[go: up one dir, main page]

JP2909485B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP2909485B2
JP2909485B2 JP1137291A JP1137291A JP2909485B2 JP 2909485 B2 JP2909485 B2 JP 2909485B2 JP 1137291 A JP1137291 A JP 1137291A JP 1137291 A JP1137291 A JP 1137291A JP 2909485 B2 JP2909485 B2 JP 2909485B2
Authority
JP
Japan
Prior art keywords
film
magnetic
alloy
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1137291A
Other languages
Japanese (ja)
Other versions
JPH0629121A (en
Inventor
敏博 小暮
慎也 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1137291A priority Critical patent/JP2909485B2/en
Publication of JPH0629121A publication Critical patent/JPH0629121A/en
Application granted granted Critical
Publication of JP2909485B2 publication Critical patent/JP2909485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気ディスク装置などの
磁気記録装置に用いられる磁気記録媒体に関し、特に磁
気特性及び記録再生特性が向上した磁気記録媒体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used in a magnetic recording device such as a magnetic disk drive, and more particularly to a magnetic recording medium having improved magnetic characteristics and recording / reproducing characteristics.

【0002】[0002]

【従来の技術】磁気記録媒体における記録媒体として、
従来より、非磁性支持体の表面に、酸化鉄粉末と有機バ
インダーとからなる磁性膜を形成した所謂塗布型磁気記
録媒体が使用されてきたが、近年磁気記録の高密度化の
要請から、強磁性金属薄膜を磁性膜とする金属薄膜型磁
気記録媒体へと変わりつつある。その非磁性支持体上に
形成される磁性膜の成分,組成は磁気的性質、記録再生
特性、耐候性等を総合的に評価して決定され、最も一般
的なCoNi合金やCoNiCr合金などのCoNi系
合金、ノイズ特性に優れたCoCrTa合金やCoCr
Zr合金などのCoCr系合金、及び下地膜が不用でか
つ優れた特性をもつCoNiPt合金やCoCrPt合
金などのCoPt系合金が使用されている。そして前記
CoNiCr合金のノイズ特性を改良するために、Co
NiCr合金にTaを1〜3原子%添加したCoNiC
rTa合金を用いたものが知られている。(特開平2−
23511号公報))
2. Description of the Related Art As a recording medium in a magnetic recording medium,
Conventionally, a so-called coating type magnetic recording medium in which a magnetic film made of iron oxide powder and an organic binder is formed on the surface of a non-magnetic support has been used. It is changing to a metal thin film type magnetic recording medium using a magnetic metal thin film as a magnetic film. The components and compositions of the magnetic film formed on the non-magnetic support are determined by comprehensively evaluating magnetic properties, recording / reproducing characteristics, weather resistance, etc., and are most commonly used for CoNi alloys such as CoNi alloys and CoNiCr alloys. Alloys, CoCrTa alloys and CoCr with excellent noise characteristics
CoCr-based alloys such as Zr alloys and CoPt-based alloys such as CoNiPt alloys and CoCrPt alloys which do not require an underlayer and have excellent characteristics are used. In order to improve the noise characteristics of the CoNiCr alloy, Co
CoNiC obtained by adding 1 to 3 atomic% of Ta to a NiCr alloy
One using an rTa alloy is known. (Japanese Unexamined Patent Application Publication No.
No. 23511)))

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記金
属薄膜型磁気記録媒体は、これまでの塗布型磁気記録媒
体にまさる高密度記録が可能であるが、以下に示すよう
な欠点をもっていた。CoNiCrなどのCoNi系合
金は組成を選ぶことで、保磁力Hc及び保磁力角型性S
* を大きくできるため、高周波数での出力が低下せず高
密度記録が可能であるが、記録再生ノイズを下げるには
限界があり、より大きな保磁力Hc及び保磁力角型性S
* を有し、かつ低ノイズの磁気記録媒体を実現すること
が困難であった。また、CoCrTaなどのCoCr系
合金は記録再生ノイズは低くできるが、磁気特性の保磁
力Hcや保磁力角型性S* がCoNiCrなどに比べ、
かなり小さいため、高周波域での特性が余り良くなかっ
た。さらに、CoNiPtなどのCoPt系合金は保磁
力角型性S* が小さいこと以外は特性としては良いが、
コスト的に材料費が極めて高くつくという欠点があっ
た。また、CoNiCrTa合金は、Taを1〜3原子
%添加し、Taを粒界に偏析させることによりCoNi
Cr合金の特性をある程度維持しつつ、ノイズ特性を改
良したものであるが、やはりノイズを小さくしようとす
ると保磁力角型性S* が小さくなり、高周波域での記録
再生特性がそれほど改善されないという問題があった。
However, the above-mentioned metal thin film type magnetic recording medium is capable of higher density recording than the conventional coating type magnetic recording medium, but has the following drawbacks. CoNi-based alloys such as CoNiCr have a coercive force Hc and a coercive force squareness S by selecting the composition.
Since * can be increased, high-density recording is possible without lowering the output at a high frequency, but there is a limit in reducing the recording / reproducing noise, and the larger coercive force Hc and coercive force squareness S
It was difficult to realize a magnetic recording medium having * and low noise. In addition, CoCr-based alloys such as CoCrTa can reduce recording / reproducing noise, but the coercive force Hc and coercive force squareness S * of magnetic properties are higher than those of CoNiCr.
Because it was quite small, the characteristics in the high frequency range were not very good. Furthermore, CoPt-based alloys such as CoNiPt have good characteristics except that the coercive force squareness S * is small.
There is a disadvantage that material costs are extremely high in terms of cost. The CoNiCrTa alloy is made of CoNi by adding 1 to 3 atomic% of Ta and segregating Ta to the grain boundaries.
Although the noise characteristics are improved while maintaining the characteristics of the Cr alloy to some extent, the coercive force squareness S * is also reduced if noise is to be reduced, and the recording / reproducing characteristics in a high frequency range are not significantly improved. There was a problem.

【0004】上記の保磁力Hcや保磁力角型性S* につ
いての問題は、特にヘッドの飛行高さを低減するため
に、より平滑な非磁性支持体として有望なガラス基板を
用いる場合に、より重大な問題となる。
[0004] The above-mentioned problems with the coercive force Hc and coercive force squareness S * are particularly problematic when a promising glass substrate is used as a smoother non-magnetic support to reduce the flying height of the head. It becomes a more serious problem.

【0005】[0005]

【課題を解決するための手段】本発明は、非磁性支持体
上に非磁性下地膜、合金磁性膜、保護膜が順次形成され
ている磁気記録媒体であって、前記合金磁性膜の組成
が、下記の化学式で表わした磁気記録媒体である。ここ
According to the present invention, there is provided a magnetic recording medium in which a non-magnetic underlayer, an alloy magnetic film and a protective film are sequentially formed on a non-magnetic support, wherein the composition of the alloy magnetic film is , A magnetic recording medium represented by the following chemical formula: here

【0006】[0006]

【化1】Xは5〜35、Yは7〜14、Zは0.3〜
0.9で原子%で表わした値である。
X is 5-35, Y is 7-14, Z is 0.3-
It is a value expressed in atomic% at 0.9.

【0007】本発明の磁気記録媒体の合金磁性膜は、C
oNiCr系合金にTaが添加された4元系合金であ
る。CoNiCr系3元合金は、磁性膜として望まれる
高い保磁力Hc及び高い残留磁束密度Brを有する合金
であり、第4元素としてTaを添加することにより、C
oNiCr系3元合金磁性膜の磁気特性、すなわち高い
保磁力Hcと高い保磁力角型性S* を損なうことなく、
記録再生ノイズを顕著に低減することが出来る。これは
Taを適量添加することによって、磁性膜の結晶粒界に
Taが偏析し、結晶粒界が適度な大きさになるためと考
えられる。
The alloy magnetic film of the magnetic recording medium according to the present invention has C
This is a quaternary alloy obtained by adding Ta to an oNiCr alloy. The CoNiCr-based ternary alloy is an alloy having a high coercive force Hc and a high residual magnetic flux density Br desired as a magnetic film. By adding Ta as the fourth element, C
Without impairing the magnetic properties of the oNiCr-based ternary alloy magnetic film, ie, high coercive force Hc and high coercive force squareness S * ,
Recording and reproduction noise can be significantly reduced. This is considered to be because Ta is segregated at the crystal grain boundaries of the magnetic film by adding an appropriate amount of Ta, and the crystal grain boundaries have an appropriate size.

【0008】本発明に係る磁性膜のCoNiCrTa系
合金の組成において、Niの原子%は5〜35%であ
る。5%より小さいと、磁性膜の耐候性が悪くなり、ま
た35%を越えると飽和磁束密度Bsが減少するため、
十分な出力が得られない。
In the composition of the CoNiCrTa-based alloy of the magnetic film according to the present invention, the atomic% of Ni is 5 to 35%. If it is less than 5%, the weather resistance of the magnetic film deteriorates, and if it exceeds 35%, the saturation magnetic flux density Bs decreases.
Sufficient output cannot be obtained.

【0009】更に、Niの量は、高い保磁力Hcと高い
保磁力角型性S* を有し、かつ、低い記録再生ノイズ特
性を得るために、20〜30%が好ましい。また、Cr
の原子%は、7〜14%である。7%より小さいと磁性
膜の耐候性が劣化し、一方14%より大きいと保磁力角
型性S* が低下し記録再生特性が劣化する。更に、合金
膜中のCrの量は、保磁力角型性を0.85以上とする
ためには7〜11%が好ましい。
Further, the amount of Ni is preferably 20 to 30% in order to have a high coercive force Hc and a high coercive force squareness S * and to obtain a low recording / reproducing noise characteristic. In addition, Cr
Is from 7 to 14%. If it is less than 7%, the weather resistance of the magnetic film is deteriorated, while if it is more than 14%, the coercivity squareness S * is reduced and the recording / reproducing characteristics are deteriorated. Furthermore, the amount of Cr in the alloy film is preferably 7 to 11% in order to make the coercive force squareness 0.85 or more.

【0010】また、Taの量は、0.3〜0.9原子%
である。0.3%より小さいとTaの効果がほとんどな
く、0.9%を越えるとCrを多量に添加した場合と同
様に偏析が多くなり膜の結晶粒界が大きくなるため、保
磁力角型性S* が低下し記録再生特性が劣化する。更
に、Taの量は、保磁力角型性S* が0.85以上とす
るためには0.3〜0.75原子%が好ましい。
The amount of Ta is 0.3 to 0.9 atomic%.
It is. If it is less than 0.3%, there is almost no effect of Ta, and if it exceeds 0.9%, segregation increases and the crystal grain boundaries of the film become large as in the case where a large amount of Cr is added. S * decreases and the recording / reproducing characteristics deteriorate. Further, the amount of Ta is preferably 0.3 to 0.75 atomic% in order to make the coercive force squareness S * of 0.85 or more.

【0011】本発明の磁気記録媒体に用いられる非磁性
下地膜としては、非磁性下地膜を2層の積層構造とし、
前記合金磁性膜と接する側の第1の下地膜を結晶性の金
属膜または合金膜とし、前記非磁性支持体に接する側の
第2の下地膜を少なくとも前記第1の下地膜と接する界
面で非晶質とした合金膜であることが、磁気特性を良く
する上で好ましい。ここで第1の下地膜としては、C
r,Mo,Wの群から選ばれた少なくとも1種以上を含
む結晶性の膜を好んで用いることができる。また、第2
の下地膜は、膜方向全体にわたって非晶質であってもよ
く、第1の下地膜との界面近傍でのみ非晶質であっても
よい。そして、第2の下地膜としてはTiとYとからな
る非晶質合金膜やTiとSiとからなる非晶質合金膜を
好んで用いることができる。とりわけ、保磁力角型性S
* を大きくするには、TiとSiとからなる膜が最も好
ましい。
The non-magnetic underlayer used in the magnetic recording medium of the present invention has a two-layered non-magnetic underlayer,
The first underlayer on the side in contact with the alloy magnetic film is a crystalline metal film or an alloy film, and the second underlayer on the side in contact with the non-magnetic support is at least an interface in contact with the first underlayer. An amorphous alloy film is preferable for improving magnetic properties. Here, as the first underlayer, C
A crystalline film containing at least one selected from the group consisting of r, Mo, and W can be preferably used. Also, the second
May be amorphous over the entire film direction, or may be amorphous only near the interface with the first underlying film. As the second base film, an amorphous alloy film made of Ti and Y or an amorphous alloy film made of Ti and Si can be preferably used. In particular, the coercive force squareness S
For increasing * , a film composed of Ti and Si is most preferable.

【0012】また、本発明の磁気記録媒体の保護膜とし
ては、カーボン膜やSiO2 膜を用いることができ、と
りわけカーボン膜が自己潤滑性が優れているので好まし
く用いられる。
As the protective film of the magnetic recording medium of the present invention, a carbon film or a SiO 2 film can be used. In particular, a carbon film is preferably used because of its excellent self-lubricating property.

【0013】さらに非磁性支持体と非磁性下地膜との間
に保護膜の表面に凹凸を形成するための凹凸形成物を設
けてもよい。例えば有機金属化合物の溶液にコロイダル
シリカやアルミナゾルなどの微粒子を添加した溶液を、
非磁性支持体上に塗布することにより凹凸を形成した
り、非磁性支持体上にAl、Ag等の低融点金属を島状
に蒸着やスパッタリングにより形成したものが凹凸形成
物として用いられる。
Further, an unevenness forming material for forming unevenness on the surface of the protective film may be provided between the nonmagnetic support and the nonmagnetic base film. For example, a solution obtained by adding fine particles such as colloidal silica or alumina sol to a solution of an organometallic compound,
The unevenness is formed by coating a non-magnetic support on a non-magnetic support, or a low-melting metal such as Al or Ag formed on the non-magnetic support in an island shape by vapor deposition or sputtering.

【0014】また、本発明の合金磁性膜の膜厚は、使用
するヘッドやドライブの周速度にもよるため一義的に定
めることはできないが、通常の条件下では十分な出力を
得るために30〜80nmが好ましい。
The thickness of the alloy magnetic film of the present invention cannot be unambiguously determined because it depends on the peripheral speed of the head or drive to be used. ~ 80 nm is preferred.

【0015】本発明にかかる非磁性支持体としては、例
えば、ガラス板、セラミック板、アルミニウム板、チタ
ニウム金属板が挙げられる。これらの中でも、表面の平
坦性が良いことからガラス板が好ましく、またガラス板
の中でもとりわけフロート法で製造されたソーダライム
組成のガラス板は最も安価に入手できるので特に好まし
い。本発明の磁気記録媒体の非磁性下地膜、合金磁性
膜、保護膜はいずれも公知のスパッタリング法や真空蒸
着法で形成することができる。
Examples of the non-magnetic support according to the present invention include a glass plate, a ceramic plate, an aluminum plate, and a titanium metal plate. Among these, a glass plate is preferable because of its good surface flatness, and among the glass plates, a glass plate having a soda lime composition manufactured by a float method is particularly preferable because it can be obtained at the lowest cost. The non-magnetic underlayer, alloy magnetic film, and protective film of the magnetic recording medium of the present invention can be formed by any known sputtering method or vacuum evaporation method.

【0016】[0016]

【作用】本発明の合金磁性膜中に含まれるTa成分は、
保磁力角型性S* を大きく維持したまま、前記合金磁性
膜の結晶粒界を大きくして記録再生ノイズを低減する。
The Ta component contained in the alloy magnetic film of the present invention is:
While maintaining a large coercive force squareness S * , the crystal grain boundaries of the alloy magnetic film are enlarged to reduce recording / reproducing noise.

【0017】[0017]

【実施例】以下本発明を実施例により説明する。図1
は、本発明の磁気記録媒体の一実施例の一部断面図で、
フロートガラス板を円盤状に加工し化学強化したガラス
板1の上にガラス板表面から放出される不純ガスが合金
磁性膜3に拡散しないようにするためにガス吸臓性の金
属膜6が被覆され、金属膜6の上に保護膜4の表面に凹
凸を形成するための凹凸形成物5が形成され、さらに第
1の下地膜21と第2の下地膜22の2層からなる非磁
性下地膜2が形成され、非磁性下地膜2の上に順次合金
磁性膜3と保護膜4が形成されている。図2は、本発明
の磁気記録媒体の他の実施例の一部断面図で、ガラス板
1の上に第1の下地膜21と第2の下地膜22の2層か
らなる非磁性下地膜2が形成され、さらに合金磁性膜3
と保護膜4とが順次形成されている。
The present invention will be described below with reference to examples. FIG.
Is a partial cross-sectional view of one embodiment of the magnetic recording medium of the present invention,
A gas-absorbing metal film 6 is coated on a glass plate 1 obtained by processing a float glass plate into a disk shape and chemically strengthening the glass plate 1 in order to prevent impurity gases released from the surface of the glass plate from diffusing into the alloy magnetic film 3. Then, a concavo-convex forming material 5 for forming concavities and convexities on the surface of the protective film 4 is formed on the metal film 6, and a non-magnetic underlayer composed of two layers of a first base film 21 and a second base film 22 is formed. A base film 2 is formed, and an alloy magnetic film 3 and a protective film 4 are sequentially formed on the non-magnetic base film 2. FIG. 2 is a partial cross-sectional view of another embodiment of the magnetic recording medium of the present invention, and a non-magnetic under film composed of a first under film 21 and a second under film 22 on a glass plate 1. 2 and the alloy magnetic film 3
And a protective film 4 are sequentially formed.

【0018】実施例1 よく洗浄された円盤状に加工され化学強化されたソーダ
ライム組成のガラス基板を、インライン型スパッタリン
グ装置にセットし、アルゴンガスを用いた直流スパッタ
リングにより連続してガラス基板上に、30nmの厚み
のTi膜、アルミニウム(Al)の凹凸形成物、20n
mの厚みのTiとSiとからなる第2の下地膜、60n
mの厚みのCrからなる第1の下地膜、60nmの厚み
のCo63.5%Ni25%Cr11%Ta0.8%の
原子組成を有する合金磁性膜、30nmの厚みのカーボ
ン膜を順次形成した。Ti膜を形成する前の真空度のバ
ックグラウンドを0.00013Paとし、Ti膜の形
成はガラス基板を200℃に加熱しておこない、Alの
凹凸形成物は、約15nmの連続した平滑なAl膜が形
成されるAl量をAlターゲットを用いてスパッタリン
グし、ガラス基板を200℃にすることによりAlがT
i膜上に付着する時に島状に凝縮するようにし、不連続
な凹凸形成物とした。またTiとSiからなる膜は、チ
タニウムシリサイドをターゲットに用いガラス基板温度
を200℃として形成し、合金磁性膜はCo63.5%
Ni25%Cr11%Ta0.8%の合金をターゲット
に用いガラス基板温度を350℃にして形成し、カーボ
ン膜はカーボンをターゲットとしてガラス基板温度を3
50℃にして形成した。
EXAMPLE 1 A glass substrate having a soda lime composition, which was processed into a well-washed disk and chemically strengthened, was set in an in-line type sputtering apparatus, and was continuously formed on the glass substrate by direct current sputtering using argon gas. , 30 nm thick Ti film, aluminum (Al) irregularities formed, 20 n
m, a second underlayer made of Ti and Si having a thickness of 60 m
A first underlayer made of Cr having a thickness of m, an alloy magnetic film having an atomic composition of Co 63.5% Ni25% Cr11% Ta0.8% having a thickness of 60 nm, and a carbon film having a thickness of 30 nm were sequentially formed. The background of the degree of vacuum before forming the Ti film was set to 0.00013 Pa, the formation of the Ti film was performed by heating the glass substrate to 200 ° C., and the formation of the Al irregularities was a continuous smooth Al film of about 15 nm. Is formed using an Al target, and the glass substrate is heated to 200 ° C.
When adhering on the i-film, it was condensed in an island shape to form discontinuous unevenness. The film made of Ti and Si is formed by using titanium silicide as a target and setting the glass substrate temperature to 200 ° C., and the alloy magnetic film is made of 63.5% Co.
A glass substrate temperature of 350 ° C. is formed using an alloy of Ni 25% Cr 11% Ta 0.8% as a target, and the carbon film is formed by setting the glass substrate temperature to 3 using carbon as a target.
It was formed at 50 ° C.

【0019】得られた磁気記録媒体の保磁力を測定した
ところ、1500Oeであり、保磁力角型性S* は0.
91で良好な値であった。また、この磁気記録媒体を評
価したところ、グライド特性は2マイクロインチであ
り、記録再生特性は良好で、ヘッドと磁気記録媒体表面
の間の距離フライングハイトを3マイクロインチとして
測定したところ、S/N比の値が30dB、D50(出
力が低周波数での値の1/2になる周波数)が63kF
CI(1インチ当りの磁化反転回数)であった。
When the coercive force of the obtained magnetic recording medium was measured, it was 1500 Oe, and the coercive force squareness S * was 0.1 Oe.
91 was a good value. When the magnetic recording medium was evaluated, the glide characteristic was 2 micro inches, the recording / reproducing characteristics were good, and the flying height between the head and the surface of the magnetic recording medium was 3 micro inches. The value of the N ratio is 30 dB, and D50 (the frequency at which the output is 1 / of the value at the low frequency) is 63 kF.
CI (the number of magnetization reversals per inch).

【0020】実施例2 よく洗浄された円盤状に加工され化学強化されたソーダ
ライム組成のガラス基板を、インライン型スパッタリン
グ装置にセットし、アルゴンガスを用いた直流スパッタ
リングにより連続してガラス基板上に30nmの厚みの
TiとSiとからなる第2の下地膜、10nmの厚みの
Crからなる第1の下地膜、60nmの厚みのCo6
3.6%Ni26%Cr10%Ta0.4%の原子組成
を有する合金磁性膜、30nmの厚みのカーボン膜を順
次形成した。TiとSiからなる膜はチタニウムシリサ
イドをターゲットに用いガラス基板温度を200℃に形
成した。その後ガラス基板温度を350℃に維持して、
Cr膜はCrをターゲットに用い、合金磁性膜はCo6
3.6%Ni26%Cr10%Ta0.4%の組成の合
金をターゲットに用い、カーボン膜はカーボンをターゲ
ットに用いて形成した。得られた磁気記録媒体の保磁力
を測定したところ、1500Oeであり、保磁力角型比
* は0.94で良好な値であった。また、この磁気記
録媒体を評価したところ、グライド特性は2マイクロイ
ンチ以下であり、記録再生特性は良好で、ヘッドと磁気
ディスク表面の間の距離フライングハイトを3マイクロ
インチとして測定したところ、S/N値が32dB、D
50(出力が低周波数での値の1/2になる周波数)が
65kFCI(1インチ当りの磁化反転回数)であっ
た。
Example 2 A soda-lime glass substrate, which was processed into a well-washed disk and chemically strengthened, was set in an in-line type sputtering apparatus, and was continuously formed on the glass substrate by DC sputtering using argon gas. 30 nm thick second base film made of Ti and Si, 10 nm thick first base film made of Cr, 60 nm thick Co6
An alloy magnetic film having an atomic composition of 3.6% Ni 26% Cr 10% Ta 0.4% and a carbon film having a thickness of 30 nm were sequentially formed. The film made of Ti and Si was formed by using titanium silicide as a target and setting the glass substrate temperature to 200 ° C. Then, maintain the glass substrate temperature at 350 ° C.
The Cr film uses Cr as a target, and the alloy magnetic film is Co6
An alloy having a composition of 3.6% Ni 26% Cr 10% Ta 0.4% was used as a target, and the carbon film was formed using carbon as the target. When the coercive force of the obtained magnetic recording medium was measured, it was 1500 Oe, and the coercive force squareness ratio S * was 0.94, which was a good value. When the magnetic recording medium was evaluated, the glide characteristics were 2 micro inches or less, the recording / reproducing characteristics were good, and the flying height between the head and the surface of the magnetic disk was measured at 3 micro inches. N value is 32dB, D
50 (the frequency at which the output becomes 出力 of the value at the low frequency) was 65 kFCI (the number of magnetization reversals per inch).

【0021】[0021]

【発明の効果】本発明の磁気記録媒体は、CoNiCr
3元合金磁性膜の優れた磁気特性及び記録再生特性を凌
ぐ良好な特性を有しており、記録再生ノイズや保磁力H
cなどの特性を維持したまま、保磁力角型性S* が改善
されているため、より高周波域での記録再生においてピ
ークシフトを小さく抑えることができ、フェーズマージ
ン特性が向上し、より高密度で記録再生が可能となる。
The magnetic recording medium of the present invention is made of CoNiCr.
The ternary alloy magnetic film has excellent magnetic properties and excellent properties exceeding the recording / reproducing properties, and has a recording / reproducing noise and a coercive force H.
Since the coercive force squareness S * is improved while maintaining characteristics such as c, the peak shift can be suppressed in recording and reproduction in a higher frequency range, the phase margin characteristics are improved, and the higher density is achieved. Enables recording and reproduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の一部断面図FIG. 1 is a partial cross-sectional view of one embodiment of the present invention.

【図2】本発明の他の実施例の一部断面図FIG. 2 is a partial cross-sectional view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 非磁性支持体 2 非磁性下地膜 21 第1の下地膜 22 第2の下地膜 3 合金磁性膜 4 保護膜 5 凹凸形成物 6 金属膜 DESCRIPTION OF SYMBOLS 1 Non-magnetic support 2 Non-magnetic under film 21 First under film 22 Second under film 3 Alloy magnetic film 4 Protective film 5 Concavo-convex formation 6 Metal film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 10/16 G11B 5/66 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 10/16 G11B 5/66

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性支持体上に非磁性下地膜、合金磁
性膜、保護膜がこの順序で形成された磁気記録媒体であ
って、前記合金磁性膜の組成が下記の化学式で表わした
磁気記録媒体。 【化1】 ただし,Xは5〜35、Yは7〜14、Zは0.3〜
0.9で原子%で表わした値とする。
1. A magnetic recording medium comprising a non-magnetic base film, an alloy magnetic film, and a protective film formed on a non-magnetic support in this order, wherein the composition of the alloy magnetic film is represented by the following chemical formula: recoding media. Embedded image However, X is 5-35, Y is 7-14, Z is 0.3-
0.9 and the value expressed in atomic%.
【請求項2】 前記非磁性下地膜が積層された2つの膜
からなり、前記合金磁性膜と接する側の第1の下地膜
が、Cr,Mo,Wの群から選ばれた少なくとも1種以
上を含む結晶性の膜であり、前記非磁性支持体に接する
側の第2の下地膜が、少なくとも前記第1の下地膜と接
する界面で非晶質とした合金膜であることを特徴とする
請求項1に記載の磁気記録媒体。
2. The method according to claim 1, wherein the first underlayer on the side in contact with the alloy magnetic film is at least one selected from the group consisting of Cr, Mo, and W. Wherein the second underlayer on the side in contact with the nonmagnetic support is an alloy film made amorphous at least at an interface in contact with the first underlayer. The magnetic recording medium according to claim 1.
【請求項3】 前記第2の下地膜がTiとSiとからな
ることを特徴とする請求項2に記載の磁気記録媒体。
3. The magnetic recording medium according to claim 2, wherein the second underlayer is made of Ti and Si.
JP1137291A 1991-01-07 1991-01-07 Magnetic recording media Expired - Lifetime JP2909485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137291A JP2909485B2 (en) 1991-01-07 1991-01-07 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137291A JP2909485B2 (en) 1991-01-07 1991-01-07 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH0629121A JPH0629121A (en) 1994-02-04
JP2909485B2 true JP2909485B2 (en) 1999-06-23

Family

ID=11776188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137291A Expired - Lifetime JP2909485B2 (en) 1991-01-07 1991-01-07 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2909485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003009280A1 (en) 2001-07-11 2004-11-11 富士通株式会社 Magnetic recording medium and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0629121A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
JP5401069B2 (en) Perpendicular magnetic recording medium
JP4470881B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US20100119877A1 (en) Corrosion-resistant granular magnetic media with improved recording performance and methods of manufacturing same
JPWO2006003922A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP2010211921A (en) Vertical magnetic recording disk manufacturing method and vertical magnetic recording disk
JPWO2007114401A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP2006268972A (en) Perpendicular magnetic recording disk and its manufacturing method
JP2011146089A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP2006155861A (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2000113441A (en) Vertical magnetic recording medium
JP3822387B2 (en) Magnetic recording medium
JP3892401B2 (en) Manufacturing method of disk substrate for perpendicular magnetic recording medium, and manufacturing method of perpendicular magnetic recording disk
JP2909485B2 (en) Magnetic recording media
JP4864391B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
CN100578626C (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recording/reproducing apparatus
JP2002063714A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording and reproducing apparatus
JP2006309926A (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
JP4762485B2 (en) Perpendicular magnetic recording medium
JPH05325163A (en) Magnetic recording medium
JP3901755B2 (en) Magnetic recording medium
JP2007273050A (en) Method of manufacturing perpendicular magnetic recording medium
JPH0785443A (en) Magnetic recording medium
JPH0831639A (en) Perpendicular magnetic recording media
JPH05189737A (en) Magnetic recording medium