JP2909945B2 - Seed bar cutting method - Google Patents
Seed bar cutting methodInfo
- Publication number
- JP2909945B2 JP2909945B2 JP4297761A JP29776192A JP2909945B2 JP 2909945 B2 JP2909945 B2 JP 2909945B2 JP 4297761 A JP4297761 A JP 4297761A JP 29776192 A JP29776192 A JP 29776192A JP 2909945 B2 JP2909945 B2 JP 2909945B2
- Authority
- JP
- Japan
- Prior art keywords
- jig
- ingot
- single crystal
- cutting
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mechanical Treatment Of Semiconductor (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、種棒切断方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cutting a seed rod.
【0002】[0002]
【従来の技術】チョクラルスキー法、フローティングゾ
ーン法等を用いてある結晶方位を有する単結晶を成長さ
せる場合、種子結晶を必要とする。種子結晶の製作に当
たっては良質の単結晶インゴットを用意し、その結晶方
位に合わせて切断加工を行い、更に、機械的なきず等の
ない清浄な表面とするため、化学エッチング処理等を施
して仕上げる。前記単結晶インゴットの切断加工に際
し、光像法により結晶方位を合わせている。2. Description of the Related Art When a single crystal having a certain crystal orientation is grown by using the Czochralski method or the floating zone method, a seed crystal is required. For the production of seed crystals, prepare a high-quality single crystal ingot, cut it according to its crystal orientation, and finish it with a chemical etching process etc. to obtain a clean surface without mechanical flaws etc. . At the time of cutting the single crystal ingot, the crystal orientation is adjusted by an optical image method.
【0003】[0003]
【発明が解決しようとする課題】単結晶インゴットの結
晶方位を検出する手段として光像法とX線回折法とが知
られているが、X線回折法を用いた場合、切断機に対し
て単結晶インゴットの結晶方位を正確に合わせる適当な
手段がないため、従来から光像法が用いられている。し
かしながら前記光像法は、単結晶インゴットの端面に光
のスポットを当て、その反射光映像を目視により確認し
ながら結晶方位を合わせているため、必ずしも正確に結
晶方位を調節することができず、切断された種棒の結晶
方位の傾きが大きいことがある。そしてこのような種棒
を用いて製造された単結晶の結晶方位の傾きも大きくな
り、また、単結晶インゴット外周の凹凸も大きくなって
しまう。従って、光像法による従来の切断方法では種棒
の良品率も低い。本発明は上記従来の問題点に着目して
なされたもので、良質の種棒を得るため、種子結晶の素
材である単結晶インゴットの結晶方位を正確に検出し、
これに基づいて切断方向を正確に調節することができる
ような、種棒切断方法を提供することを目的としてい
る。As means for detecting the crystal orientation of a single crystal ingot, an optical image method and an X-ray diffraction method are known. Since there is no suitable means for accurately adjusting the crystal orientation of a single crystal ingot, an optical image method has been conventionally used. However, in the optical image method, since a light spot is applied to an end face of a single crystal ingot and the crystal orientation is adjusted while visually confirming the reflected light image, the crystal orientation cannot always be adjusted accurately. The inclination of the crystal orientation of the cut seed rod may be large. And the inclination of the crystal orientation of the single crystal manufactured using such a seed rod also increases, and the irregularities on the outer periphery of the single crystal ingot also increase. Therefore, in the conventional cutting method using the optical image method, the yield rate of the seed bar is low. The present invention has been made in view of the above conventional problems, in order to obtain a good quality seed rod, to accurately detect the crystal orientation of the single crystal ingot that is the material of the seed crystal,
It is an object of the present invention to provide a seed bar cutting method that can accurately adjust the cutting direction based on this.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するた
め、本発明に係る種棒切断方法は、単結晶インゴットの
結晶格子面間隔をdとし、波長λのX線を前記結晶格子
面に対して角度θで照射したとき、sinθ=λ/2d
となる条件〔ブラッグの条件〕を満たす位置に検出器を
配設し、前記単結晶インゴットの端面に波長λのX線を
照射したとき検出器による回折波強度が最大となるよう
に単結晶インゴットの軸の向きを調節した上、所定の間
隔で結晶格子面に直角方向に第1のインゴット切断を行
い、インゴットの軸を中心として前記単結晶インゴット
を90°回転させた後、インゴットの端面に波長λのX
線を照射し、前記と同様に検出器による回折波強度が最
大となるように単結晶インゴットの軸の向きを調節した
上、所定の間隔で結晶格子面に直角方向に第2のインゴ
ット切断を行うことにより種棒を得る構成とし、このよ
うな構成において具体的には、アングルプレートからな
る治具1と、前記治具1を載置する底面と、この底面の
両端に垂直に立ち上がる対向面と、前記二つの対向面に
それぞれ2本ずつ配設された調整ボルトとによって構成
される治具2と、前記治具2を載置、固定する上部と、
X線回折装置に適合する基部とからなる治具3とを準備
し、治具1の直交する2面に単結晶インゴットの外周を
貼着し、治具3に載置、固定した治具2に前記治具1の
一側の面を下にして載置した後、単結晶インゴットの端
面にX線を照射し、X線回折装置の検出器による回折波
強度が最大となるように前記4本の調整ボルトを操作し
て治具1の向きを調節した上、治具2を切断機の基準面
に固定して第1のインゴット切断を行い、治具1の他側
の面を下にして治具2に載置し、再度単結晶インゴット
の端面にX線を照射し、前記と同様に検出器による回折
波強度が最大となるように前記4本の調整ボルトを操作
して治具1の向きを調節した上、治具2を切断機の基準
面に固定して第2のインゴット切断を行うものとする。In order to achieve the above object, a seed rod cutting method according to the present invention is characterized in that a crystal lattice plane spacing of a single crystal ingot is d, and an X-ray of wavelength λ is applied to the crystal lattice plane. When irradiated at an angle θ, sin θ = λ / 2d
A detector is provided at a position that satisfies the condition [Bragg's condition], and when the X-rays of wavelength λ are irradiated on the end face of the single crystal ingot, the single crystal ingot is maximized so that the intensity of the diffracted wave by the detector becomes maximum. After adjusting the direction of the axis, the first ingot is cut at a predetermined interval in a direction perpendicular to the crystal lattice plane, and the single crystal ingot is rotated by 90 ° about the axis of the ingot. X of wavelength λ
After irradiating a line, the direction of the axis of the single crystal ingot is adjusted so that the intensity of the diffracted wave by the detector is maximized, and the second ingot is cut at a predetermined interval in a direction perpendicular to the crystal lattice plane. By performing the process, a seed rod is obtained. In such a configuration, specifically, a jig 1 made of an angle plate, a bottom surface on which the jig 1 is placed, and opposing surfaces which stand vertically at both ends of the bottom surface A jig 2 composed of two adjusting bolts respectively arranged on the two facing surfaces, and an upper part on which the jig 2 is placed and fixed;
A jig 3 having a base compatible with the X-ray diffraction apparatus is prepared, and the outer periphery of a single crystal ingot is attached to two orthogonal surfaces of the jig 1, and the jig 2 is mounted and fixed on the jig 3. After placing the jig 1 on one side, the end face of the single crystal ingot is irradiated with X-rays. After adjusting the direction of the jig 1 by operating the adjusting bolts, the jig 2 is fixed to the reference surface of the cutting machine to perform the first ingot cutting, and the other surface of the jig 1 is turned down. X-rays are again applied to the end face of the single crystal ingot, and the jig is operated by operating the four adjustment bolts so as to maximize the intensity of the diffracted wave by the detector in the same manner as described above. After adjusting the direction of 1, the jig 2 is fixed to the reference plane of the cutting machine to perform the second ingot cutting.
【0005】[0005]
【作用】結晶格子面の間隔dの単結晶インゴットの端面
に、λ=2d・sinθで示されるブラッグの条件を満
足する波長λのX線を照射角θで照射し、前記結晶格子
面における回折角がθとなるように単結晶インゴットの
軸の向きを調節したとき、回折波強度は最大となる。本
発明はこの現象を利用したものであり、上記構成によれ
ば、アングルプレートからなる治具1に種棒の素材とな
る単結晶インゴットの外周を貼着して固定し、この治具
1をX線回折装置を用いて前記ブラッグの条件を満足す
る方向に調節し、その状態で治具1を治具2に固定する
ことにしたので、治具2を切断機に取り付ければ単結晶
インゴットの結晶格子面に直角の方向に高精度で切断す
ることができる。そして、治具1を90°回転して前記
操作を繰り返すことにより、極めて良質の種棒を得るこ
とができる。An X-ray having a wavelength λ that satisfies the Bragg condition represented by λ = 2d · sin θ is applied to the end face of the single crystal ingot having a distance d between the crystal lattice planes at an irradiation angle θ, and the rotation at the crystal lattice plane is performed. When the direction of the axis of the single crystal ingot is adjusted so that the bending angle becomes θ, the intensity of the diffracted wave becomes maximum. The present invention utilizes this phenomenon, and according to the above configuration, the outer periphery of a single crystal ingot serving as a material for a seed rod is attached and fixed to the jig 1 formed of an angle plate, and the jig 1 is fixed. The jig 1 was fixed to the jig 2 using an X-ray diffractometer in a direction that satisfies the Bragg condition. In this state, the jig 2 was attached to a cutting machine. It can be cut with high precision in the direction perpendicular to the crystal lattice plane. Then, by rotating the jig 1 by 90 ° and repeating the above operation, a very good quality seed rod can be obtained.
【0006】[0006]
【実施例】以下に本発明に係る種棒切断方法の実施例に
ついて、図面を参照して説明する。本発明では、種棒の
素材となる単結晶インゴット(以下素材という)の結晶
方位を高精度で検出するために治具1、治具2、治具3
を用いる。治具1は図1に示すように、平行な面1a,
1bと、これらの面に垂直な面1c,1dとを有するア
ングルプレートである。治具2は、図2に示すように断
面がコの字状のプレートで、対向する二つの面2a,2
bの間隔L2 は前記治具1の長さL1 より大きく、前記
二つの面2a,2bに平行な外側面2c,2dにはそれ
ぞれ調整ボルト2eが底面2fに近接して2本ずつ取着
されている。治具3の形状は図3に示す通りで、対向す
る二つの面3a,3bの間隔L3 は治具2の底面長さL
4 より僅かに大きく、一側の面3aに取付ボルト3cが
取着されている。なお、治具3の基部3dの形状ならび
に寸法は、X線回折装置に適合するように製作されてい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a seed bar cutting method according to the present invention will be described below with reference to the drawings. In the present invention, the jig 1, the jig 2, and the jig 3 are used to detect the crystal orientation of a single crystal ingot (hereinafter, referred to as a raw material) as a raw material of a seed rod with high accuracy.
Is used. As shown in FIG. 1, the jig 1 has parallel surfaces 1a,
1b and an angle plate having surfaces 1c and 1d perpendicular to these surfaces. The jig 2 is a plate having a U-shaped cross section as shown in FIG. 2, and has two opposing surfaces 2a, 2a.
The spacing L2 of b is larger than the length L1 of the jig 1, and two adjusting bolts 2e are attached to the outer surfaces 2c and 2d parallel to the two surfaces 2a and 2b, respectively, near the bottom surface 2f. ing. The shape of the jig 3 is as shown in FIG. 3, and the distance L3 between the two opposing surfaces 3a and 3b is equal to the bottom length L of the jig 2.
The mounting bolt 3c is slightly larger than 4 and is attached to one surface 3a. The shape and dimensions of the base 3d of the jig 3 are manufactured so as to be compatible with the X-ray diffraction device.
