconductor crystal growth method | |
JP2811763B2 (en) | Method for manufacturing insulated gate field effect transistor | |
JP3093762B2 (en) | Method for manufacturing semiconductor device | |
JPH11261078A (en) | Method for manufacturing semiconductor device | |
JP2933081B2 (en) | Method for manufacturing semiconductor device | |
JPH03293731A (en) | Manufacturing method of semiconductor device | |
JP2822394B2 (en) | Method for manufacturing semiconductor device | |
JPH0393236A (en) | Manufacturing method of semiconductor device | |
JP3141909B2 (en) | Semiconductor device manufacturing method | |
JPH03248434A (en) | Manufacture of semiconductor device | |
JPH01276617A (en) | Manufacturing method of semiconductor device | |
JPH04286367A (en) | Semiconductor device and manufacture thereof | |
JP2006191125A (en) | Manufacturing method for soi wafer | |
JPH04286369A (en) | Semiconductor device and its manufacturing method | |
JPH03219643A (en) | Manufacturing method of semiconductor device | |
JPH05217891A (en) | Method for manufacturing semiconductor device | |
JPH04286368A (en) | Semiconductor device and manufacture thereof | |
JPH04152639A (en) | Manufacturing method of semiconductor device | |
JPH02252246A (en) | Manufacture of semiconductor device | |
JPH07288228A (en) | Formation of polycrystalline silicon thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990309 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080409 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090409 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |