[go: up one dir, main page]

JP2895554B2 - Vacuum container and component for vacuum equipment having multilayer coating - Google Patents

Vacuum container and component for vacuum equipment having multilayer coating

Info

Publication number
JP2895554B2
JP2895554B2 JP2041929A JP4192990A JP2895554B2 JP 2895554 B2 JP2895554 B2 JP 2895554B2 JP 2041929 A JP2041929 A JP 2041929A JP 4192990 A JP4192990 A JP 4192990A JP 2895554 B2 JP2895554 B2 JP 2895554B2
Authority
JP
Japan
Prior art keywords
vacuum
gas
component
base material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2041929A
Other languages
Japanese (ja)
Other versions
JPH03247778A (en
Inventor
斎藤  一也
公正 尾上
園子 塚原
さかえ 稲▲吉▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shinku Gijutsu KK filed Critical Nihon Shinku Gijutsu KK
Priority to JP2041929A priority Critical patent/JP2895554B2/en
Publication of JPH03247778A publication Critical patent/JPH03247778A/en
Application granted granted Critical
Publication of JP2895554B2 publication Critical patent/JP2895554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多層被膜を有する真空容器及び真空機器用部
品に関する。
Description: TECHNICAL FIELD The present invention relates to a vacuum vessel and a component for vacuum equipment having a multilayer coating.

〔従来の技術〕[Conventional technology]

真空容器内部を排気する際の排気時間を決定づける要
素としては、ポンプの排気速度、配管のコンダクタン
ス、真空容器の内容量及び真空容器内壁や部品表面から
の放出ガスがある。この放出ガスはさらに到達圧力にも
大きく影響している。
Factors that determine the evacuation time when evacuating the inside of the vacuum vessel include the pumping speed of the pump, the conductance of the piping, the internal volume of the vacuum vessel, and the gas released from the inner wall of the vacuum vessel and the surface of the component. The released gas has a great influence on the ultimate pressure.

この放出ガスの源には大きく分けて次のように、 真空容器内壁及び真空内の部品の表面に吸着している
ガス、 真空容器及び部品の材料内部に溶存しているガス又は
大気から材料内に溶け込んだガスで、それが真空内表面
にまで拡散してきたもの、 の二種類がある。
The sources of this released gas can be broadly classified as follows: gas adsorbed on the inner wall of the vacuum vessel and the surface of components in the vacuum, gas dissolved inside the material of the vacuum vessel and components, There are two types of gases that have been dissolved in and diffused to the inner surface of the vacuum.

従来の真空容器及び真空機器用部品にはステンレス鋼
又はアルミニウム合金等の材料で作製されたものがある
が、これらを真空用に用いると表面からガスが放出さ
れ、真空度がなかなか上がらないので、この放出ガスを
減少させるために、次のような工夫がなされている。
Conventional vacuum vessels and components for vacuum equipment include those made of materials such as stainless steel or aluminum alloy.However, when these are used for vacuum, gas is released from the surface and the degree of vacuum does not rise easily, In order to reduce the released gas, the following measures have been taken.

(a)真空に接する表面を電解研磨等によって鏡面仕上
げし、ガスが吸着する面積を小さくする。
(A) The surface in contact with the vacuum is mirror-finished by electrolytic polishing or the like to reduce the area where gas is adsorbed.

(b)真空に接する表面に反応蒸着によってガスの吸着
しにくい金属窒化物を被覆すると同時に、表面の平滑度
を高める。
(B) The surface in contact with the vacuum is coated with a metal nitride that does not easily adsorb gas by reactive vapor deposition, and at the same time, the surface smoothness is increased.

(c)真空に接する表面に熱処理によって窒化硼素膜を
形成し、吸着ガスを少なくする。
(C) A boron nitride film is formed on the surface in contact with vacuum by heat treatment to reduce the amount of adsorbed gas.

上記のように、(a)(b)(c)の技術はいずれも
真空容器内壁や部品表面のガスが吸着可能な実質的表面
積を減少させることによって吸着ガスの量を少なくした
り、又、真空に接する表面層をガス吸着が生じにくい材
料、すなわち緻密な酸化膜(a)、窒化膜(b)、窒化
硼素膜(c)にしてガスの吸着を減らす試みを行ってい
る。
As described above, all of the techniques (a), (b), and (c) reduce the amount of adsorbed gas by reducing the substantial surface area of the inner wall of the vacuum vessel and the surface of the component where gas can be adsorbed, Attempts have been made to reduce gas adsorption by forming a surface layer in contact with vacuum with a material that does not easily cause gas adsorption, that is, a dense oxide film (a), a nitride film (b), and a boron nitride film (c).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように、従来技術では表面に吸着するガスだけ
に注目してこれを抑制しようとしているのであり、材
料内部から、あるいは材料を透過して拡散してくるガス
に対してはこれを抑制する対策は何らとられていなかっ
た。特に固体内部を拡散しやすい水素に対しては従来技
術では何ら抑制効果がなく、到達圧力に限度があった。
As described above, the prior art attempts to suppress the gas by focusing only on the gas adsorbed on the surface, and measures to suppress the gas that diffuses from the inside of the material or through the material. Was not taken at all. In particular, the prior art has no suppression effect on hydrogen that easily diffuses inside the solid, and the ultimate pressure is limited.

本発明は以上のような問題に鑑み、真空に接する表面
に吸着するガスの量を減少させるだけでなく、内部から
のガスの拡散、放出をも抑制することのできる多層被膜
を有する真空容器及び真空機器用部品を提供することを
目的としている。
In view of the above problems, the present invention not only reduces the amount of gas adsorbed on the surface in contact with vacuum, but also diffuses gas from the inside, a vacuum vessel having a multilayer coating that can also suppress release. The purpose is to provide parts for vacuum equipment.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、真空に接する面に被膜を有する真空容器
及び真空機器用部品において、前記被膜が、前記真空容
器及び真空機器用部品の母材よりガス吸着量の少ない金
属又は化合物である最表面層と、前記母材よりガス透過
係数が著しく低い金属化合物の単層膜又はそれらの多層
膜である中間層とから成ることを特徴とする多層被膜を
有する真空容器及び真空機器用部品、によって達成され
る。
The object is to provide a vacuum vessel and a vacuum equipment part having a coating on a surface in contact with a vacuum, wherein the coating is a metal or a compound having a smaller gas adsorption than a base material of the vacuum vessel and the vacuum equipment part. And a vacuum vessel and a vacuum appliance part having a multilayer coating, comprising: a single layer of a metal compound having a gas permeability coefficient significantly lower than that of the base material or an intermediate layer which is a multilayer thereof. You.

〔作用〕[Action]

以上のように構成される多層被膜を有する真空容器及
び真空機器用部品を用いる時には、真空容器内のガズ排
気時に、その材料の内部からのガスの拡散、放出を抑制
でき、その表面からのガス放出が少ないので、目的圧力
に達するまでの排気時間を短くすることができ、又、到
達圧力をも低くすることができる。
When using a vacuum container having a multilayer coating and a component for vacuum equipment configured as described above, when exhausting gas from the vacuum container, diffusion and release of gas from inside the material can be suppressed, and gas from the surface can be suppressed. Since the discharge is small, the evacuation time until the target pressure is reached can be shortened, and the ultimate pressure can also be lowered.

〔実施例〕〔Example〕

以下、実施例について図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.

母材として厚さ2.5mmのステンレス鋼(SUS304)を用
意し、その表面に反応蒸着法により窒化チタンの膜を形
成する。先ず、第1図に示すように、真空槽(1)内に
SUS304の母材(6)を矢印で示すように回転できるよう
保持する。この母材(6)を回転させ、真空槽(1)内
に配置した蒸発材料であるチタン(3)の上面をホロー
カソード電子ビーム銃(2)からの電子ビーム(5)で
照射してチタン(Ti)蒸気を蒸発させながら、窒素ガス
導入管(4)から反応ガスである窒素ガス(N2)を導入
すると、母材(6)の表面に中間層である窒化チタン膜
(7)が形成された。膜厚が1.5〜2μmになるまで続
けた。次いで異なる真空槽内で、真空蒸着法によって窒
化チタン膜(7)の上に最表面層である0.1〜0.2μmの
厚さの白金膜(8)を形成した(第2図試料(d)参
照)。
A stainless steel (SUS304) having a thickness of 2.5 mm is prepared as a base material, and a titanium nitride film is formed on the surface thereof by a reactive vapor deposition method. First, as shown in FIG.
The SUS304 base material (6) is held so that it can be rotated as indicated by the arrow. This base material (6) is rotated, and the upper surface of titanium (3), which is an evaporation material disposed in the vacuum chamber (1), is irradiated with an electron beam (5) from a hollow cathode electron beam gun (2) to produce titanium. When a nitrogen gas (N 2 ) as a reaction gas is introduced from a nitrogen gas introduction pipe (4) while evaporating the (Ti) vapor, a titanium nitride film (7) as an intermediate layer is formed on the surface of the base material (6). Been formed. It continued until the film thickness became 1.5-2 micrometers. Then, in a different vacuum chamber, a platinum film (8) having a thickness of 0.1 to 0.2 μm, which is the outermost surface layer, was formed on the titanium nitride film (7) by a vacuum evaporation method (see FIG. 2 (d)). ).

本実施例によって多層被膜を形成した部品の効果を確
認するために以下のような比較実験を行った。
The following comparative experiment was performed to confirm the effect of the component formed with the multilayer coating according to the present embodiment.

先ず、本実施例と同一の大きさの母材(6)SUS304の
表面に本実施例の中間層と同様の窒化チタン膜(7)
(厚さ1.5〜2μm)だけを形成した比較試料(b)
と、本実施例の最表面層と同様の白金膜(8)(厚さ0.
1〜0.2μm)だけを形成した比較試料(c)を用意し
た。比較試料(a)は母材だけのもの、試料(d)は本
実施例によって得られたものである。第2図に、各試料
の断面を模式的に示す。
First, a titanium nitride film (7) similar to the intermediate layer of this embodiment is formed on the surface of a base material (6) SUS304 having the same size as that of this embodiment.
Comparative sample (b) with only (thickness 1.5 to 2 μm) formed
And a platinum film (8) (thickness:
A comparative sample (c) in which only (1 to 0.2 μm) was formed was prepared. Comparative sample (a) was obtained only from the base material, and sample (d) was obtained according to this example. FIG. 2 schematically shows a cross section of each sample.

これら4種類の試料を、超高真空装置内で第3図に示
すような条件で時間tまで昇温してその後500℃に保
ち、それぞれの試料について表面から離脱してくる吸着
ガス及び母材内部から放出されてくるガスの測定を行っ
た。各試料(a)〜(d)について、検出されたガス種
ごとの量の経時変化をそれぞれ第4A図から第4D図に示
す。ここでm/eはガス種の質量数(m)と検出器におい
て荷電粒子となった時の電価数(e)との比を表わす。
These four types of samples were heated in an ultra-high vacuum apparatus under the conditions shown in FIG. 3 until time t, and then maintained at 500 ° C., for each of the samples, the adsorbed gas and the base material released from the surface. The gas emitted from the inside was measured. FIG. 4A to FIG. 4D show time-dependent changes in the amount of each detected gas type for each of the samples (a) to (d). Here, m / e represents the ratio between the mass number (m) of the gas species and the charge number (e) when it becomes charged particles in the detector.

この実験において、昇温時には主に表面から吸着ガス
が離脱し、昇温が進んで試料が加熱されてくるにつれ
(温度一定領域の後半)、主に母材内部からのガスが拡
散、放出されてくる。
In this experiment, the adsorbed gas was mainly released from the surface at the time of temperature rise, and as the temperature rose and the sample was heated (the latter half of the constant temperature region), gas mainly from the inside of the base material was diffused and released. Come.

第4A図の試料(a)の場合は、昇温時に水(m/e=1
8)と一酸化炭素(m/e=28)が大量に表面から離脱し、
その後、徐々に軽減するが、その量は依然多い。昇温が
進むと水素(m/e=2)が大量に検出されるが、これは
母材(6)内部から放出されるものである。
In the case of sample (a) in FIG. 4A, water (m / e = 1
8) and a large amount of carbon monoxide (m / e = 28) detached from the surface,
After that, it gradually decreases, but the amount is still large. As the temperature rises, a large amount of hydrogen (m / e = 2) is detected, which is released from inside the base material (6).

第4B図の試料(b)の場合は、試料(a)に比べて水
及び一酸化炭素の離脱量及び傾向はほぼ同じであるにも
かかわらず、水素の放出量は著しく低下している。すな
わち、母材(6)内部から拡散する水素に対して窒化チ
タン膜(7)が拡散障壁となっている、と推測できる。
In the case of the sample (b) in FIG. 4B, the amount of released hydrogen is significantly lower than that of the sample (a), although the amounts and tendency of water and carbon monoxide are almost the same. That is, it can be assumed that the titanium nitride film (7) serves as a diffusion barrier for hydrogen diffusing from inside the base material (6).

第4C図の試料(c)の場合は試料(a)に比べて昇温
時の水及び一酸化炭素の離脱量が著しく減少している。
他方、加熱が進んだ後の水素の放出は、その放出がピー
クに達する時期は少し遅れるものの、放出量は試料
(a)の場合とほぼ同じである。すなわち、白金膜
(8)が被覆されたことによって表面に吸着される水、
一酸化炭素の総量が減少したものと推測される。
In the case of the sample (c) in FIG. 4C, the amount of water and carbon monoxide released at the time of temperature rise is significantly reduced as compared with the sample (a).
On the other hand, the release of hydrogen after the heating has proceeded is almost the same as that of the sample (a), although the timing at which the release reaches a peak is slightly delayed. That is, water that is adsorbed on the surface due to the coating of the platinum film (8),
It is assumed that the total amount of carbon monoxide was reduced.

第4D図の本実施例の場合は試料(a)の場合に比較し
て昇温時及びその後の水、一酸化炭素の離脱量が第4C図
の場合と同様に著しく減少している上に、加熱後の水素
の放出量も著しく減少しており、又放出の始まる時期も
少し遅れている。
In the case of the present embodiment shown in FIG. 4D, the amount of water and carbon monoxide desorbed at the time of temperature increase and thereafter is significantly reduced as in the case of FIG. 4C, as compared with the case of the sample (a). In addition, the amount of hydrogen released after heating is significantly reduced, and the time when the release is started is slightly delayed.

以上の実験結果から、本実施例の最表面層である白金
膜の表面には水や一酸化炭素などのガスが吸着しにくい
ため、吸着ガスの総量を抑制できることがわかる。又、
中間層である窒化チタン膜は母材中のガス、特に水素の
拡散の障壁となり、母材内部からの放出ガス量を著しく
抑制できることがわかる。さらに第4C図及び第4D図にお
いて母材内部からの水素の放出時期が遅れることから、
最表面層も母材内部からのガス拡散に対する障壁として
の機能に寄与しているものと思われる。従って本実施例
のように最表面層と中間層とを組合せた被膜を用いるこ
とによって、それぞれの機能がより一層効果的に発揮さ
れ、放出ガスの総量を減少させることができる。
From the above experimental results, it can be understood that since the gas such as water and carbon monoxide is hardly adsorbed on the surface of the platinum film which is the outermost surface layer of this embodiment, the total amount of the adsorbed gas can be suppressed. or,
It can be seen that the titanium nitride film, which is the intermediate layer, acts as a barrier for the diffusion of gas, especially hydrogen, in the base material and can significantly reduce the amount of gas released from inside the base material. Furthermore, in FIG. 4C and FIG. 4D, the release time of hydrogen from inside the base material is delayed,
It is considered that the outermost layer also contributes to the function as a barrier against gas diffusion from inside the base material. Therefore, by using a film in which the outermost surface layer and the intermediate layer are combined as in the present embodiment, the respective functions are more effectively exhibited, and the total amount of released gas can be reduced.

以上、本発明の実施例について説明したが、勿論、本
発明はこれに限定されることなく、本発明の技術的思想
に基づき種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is, of course, not limited thereto, and various modifications can be made based on the technical concept of the present invention.

例えば、本実施例の白金の代りに最表面層として金、
パラジウム、タングステン、モリブデン、アルミニウ
ム、ケイ素あるいは金属硫化物、窒化ホウ素を用いたと
ころ、同様の効果が得られた。
For example, instead of platinum in this embodiment, gold as the outermost surface layer,
Similar effects were obtained when palladium, tungsten, molybdenum, aluminum, silicon or metal sulfide, or boron nitride was used.

又、本実施例の窒化チタンの代りに中間層として炭化
チタン、酸化アルミニウム、窒化ケイ素、硼化チタン、
窒化クロムのうち1種又は複数から成る単層膜、又は窒
化チタン/炭化チタン積層膜等を用いたところ同様の効
果が得られた。
Further, instead of the titanium nitride of this embodiment, titanium carbide, aluminum oxide, silicon nitride, titanium boride,
A similar effect was obtained when a single layer film of one or more of chromium nitride, a titanium nitride / titanium carbide laminated film, or the like was used.

又、実施例では成膜法として反応蒸着及び真空蒸着を
用いたが、代りに化学蒸着、スパッタリングあるいは湿
式メッキ法を用いても良い。
Further, in the embodiment, the reactive evaporation and the vacuum evaporation are used as the film forming method, but instead, a chemical vapor deposition, a sputtering or a wet plating method may be used.

更に、最表面層として、前記金属又は化合物を20%程
度以上含む膜を形成し、熱処理によってその成分だけを
膜表面に析出させるようにしても良い。
Further, a film containing about 20% or more of the metal or the compound may be formed as the outermost surface layer, and only the components may be deposited on the film surface by heat treatment.

〔発明の効果〕〔The invention's effect〕

本発明の多層被膜を有する真空容器及び真空機器用部
品は以上のような構成であるので、真空雰囲気下で母材
の真空に接する面から放出されるガスの総量が少なくな
り、従って排気時間を短縮でき、かつ到達圧力を低下さ
せることができる。
Since the vacuum vessel and the vacuum equipment component having the multilayer coating of the present invention have the above-described configurations, the total amount of gas released from the surface of the base material that comes into contact with the vacuum in the vacuum atmosphere is reduced, and thus the evacuation time is reduced. The pressure can be shortened and the ultimate pressure can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例において母材表面に膜を形成す
る装置の概略断面図、第2図は本実施例によって得られ
た試料及びそれと比較するための各試料の構成を示す断
面の模式図、第3図は比較実験の温度条件を示すグラ
フ、第4A図〜第4D図は各試料のガス分析の結果を示す。 なお、図において (6)……母材 (7)……窒化チタン膜 (8)……白金膜
FIG. 1 is a schematic cross-sectional view of an apparatus for forming a film on the surface of a base material in an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the samples obtained by the present embodiment and the configuration of each sample for comparison with the samples. FIG. 3 is a schematic diagram, FIG. 3 is a graph showing the temperature conditions of the comparative experiment, and FIGS. 4A to 4D show the results of gas analysis of each sample. In the figure, (6) ... base material (7) ... titanium nitride film (8) ... platinum film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚原 園子 茨城県つくば市東光台5丁目9番地7 日本真空技術株式会社筑波超材料研究所 内 (72)発明者 稲▲吉▼ さかえ 茨城県つくば市東光台5丁目9番地7 日本真空技術株式会社筑波超材料研究所 内 (58)調査した分野(Int.Cl.6,DB名) C23C 24/00 - 30/00 B01J 3/00 - 3/08 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Sonoko Tsukahara 5-9-9 Tokodai, Tsukuba, Ibaraki Pref. Tsukuba Super Materials Laboratory, Japan Vacuum Engineering Co., Ltd. 5-9-9 Kodaidai Tsukuba Super Materials Research Laboratory, Japan Vacuum Engineering Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) C23C 24/00-30/00 B01J 3/00-3/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空に接する面に被膜を有する真空容器及
び真空機器用部品において、前記被膜が、前記真空容器
及び真空機器用部品の母材よりガス吸着量の少ない金属
又は化合物である最表面層と、前記母材よりガス透過係
数が著しく低い金属化合物の単層膜又はそれらの多層膜
である中間層とから成ることを特徴とする多層被膜を有
する真空容器及び真空機器用部品。
1. A vacuum vessel and a component for vacuum equipment having a coating on a surface in contact with vacuum, wherein the coating is a metal or compound having a smaller gas adsorption than a base material of the vacuum vessel and component for vacuum equipment. A vacuum vessel and a vacuum appliance part having a multilayer coating, comprising: a layer; and a single layer of a metal compound having a gas permeability coefficient significantly lower than that of the base material or an intermediate layer which is a multilayer thereof.
【請求項2】前記最表面層が白金、金、パラジウム、タ
ングステン、モリブデン、アルミニウム、ケイ素、金属
硫化物、窒化ホウ素のうちの何れかであり、前記中間層
が窒化チタン、炭化チタン、酸化アルミニウム、窒化ケ
イ素、硼化チタン、窒化クロムのうち少なくとも1種を
含む単層膜、又は窒化チタン/炭化チタン積層膜である
請求項(1)に記載の多層被膜を有する真空容器及び真
空機器用部品。
2. The method according to claim 1, wherein the outermost layer is any one of platinum, gold, palladium, tungsten, molybdenum, aluminum, silicon, metal sulfide, and boron nitride, and the intermediate layer is titanium nitride, titanium carbide, aluminum oxide. A vacuum container and a component for vacuum equipment having a multilayer coating according to claim 1, wherein the component is a single-layer film containing at least one of silicon nitride, titanium boride, and chromium nitride, or a titanium nitride / titanium carbide laminated film. .
JP2041929A 1990-02-22 1990-02-22 Vacuum container and component for vacuum equipment having multilayer coating Expired - Lifetime JP2895554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041929A JP2895554B2 (en) 1990-02-22 1990-02-22 Vacuum container and component for vacuum equipment having multilayer coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041929A JP2895554B2 (en) 1990-02-22 1990-02-22 Vacuum container and component for vacuum equipment having multilayer coating

Publications (2)

Publication Number Publication Date
JPH03247778A JPH03247778A (en) 1991-11-05
JP2895554B2 true JP2895554B2 (en) 1999-05-24

Family

ID=12621930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041929A Expired - Lifetime JP2895554B2 (en) 1990-02-22 1990-02-22 Vacuum container and component for vacuum equipment having multilayer coating

Country Status (1)

Country Link
JP (1) JP2895554B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173962A (en) * 1990-11-05 1992-06-22 Nec Corp Vacuum vessel
JP2865995B2 (en) * 1993-12-22 1999-03-08 昭成 葛西 Gas shielding method for true containers etc.
FR2760089B1 (en) * 1997-02-26 1999-04-30 Org Europeene De Rech ARRANGEMENT AND METHOD FOR IMPROVING THE VACUUM IN A VERY HIGH VACUUM SYSTEM
JP2011074442A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Vacuum vapor-deposition apparatus
EP3172359B1 (en) * 2014-07-24 2018-06-06 Oerlikon Surface Solutions AG, Pfäffikon Arc evaporated me11-ame2azi/mo1-b-csicbbzii multilayer coatings

Also Published As

Publication number Publication date
JPH03247778A (en) 1991-11-05

Similar Documents

Publication Publication Date Title
Mattox Particle bombardment effects on thin‐film deposition: A review
Adams A review of the stainless steel surface
JP2895554B2 (en) Vacuum container and component for vacuum equipment having multilayer coating
Malyshev et al. Influence of deposition pressure and pulsed dc sputtering on pumping properties of Ti–Zr–V nonevaporable getter films
US6554970B1 (en) Arrangement and method for improving vacuum in a very high vacuum system
Rolinski et al. Ion nitriding of titanium alpha plus beta alloy for fusion reactor applications
Laugier The effect of ion bombardment on stress and adhesion in thin films of silver and aluminum
JPS62188856A (en) Piston ring
JPH0598423A (en) Chrome coating film for preventing oxidation of titanium
JPH02138469A (en) Vacuum material having a diamond surface, surface treatment method for this vacuum material, method for producing a diamond film surface, vacuum container using vacuum material and its parts, vacuum drive mechanism, electron emission source, vacuum heater and evaporation source container
Leggieri et al. Laser reactive ablation deposition of titanium carbide films
JP2909248B2 (en) Boron nitride coated member
Yoshimura et al. Outgassing characteristics and microstructure of a ‘‘vacuum fired’’(1050° C) stainless steel surface
JPH04154033A (en) X ray rotation anode
US3725719A (en) Method and aritcle for inhibiting gaseous permeation and corrosion of material
JPS5832229B2 (en) Vacuum containers and vacuum equipment parts coated with metal nitride
Yumoto et al. The effect of electronic excitation produced by an electron shower on the adhesion of copper films deposited on stainless steel
Mura et al. Use of getter-catalyst thin films for enhancing ion pump vacuum performances
Mattox Recent advances in ion plating
Sharma et al. Thin films of Ti–Nb–Zr as non-evaporable getter films
Schindler et al. Some investigations on the effective short time outgassing depth of metals
JPH0759745B2 (en) Titanium plated steel plate with excellent heat resistance
JPH04337084A (en) Member coated with carbon hard film
JPH03159043A (en) Manufacture of x-ray target containing small amount of gas
RU2010032C1 (en) Method of silicon base metal coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

EXPY Cancellation because of completion of term