【0007】次に、種棒切断作業手順について説明す
る。 (1)図4に示すように、接着剤を用いて円柱状の素材
4を上記治具1の面1a,1cに貼着する。 (2)治具2を治具3に載せ、取付ボルト3cにより治
具2を治具3に固定した上、前記素材4を貼着した治具
1を治具2に載せる。この時、たとえば図1に示した治
具1の面1bを図2に示した治具2の底面2f上に載置
し、治具2の調整ボルト2eは治具1が微動できるよう
に緩めておく。 (3)上記の状態で治具3をX線回折装置に取り付け
る。このとき、図5に示すようにX線管5およびX線の
回折波を検出する検出器6の取り付け角度は、基準面A
に対して素材4のブラッグ角θとなるように調節されて
いる。 (4)図6に示すように、X線管5から素材4の端面に
波長λのX線を照射し、検出器6の検出値が最大になる
ように4本の調整ボルト2cを右または左方向に回転し
て治具1の向きを調節する。前記検出器6の検出値が最
大になったとき、素材4の結晶方位はブラッグの条件を
満足する方向に一致したことになり、結晶格子面4aは
基準面Aに平行になっている。 (5)治具1が4本の調整ボルト2cによって治具2に
固定されていることを確認した上、治具2を治具3から
取り外す。 (6)図7に示すように、治具1を固定した治具2の外
側面2cあるいは2dを切断機7の基準面7aに密着さ
せて切断機7に取り付け、治具1に貼着された素材4を
所定の間隔で、スライスベースを残して切断する。 (7)図8に示すように治具2を切断機から取り外し、
調整ボルト2eを緩めて治具2から治具1を取り外す。
治具2を治具3に載せ、取付ボルト3cにより治具2を
治具3に固定する。 (8)素材4の軸心を回転軸として治具1を90°回転
させ、面1dを治具2の底面2f上に載置する。 (9)さきに述べた手順(3)〜(7)を繰り返す。 このようにして所定寸法に切り出された種棒の端面を種
棒の軸心に対して直角に切削し、種棒切断作業が完了す
る。更に化学エッチング処理等が施されて種棒が完成す
る。Next, a procedure for cutting a seed rod will be described. (1) As shown in FIG. 4, a columnar material 4 is attached to the surfaces 1a and 1c of the jig 1 using an adhesive. (2) The jig 2 is placed on the jig 3, the jig 2 is fixed to the jig 3 with the mounting bolt 3c, and the jig 1 on which the material 4 is adhered is placed on the jig 2. At this time, for example, the surface 1b of the jig 1 shown in FIG. 1 is placed on the bottom surface 2f of the jig 2 shown in FIG. 2, and the adjusting bolt 2e of the jig 2 is loosened so that the jig 1 can be slightly moved. Keep it. (3) The jig 3 is attached to the X-ray diffraction device in the above state. At this time, as shown in FIG. 5, the mounting angle of the X-ray tube 5 and the detector 6 for detecting the diffracted wave of the X-ray is set to the reference plane A.
Is adjusted so as to be the Bragg angle θ of the material 4. (4) As shown in FIG. 6, the end face of the material 4 is irradiated with X-rays of wavelength λ from the X-ray tube 5 and the four adjustment bolts 2c are moved to the right or right so that the detection value of the detector 6 is maximized. Rotate to the left to adjust the direction of the jig 1. When the detection value of the detector 6 becomes the maximum, the crystal orientation of the raw material 4 coincides with the direction satisfying the Bragg condition, and the crystal lattice plane 4 a is parallel to the reference plane A. (5) After confirming that the jig 1 is fixed to the jig 2 by the four adjustment bolts 2c, the jig 2 is removed from the jig 3. (6) As shown in FIG. 7, the outer surface 2 c or 2 d of the jig 2 to which the jig 1 is fixed is attached to the cutting machine 7 in close contact with the reference surface 7 a of the cutting machine 7, and is attached to the jig 1. The cut material 4 is cut at predetermined intervals while leaving the slice base. (7) Remove the jig 2 from the cutting machine as shown in FIG.
Loosen the adjustment bolt 2e and remove the jig 1 from the jig 2.
The jig 2 is placed on the jig 3, and the jig 2 is fixed to the jig 3 by the mounting bolt 3c. (8) The jig 1 is rotated by 90 ° about the axis of the material 4 as a rotation axis, and the surface 1d is placed on the bottom surface 2f of the jig 2. (9) Repeat steps (3) to (7) described above. The end face of the seed rod cut out to a predetermined size in this manner is cut at right angles to the axis of the seed rod, and the seed rod cutting operation is completed. Further, the seed rod is completed by performing a chemical etching process or the like.
【0008】本発明による切断方法を用いて種棒切断を
行い、得られた種棒の結晶方位偏差角度を測定した。切
断した単結晶インゴットは26個で、各インゴットから
1個の種棒を抜き取って結晶方位の傾き角を測定した結
果、平均値は4.77分、標準偏差の推定値は3.15
分であった。これに対し、従来の光像法を用いて切断し
た種棒の結晶方位偏差角度を上記と同一の方法で測定し
たところ、平均値は21.4分、標準偏差の推定値は1
6.73分であり、結晶方位偏差精度は飛躍的に向上し
た。また、工程能力指数も5倍以上に向上した。A seed rod was cut using the cutting method according to the present invention, and the crystal orientation deviation angle of the obtained seed rod was measured. The number of cut single crystal ingots was 26, and one seed rod was extracted from each ingot and the inclination angle of the crystal orientation was measured. As a result, the average value was 4.77 minutes, and the estimated standard deviation was 3.15.
Minutes. On the other hand, when the crystal orientation deviation angle of the seed rod cut using the conventional optical image method was measured by the same method as described above, the average value was 21.4 minutes, and the estimated value of the standard deviation was 1
At 6.73 minutes, the crystal orientation deviation accuracy was dramatically improved. In addition, the process capability index was improved more than five times.
【0009】[0009]
【発明の効果】以上説明したように本発明によれば、種
子結晶の素材である単結晶インゴットの端面にブラッグ
角でX線を照射し、回折波強度が最大となるように単結
晶インゴットの軸心の向きを調節した上、その状態を維
持したまま切断することにしたので、結晶格子面に直角
の方向に極めて正確に切断することができる。そして、
この手順をx,y2方向について行うことにしたので、
従来の光像法に比べて結晶方位偏差が著しく小さい種棒
を得ることができる。このような極めて良質の種棒を使
用した場合、結晶方位偏差の小さい高品質の単結晶を製
造することが可能となる。また、種棒切断加工の歩留り
を飛躍的に向上させることができる。As described above, according to the present invention, the end face of a single crystal ingot, which is a seed crystal material, is irradiated with X-rays at a Bragg angle, and the single crystal ingot is so shaped as to maximize the diffraction wave intensity. Since the cutting is performed while maintaining the state after adjusting the direction of the axis, the cutting can be performed extremely accurately in the direction perpendicular to the crystal lattice plane. And
Since this procedure was performed in the x and y2 directions,
It is possible to obtain a seed rod having a crystal orientation deviation significantly smaller than that of the conventional optical imaging method. When such a very high quality seed rod is used, it becomes possible to produce a high-quality single crystal having a small crystal orientation deviation. Further, the yield of the seed bar cutting process can be remarkably improved.
【図1】治具1の斜視図である。FIG. 1 is a perspective view of a jig 1;
【図2】治具2の斜視図である。FIG. 2 is a perspective view of the jig 2;
【図3】治具3の斜視図である。FIG. 3 is a perspective view of the jig 3;
【図4】治具3に治具2を固定し、単結晶素材を貼着し
た治具1を治具2に載せた状態を示す正面図である。FIG. 4 is a front view showing a state in which the jig 2 is fixed to the jig 3 and a jig 1 on which a single crystal material is stuck is placed on the jig 2;
【図5】X線管と検出器との位置関係を示す説明図であ
る。FIG. 5 is an explanatory diagram showing a positional relationship between an X-ray tube and a detector.
【図6】単結晶素材の結晶格子面の向きを調節した状態
を示す上面図である。FIG. 6 is a top view showing a state where the direction of a crystal lattice plane of a single crystal material is adjusted.
【図7】治具2を切断機に取り付けた状態を示す上面図
である。FIG. 7 is a top view showing a state where the jig 2 is attached to a cutting machine.
【図8】一方向の切断を終了し、切断機から治具2を取
り外した状態を示す正面図である。FIG. 8 is a front view showing a state in which the cutting in one direction has been completed and the jig 2 has been removed from the cutting machine.
1,2,3 治具 1a,1b,1c,1d,2a,2b,3a,3b 面 2e 調整ボルト 2f 底面 3d 基部 4 単結晶インゴット(素材) 4a 結晶格子面 5 X線管 6 検出器 7 切断機 7a 基準面 1, 2, 3 jig 1a, 1b, 1c, 1d, 2a, 2b, 3a, 3b surface 2e adjusting bolt 2f bottom surface 3d base 4 single crystal ingot (material) 4a crystal lattice surface 5 X-ray tube 6 detector 7 cutting Machine 7a Reference plane
Claims (2)
とし、波長λのX線を前記結晶格子面に対して角度θで
照射したとき、sinθ=λ/2dとなる条件〔ブラッ
グの条件〕を満たす位置に検出器を配設し、前記単結晶
インゴットの端面に波長λのX線を照射したとき検出器
による回折波強度が最大となるように単結晶インゴット
の軸の向きを調節した上、所定の間隔で結晶格子面に直
角方向に第1のインゴット切断を行い、インゴットの軸
を中心として前記単結晶インゴットを90°回転させた
後、インゴットの端面に波長λのX線を照射し、前記と
同様に検出器による回折波強度が最大となるように単結
晶インゴットの軸の向きを調節した上、所定の間隔で結
晶格子面に直角方向に第2のインゴット切断を行うこと
により種棒を得ることを特徴とする種棒切断方法。1. The crystal lattice spacing of a single crystal ingot is d
When X-rays having a wavelength λ are irradiated at an angle θ with respect to the crystal lattice plane, a detector is provided at a position satisfying a condition (sin θ = λ / 2d) (Bragg condition), and the single crystal ingot is provided. The direction of the axis of the single crystal ingot is adjusted so that the intensity of the diffracted wave by the detector is maximized when the X-ray of wavelength λ is applied to the end face of the first crystal, and the first direction is perpendicular to the crystal lattice plane at a predetermined interval. After performing ingot cutting and rotating the single crystal ingot by 90 ° about the axis of the ingot, the end face of the ingot is irradiated with X-rays having a wavelength λ, and the intensity of the diffracted wave by the detector is maximized as described above. A seed rod cutting method characterized in that the seed rod is obtained by adjusting the direction of the axis of the single crystal ingot as described above and then performing a second ingot cutting at a predetermined interval in a direction perpendicular to the crystal lattice plane.
立ち上がる対向面と、 前記二つの対向面にそれぞれ2本ずつ配設された調整ボ
ルトとによって構成される治具2と、 前記治具2を載置、固定する上部と、X線回折装置に適
合する基部とからなる治具3とを準備し、 治具1の直交する2面に単結晶インゴットの外周を貼着
し、治具3に載置、固定した治具2に前記治具1の一側
の面を下にして載置した後、単結晶インゴットの端面に
X線を照射し、X線回折装置の検出器による回折波強度
が最大となるように前記4本の調整ボルトを操作して治
具1の向きを調節した上、治具2を切断機の基準面に固
定して第1のインゴット切断を行い、治具1の他側の面
を下にして治具2に載置し、再度単結晶インゴットの端
面にX線を照射し、前記と同様に検出器による回折波強
度が最大となるように前記4本の調整ボルトを操作して
治具1の向きを調節した上、治具2を切断機の基準面に
固定して第2のインゴット切断を行うことを特徴とする
請求項1の種棒切断方法。2. A jig 1 composed of an angle plate, a bottom surface on which the jig 1 is placed, opposing surfaces rising vertically at both ends of the bottom surface, and two jigs each disposed on the two opposing surfaces. And a jig 3 comprising an upper portion on which the jig 2 is mounted and fixed, and a base adapted to the X-ray diffraction apparatus. The outer periphery of the single crystal ingot is adhered to the two surfaces to be fixed, placed on a jig 3 and placed on a fixed jig 2 with one side of the jig 1 facing down, and then the end face of the single crystal ingot , And the direction of the jig 1 is adjusted by operating the four adjustment bolts so that the intensity of the diffracted wave by the detector of the X-ray diffractometer is maximized. The first ingot is cut and fixed on the reference surface of the jig 1, and is placed on the jig 2 with the other surface of the jig 1 facing down. The end face of the single crystal ingot is again irradiated with X-rays, and the direction of the jig 1 is adjusted by operating the four adjustment bolts so that the intensity of the diffracted wave by the detector is maximized as described above. 2. The seed rod cutting method according to claim 1, wherein the second ingot cutting is performed by fixing the tool 2 to a reference surface of the cutting machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4297761A JP2909945B2 (en) | 1992-10-09 | 1992-10-09 | Seed bar cutting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4297761A JP2909945B2 (en) | 1992-10-09 | 1992-10-09 | Seed bar cutting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06122119A JPH06122119A (en) | 1994-05-06 |
JP2909945B2 true JP2909945B2 (en) | 1999-06-23 |
Family
ID=17850834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4297761A Expired - Fee Related JP2909945B2 (en) | 1992-10-09 | 1992-10-09 | Seed bar cutting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2909945B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5117880B2 (en) * | 2008-02-21 | 2013-01-16 | セイコーインスツル株式会社 | Wafer fabrication method |
KR101289660B1 (en) * | 2011-08-04 | 2013-07-25 | 비아이신소재 주식회사 | Jig for processing sapphire ingot |
CN102581972A (en) * | 2012-02-28 | 2012-07-18 | 高佳太阳能股份有限公司 | Workpiece turnover tool |
JP6272801B2 (en) * | 2015-07-27 | 2018-01-31 | 信越半導体株式会社 | Work holder and work cutting method |
CN110341060B (en) * | 2019-06-28 | 2020-11-13 | 河北远东通信系统工程有限公司 | Cutting process of high-precision double-corner quartz wafer |
CN114311350B (en) * | 2022-03-15 | 2022-06-28 | 天通控股股份有限公司 | Head and tail cutting method for lithium tantalate crystal |
-
1992
- 1992-10-09 JP JP4297761A patent/JP2909945B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06122119A (en) | 1994-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8259901B1 (en) | Intelligent machines and process for production of monocrystalline products with goniometer continual feedback | |
KR100437469B1 (en) | Wire saw and tilt angle adjusting equipment and slicing method thereof | |
JP3032979B2 (en) | Method and apparatus for producing columnar single crystal and method for cutting semiconductor wafer | |
WO1985001349A1 (en) | Setting the orientation of crystals | |
RU2251598C2 (en) | Method and apparatus for cutting monocrystals, aligning device and testing method for determining crystal orientation | |
EP0110469A2 (en) | X-ray analysis apparatus comprising a four-crystal monochromator | |
US6072854A (en) | Method and apparatus for X-ray topography of single crystal ingot | |
JP2909945B2 (en) | Seed bar cutting method | |
JP3205402B2 (en) | Method and apparatus for determining crystal orientation | |
JP6447349B2 (en) | X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method | |
JP3195760B2 (en) | Crystal orientation setting method for cut surface of ingot | |
US4862488A (en) | Device for measuring the orientation of bulk monocrystalline materials using the Laue method | |
JP3918216B2 (en) | Single crystal cutting apparatus and method | |
JP3280869B2 (en) | Crystal orientation alignment method for cutting single crystal ingot with cleavage | |
KR100526215B1 (en) | A Manufacturing Method And Device For Silicon Single Crystal Wafer | |
JP2804960B2 (en) | Ingot cutting method and ingot cutting device used therefor | |
JPH112614A (en) | X-ray measuring method of single crystal axial orientation and device | |
JP4681700B2 (en) | Method for detecting crystal orientation of silicon ingot | |
US20040135232A1 (en) | Semiconductor wafer and method of marking a crystallographic direction on a semiconductor wafer | |
JPS63201100A (en) | Device for discriminating position of crystalline body | |
JP4540184B2 (en) | X-ray stress measurement method | |
JP2732311B2 (en) | X-ray topography equipment | |
JPH04322965A (en) | Automatic cylinder grinding method and device | |
Shabrin et al. | Analysis of Misorientation of Single-Crystal Blocks in the Bulk InSb Crystal | |
JP5033618B2 (en) | Artificial quartz processing method and artificial quartz processing jig |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |