[go: up one dir, main page]

JP2893769B2 - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JP2893769B2
JP2893769B2 JP1313176A JP31317689A JP2893769B2 JP 2893769 B2 JP2893769 B2 JP 2893769B2 JP 1313176 A JP1313176 A JP 1313176A JP 31317689 A JP31317689 A JP 31317689A JP 2893769 B2 JP2893769 B2 JP 2893769B2
Authority
JP
Japan
Prior art keywords
light
layer
polarizing element
lens
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1313176A
Other languages
Japanese (ja)
Other versions
JPH03172803A (en
Inventor
嘉高 伊藤
正一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1313176A priority Critical patent/JP2893769B2/en
Publication of JPH03172803A publication Critical patent/JPH03172803A/en
Application granted granted Critical
Publication of JP2893769B2 publication Critical patent/JP2893769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ランダム偏光を一方向の偏光面を持つ直線
偏光に変換する偏光素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing element that converts random polarized light into linear polarized light having a plane of polarization in one direction.

〔従来の技術〕[Conventional technology]

従来、ランダム偏光から一方向性偏光を得るために
は、偏光子や複屈折性結晶を用いて、特定の偏光面を有
する直線偏光のみを選択的に取り出す方法が一般的であ
った。その代表例が偏光板である。これはお互いに直交
する偏光成分を持つランダム偏光である入射光のうち、
片方の直線偏光成分のみを選択的に吸収し、他方の直線
偏光成分のみを透過させることにより、一方向の偏光成
分のみを有する射出光に変換するものである。また、他
には複屈折性結晶を用いたものとしてローションプリズ
ムやニコルプリズムが挙げられる。
Conventionally, in order to obtain unidirectional polarized light from random polarized light, a method of selectively extracting only linearly polarized light having a specific polarization plane using a polarizer or a birefringent crystal has generally been used. A representative example is a polarizing plate. This is the incident light, which is random polarized light having polarization components orthogonal to each other,
By selectively absorbing only one linearly polarized light component and transmitting only the other linearly polarized light component, the light is converted into emission light having only one direction of polarized light component. Other examples using a birefringent crystal include a lotion prism and a Nicol prism.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、従来の偏光板では光吸収の二色性を利用して
いるため一方向性偏光への変換効率が最大でも約45%と
低く、また、光吸収による発熱作用により偏光板自体が
熱破壊を生じる危険性を有していた。また、複屈折性結
晶を用いたものでは偏光方向の異なる不必要な偏光成分
を反射等の手段により除去しているため、やはりこの方
式においても一方向性偏光への変換効率が最大50%以下
と低いことが問題となっている。
However, conventional polarizers use the dichroic nature of light absorption, so the conversion efficiency to unidirectional polarized light is as low as about 45% at the maximum, and the polarizer itself is thermally destroyed by the heat generated by light absorption. Had the danger of producing In the case of using a birefringent crystal, unnecessary polarization components having different polarization directions are removed by means such as reflection, so that the conversion efficiency to unidirectional polarization is also 50% or less in this method. And low is a problem.

そこで、本発明は以上のような問題点を解決するもの
で、その目的とするところは、光吸収や反射によるロス
をほとんど伴うことなく、ランダム偏光を一方向性偏光
に高効率で変換するコンパクトな偏光素子を提供するこ
とにある。
Therefore, the present invention solves the above-mentioned problems, and an object of the present invention is to compactly convert random polarized light into unidirectional polarized light with little loss due to light absorption or reflection. It is to provide a simple polarizing element.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の偏光素子は、入射光を偏光面が互いに直交す
る2種類の直線偏光光に分離し、略同一平面内の互いに
異なる位置に集光させる偏光分離手段と、前記2種類の
偏光光のうち、一方が集光される光路上に選択的に形成
され、該一方の偏光光の偏光方向を他方の偏光光の偏光
方向と一致させるλ/2位相差層と、を有する偏光素子で
あって、前記偏光分離手段は、複数のレンズが光出射側
の面に形成された第1の等方性層と、複数のレンズが光
入射側の面に形成された第2の等方性層と、前記第1の
等方性層と前記第2の等方性層との間に挟まれた複屈折
層と、からなることを特徴とする。
The polarizing element of the present invention is a polarizing element that separates incident light into two types of linearly polarized light whose polarization planes are orthogonal to each other, and condenses the light at different positions in a substantially same plane; And a λ / 2 retardation layer, one of which is selectively formed on the optical path on which light is condensed, and which makes the polarization direction of the one polarized light coincide with the polarization direction of the other polarized light. The polarized light separating means includes a first isotropic layer having a plurality of lenses formed on a light exit side surface and a second isotropic layer having a plurality of lenses formed on a light incident side surface. And a birefringent layer sandwiched between the first isotropic layer and the second isotropic layer.

また、上記偏光素子において、前記λ/2位相差層の光
出射側に、前記他方の偏光光と、前記λ/2位相差層から
出射された前記一方の偏光光とを平行光線にするレンズ
を設けたことを特徴とする。
Further, in the polarizing element, a lens that converts the other polarized light and the one polarized light emitted from the λ / 2 phase difference layer into parallel rays on a light emission side of the λ / 2 phase difference layer. Is provided.

〔作用〕[Action]

上記手段によれば、まず、等方性層−複屈折性層−等
方性層の3層からなる複屈折性レンズによりランダム偏
光を偏光面が互いに直交する2つの直線偏光(常光成
分、異常光成分)に位置選択的に分離集光する。次に、
入射光の偏光面を90度回転させる位相差板を一方の偏光
(例えば常光成分)の集光位置に配置し、そこを通すこ
とにより偏光面を回転させ、透過光の偏光方向を他方の
偏光の偏光方向と一致させる。そして最後に、位置選択
的に分離集光され偏光方向がすべて同一の方向に揃った
偏光を再びレンズを通過させることにより、入射光であ
るランダム偏光はそのほとんどが一方向性偏光に変換さ
れる。上記の変換過程においては偏光方向の違いによる
光吸収や反射による光量の減少がほとんどない。また、
複屈折性レンズのレンズ特性に合わせたレンズを偏光素
子の出射側に配置していることから、本偏光素子による
偏光変換過程において光束の幅がほとんど変化しない。
したがって、平行性に優れる入射光を本偏光素子に入射
した場合には、同様に平行性に優れた出射光を得られる
ことになる。
According to the above-mentioned means, first, random polarized light is converted into two linearly polarized lights whose polarization planes are orthogonal to each other by a birefringent lens composed of three layers of an isotropic layer, a birefringent layer, and an isotropic layer. (Light component). next,
A retardation plate that rotates the polarization plane of the incident light by 90 degrees is placed at the condensing position of one polarized light (for example, ordinary light component), and the polarization plane of the transmitted light is rotated by passing through it, and the polarization direction of the transmitted light is changed to the other polarization. And the polarization direction. Finally, by passing through the lens again polarized light that is position-selectively separated and condensed and the polarization directions are all aligned in the same direction, most of the random polarized light that is incident light is converted to unidirectional polarized light. . In the above conversion process, there is almost no decrease in the amount of light due to light absorption or reflection due to the difference in polarization direction. Also,
Since the lens adapted to the lens characteristics of the birefringent lens is arranged on the exit side of the polarizing element, the width of the light beam hardly changes in the polarization conversion process by the present polarizing element.
Therefore, when incident light having excellent parallelism is incident on the present polarizing element, emission light having similarly excellent parallelism can be obtained.

〔実施例〕〔Example〕

以下、実施例に基づき本発明を詳細に説明する。但
し、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.

[実施例1] 第1図は本発明の偏光素子の構成断面略図であり、こ
の第1図に基づいて本発明の実施例を説明する。等方性
層11は屈折率がn1である等方性透明材料よりなってお
り、片側に断面形状が凹型である一方向集光性のレンチ
キュラーレンズ状のパターン(ピッチは100μm)がア
レイ状に配列されている。また、等方性層15は屈折率が
n2であるやはり等方性透明材料よりなっており(但し、
n2>n1)、やはり片面に、上記の凹型断面形状に対応す
る断面形状が凸型である、一方向集光性のレンチキュラ
ーレンズ状のパターン(ピッチは100μm。但し、曲面
の曲率は界面14の方が界面12よりもやや小さい)がアレ
イ状に配列されている。上記2枚の等方性層11、等方性
層15を用いて、通常の液晶セルを組む方法に準じて約5
μmのギャップを持つセルを貼り合わせにより作製し
た。その後、減圧封入法によりセルの間隙にネマチック
系液晶材料(常光屈折率no、以上光屈折率ne、但し、no
<neである)を注入、封止、配向処理を行なって、等方
性層11−複屈折性層13−等方性層15の3層構造体を形成
した。但し、n1=no、n2=neとなるように2つの等法性
材料及び液晶材料を選択した。以上のような構成をとる
こおにより、入射光のランダム偏光を偏光面が互いに直
交する2つの直線偏光(常光成分、異常光成分)に空間
的に分離集光することが可能となる。すなわち、ここで
液晶材料は配向処理を施すことにより、一軸性複屈折材
料として振舞う。
Example 1 FIG. 1 is a schematic cross-sectional view of the configuration of the polarizing element of the present invention. An example of the present invention will be described with reference to FIG. The isotropic layer 11 is made of an isotropic transparent material having a refractive index of n1, and a lenticular lens-like pattern (pitch: 100 μm) having a concave cross section on one side and having a unidirectional light-collecting shape is formed in an array. Are arranged. The isotropic layer 15 has a refractive index of
n2 is also made of isotropic transparent material (however,
n2> n1), a lenticular lens-like pattern (pitch is 100 μm) having a one-way light-collecting property in which the cross-sectional shape corresponding to the concave cross-sectional shape is convex on one surface. (Which is slightly smaller than the interface 12). Using the two isotropic layers 11 and 15 described above, about 5 cm according to the method of assembling a normal liquid crystal cell.
A cell having a gap of μm was produced by bonding. After that, a nematic liquid crystal material (ordinary refractive index no, above light refractive index ne, where no
<Ne) was injected, sealed, and aligned to form a three-layer structure of an isotropic layer 11, a birefringent layer 13, and an isotropic layer 15. However, two isotropic materials and a liquid crystal material were selected so that n1 = no and n2 = ne. With the above configuration, it is possible to spatially separate and condense random polarized light of incident light into two linearly polarized lights (ordinary light component and extraordinary light component) whose polarization planes are orthogonal to each other. That is, the liquid crystal material behaves as a uniaxial birefringent material by performing the alignment treatment here.

いま、第1図において常光成分(偏光方向が紙面に垂
直)を破線18で、異常光成分(偏光方向が紙面に平行)
を実線19で示すと、等方性層11の屈折率n1と複屈折性層
13の常光屈折率noが等しいことにより、偏光素子に入射
した光のうち異常光成分は第1のレンズ界面12におい
て、屈折率差に伴う光の屈折作用を受ける。しかし、第
2のレンズ界面においては異常光成分に関する複屈折性
層13と等方性層15の屈折率の関係がne=n2であることか
ら、何等光の屈折効果を受けない。従って、異常光成分
に関しては第1のレンズ界面12においてのみ光の屈折作
用を受け集光し、焦点(厳密に言えばこの場合、等方性
層11と複屈折性層13により形成される界面の形状は一方
向性のレンチキュラーレンズ状であるため焦線とな
る。)を形成する。対して、常光成分は上記異常光成分
とは逆に第2のレンズ界面においてのみ光の屈折作用を
受け、同様に集光し焦点(焦線)を形成する。なぜな
ら、常光成分に関する等方性層11、複屈折性層13及び等
方性層15の屈折率の関係はn1=no<n2であるからであ
る。
Now, in FIG. 1, the ordinary light component (the polarization direction is perpendicular to the paper surface) is indicated by a broken line 18, and the extraordinary light component (the polarization direction is parallel to the paper surface).
Is indicated by a solid line 19, the refractive index n1 of the isotropic layer 11 and the birefringent layer
Since the ordinary light refractive index no of 13 is equal, the extraordinary light component of the light incident on the polarizing element undergoes the refraction of light at the first lens interface 12 due to the refractive index difference. However, since the relationship between the refractive index of the birefringent layer 13 and the refractive index of the isotropic layer 15 regarding the extraordinary light component is ne = n2 at the interface of the second lens, no refraction of light is received. Therefore, the extraordinary light component is condensed by the refraction of light only at the first lens interface 12 and is focused (in this case, strictly speaking, the interface formed by the isotropic layer 11 and the birefringent layer 13). Is a one-way lenticular lens shape and therefore forms a focal line.) On the other hand, the ordinary light component is refracted by the light only at the second lens interface, contrary to the abnormal light component, and is similarly condensed to form a focal point (focal line). This is because the relationship between the refractive indexes of the isotropic layer 11, the birefringent layer 13, and the isotropic layer 15 with respect to the ordinary light component is n1 = no <n2.

次に、常光成分の焦点(焦線)位置のみに幅約40μ
m、ピッチ100μmのλ/2位相差層16を位置選択的に形
成し、この部分を透過する常光成分の偏光面が90度回転
するようにした(異常光成分は位相差層のないところに
焦線を形成する)。さらに、λ/2位相差板16を挟むよう
な形で、裏面に一方向性レンチキュラーレンズ(レンズ
ピッチは50μm)を形成してある等方性材料よりなる基
板17を取り付けた。但し、ここで基板17の厚みは等方性
層15の厚み×n2/(n3×2)とし、第1のレンズ界面12
及び第2のレンズ界面14で集光された平行な入射光が、
基板17の裏面に形成されたレンズにより再び平行光線に
変換されるような構成とした。厳密には、第1のレンズ
界面12と第2のレンズ界面14との間でレンズの曲率が等
しくないため第3のレンズ20の曲率を1列おきに上記2
種のレンズに合わせて変える必要があるが、上記2種の
レンズのレンズ径に対して等方性層15の厚みを大きく
(例えば、10倍)とれば、第3のレンズ20のレンズ曲率
を一様にしても平行性のよい出射光が得られる。以上の
構成により、本偏光素子を透過する光は吸収されること
なく、ほとんど全て異常光成分に変換されたことにな
る。また、平行性のよい光を本偏光素子に入射した場
合、得られる出射光も同様に平行性のよい光になること
がわかる。
Next, the width of about 40μ only at the focus (focal line) position of the ordinary light component
The [lambda] / 2 retardation layer 16 having a pitch of 100 [mu] m and a pitch of 100 [mu] m is formed in a position-selective manner, so that the polarization plane of the ordinary light component passing through this portion is rotated by 90 degrees. Forming a focal line). Further, a substrate 17 made of an isotropic material having a unidirectional lenticular lens (lens pitch: 50 μm) formed on the back surface was attached so as to sandwich the λ / 2 retardation plate 16. Here, the thickness of the substrate 17 is the thickness of the isotropic layer 15 × n2 / (n3 × 2).
And the parallel incident light collected at the second lens interface 14 is
The configuration was such that the light was converted into parallel light again by a lens formed on the back surface of the substrate 17. Strictly speaking, since the curvatures of the lenses between the first lens interface 12 and the second lens interface 14 are not equal, the curvature of the third lens 20 is set every other row to the above-mentioned value.
It is necessary to change according to the kind of lens, but if the thickness of the isotropic layer 15 is made large (for example, 10 times) with respect to the lens diameter of the two kinds of lenses, the lens curvature of the third lens 20 becomes large. Even if uniform, emitted light with good parallelism can be obtained. With the above configuration, light transmitted through the present polarizing element is almost completely converted into an extraordinary light component without being absorbed. Also, it can be seen that when light with good parallelism is incident on the present polarizing element, the emitted light obtained is also light with good parallelism.

この偏光素子の前方より平行性の良いランダム偏光を
入射し、本偏光素子の光透過率及び出射光中に占める異
常光成分の割合を測定したところ、それぞれ約90%、約
94%と高率であった。
Random polarized light having good parallelism was incident from the front of the polarizing element, and the light transmittance of the present polarizing element and the ratio of the extraordinary light component in the emitted light were measured.
The rate was as high as 94%.

[実施例2] 第2図に実施例1に類似した本発明の偏光素子の構成
断面図を示す。先の実施例1の場合とは等方性層11、複
屈折性層13及び等方性層15の界面に形成されるレンズの
形状が異なり、本実施例ではフレネルレンズ形状とし
た。レンズ形状をフレネル形とすることにより界面間に
形成する2つのレンズ間距離を実施例1の場合に比べて
短くでき、また、複屈折性層13として液晶材料を使用す
る場合、配向し易いという特徴がある。実施例1と同様
に本偏光素子の光透過率及び透過光中に占める異常光成
分の割合を測定したところ、それぞれ約89%、約92%で
あり、実施例1の場合とほぼ同じ値であった。
Example 2 FIG. 2 shows a cross-sectional view of the structure of a polarizing element according to the present invention, similar to Example 1. The shape of the lens formed at the interface between the isotropic layer 11, the birefringent layer 13, and the isotropic layer 15 is different from that of the first embodiment. By making the lens shape a Fresnel shape, the distance between the two lenses formed between the interfaces can be made shorter than in the case of Example 1, and when a liquid crystal material is used as the birefringent layer 13, it is easy to align. There are features. When the light transmittance of the present polarizing element and the ratio of the extraordinary light component in the transmitted light were measured in the same manner as in Example 1, they were about 89% and about 92%, respectively, which were almost the same values as in Example 1. there were.

異常の2つの実施例では、界面に形成される集光レン
ズ体として一方向集光性のリニアレンチキュラーレンズ
アレイを用いたが、もちろん他の一般的な円形、楕円形
レンズを用いて構成したレンズアレイを用いてもよい。
しかし、光の一方向偏光への変換効率を高めるために
は、レンズ体を二次元的に最密充填し非レンズ部分が生
じないようにすることが重要であり、そのことを考慮す
るとレンズ形状をリニアレンチキュラー形状とすること
は合理的であると言える。また、上記実施例では複屈折
性層を形成する材料として液晶材料を用いたが、高い複
屈折率を有する材料であれば(例えば、配向状態を維持
した高分子材料等)、液晶材料に限定されることなく使
用できることは明らかである。
In the two embodiments of the anomaly, a linear lenticular lens array having one-way focusing is used as the focusing lens body formed at the interface, but of course, a lens configured using other general circular or elliptical lenses Arrays may be used.
However, in order to increase the conversion efficiency of light into one-way polarized light, it is important to two-dimensionally close-pack the lens body so that non-lens portions do not occur. It can be said that it is rational to have a linear lenticular shape. In the above embodiment, a liquid crystal material is used as a material for forming the birefringent layer. However, if the material has a high birefringence (for example, a polymer material maintaining an alignment state), the liquid crystal material is limited. Obviously it can be used without being done.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の偏光素子では、ランダム
偏光である入射光を偏光面が互いに直交する2つの直線
偏光成分に分離集光し、該分離集光された偏光の内、片
方の直線偏光の偏光面を回転させ他方の偏光の偏光面と
一致させた後、それらを再びレンズを用いて合成すると
いう構成をとることにより、ほとんど光吸収を伴うこと
なくランダム偏光から一方向性偏光への変換を行なうこ
とが可能であると言える。また、光吸収をほとんど伴わ
ないことから、強い光線を入射させた場合にも、発熱に
よる自己破壊を招くことなく安定的に偏光変換を行ない
得る。上記実施例で説明したように、本発明の偏光素子
の偏光変換効率は光透過率を合わせて概ね80%以上であ
り、従来の偏光板の変換効率が最大でも45%程度である
ことを考えると、本発明の偏光素子は偏光の変換効率の
点で非常に優れていることがわかる。
As described above, the polarizing element of the present invention separates and condenses incident light, which is random polarized light, into two linearly polarized light components whose polarization planes are orthogonal to each other. By rotating the plane of polarization of the polarized light so that it matches the plane of polarization of the other polarized light, and then combining them again using a lens, it is possible to change from random polarized light to unidirectional polarized light with almost no light absorption. It can be said that the conversion can be performed. Further, since light absorption is scarcely involved, even when a strong light beam is incident, polarization conversion can be performed stably without causing self-destruction due to heat generation. As described in the above embodiment, it is considered that the polarization conversion efficiency of the polarizing element of the present invention is approximately 80% or more including the light transmittance, and the conversion efficiency of the conventional polarizing plate is at most about 45%. It can be seen that the polarizing element of the present invention is very excellent in terms of polarization conversion efficiency.

本発明の偏光素子は上記の特性を活かして、偏光を必
要とする各種表示素子、特に液晶表示素子、光アイソレ
ータ、光スイッチ、光学フィルタや、それらを構成要素
とする各種光学機器等への幅広い応用が可能である。
The polarizing element of the present invention makes use of the above-mentioned characteristics, and is widely used for various display elements requiring polarization, especially for liquid crystal display elements, optical isolators, optical switches, optical filters, and various optical devices including them. Application is possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1の本発明の偏光素子の構成断面略図。
第2図は実施例2の複屈折性レンズをフレネルレンズで
構成した場合の偏光素子の構成断面略図。 11……第1の基板(等方性層) 12……第1のレンズ界面 13……複屈折性層 14……第2のレンズ界面 15……第2の基板(等方性層) 16……λ/2位相差層 17……第3の基板(等方性層) 18……常光 19……異常光 20……第3のレンズ 21……フレネルレンズによる第1のレンズ界面 22……フレネルレンズによる第2のレンズ界面
FIG. 1 is a schematic cross-sectional view of the configuration of a polarizing element of the present invention in Example 1.
FIG. 2 is a schematic cross-sectional view of a polarizing element when the birefringent lens of Example 2 is formed of a Fresnel lens. 11 First substrate (isotropic layer) 12 First lens interface 13 Birefringent layer 14 Second lens interface 15 Second substrate (isotropic layer) 16 Λ / 2 phase difference layer 17 Third substrate (isotropic layer) 18 Normal light 19 Extraordinary light 20 Third lens 21 First lens interface with Fresnel lens 22 ... Second lens interface by Fresnel lens

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−265206(JP,A) 特開 平1−273002(JP,A) 特開 平1−127329(JP,A) 特開 昭60−63503(JP,A) 特開 平1−118805(JP,A) 特開 昭62−71905(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 5/30 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-265206 (JP, A) JP-A-1-273002 (JP, A) JP-A-1-127329 (JP, A) JP-A-60- 63503 (JP, A) JP-A-1-118805 (JP, A) JP-A-62-71905 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G02B 5/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入射光を偏光面が互いに直交する2種類の
直線偏光光に分離し、略同一平面内の互いに異なる位置
に集光させる偏光分離手段と、 前記2種類の偏光光のうち、一方が集光される光路上に
選択的に形成され、該一方の偏光光の偏光方向を他方の
偏光光の偏光方向と一致させるλ/2位相差層と、を有す
る偏光素子であって、 前記偏光分離手段は、 複数のレンズが光出射側の面に形成された第1の等方性
層と、 複数のレンズが光入射側の面に形成された第2の等方性
層と、 前記第1の等方性層と前記第2の等方性層との間に挟ま
れた複屈折層と、からなることを特徴とする偏光素子。
1. A polarized light separating means for separating incident light into two kinds of linearly polarized lights whose polarization planes are orthogonal to each other, and condensing the lights at different positions in a substantially same plane; A polarizing element having a λ / 2 retardation layer that is selectively formed on the optical path where one of the light beams is condensed, and matches the polarization direction of the one polarized light beam with the polarization direction of the other polarized light beam, A first isotropic layer in which a plurality of lenses are formed on a surface on a light emission side; a second isotropic layer in which a plurality of lenses are formed on a surface on a light incidence side; A polarizing element, comprising: a birefringent layer sandwiched between the first isotropic layer and the second isotropic layer.
【請求項2】請求項1記載の偏光素子において、 前記λ/2位相差層の光出射側に、前記他方の偏光光と、
前記λ/2位相差層から出射された前記一方の偏光光とを
平行光線にするレンズを設けたことを特徴とする偏光素
子。
2. The polarizing element according to claim 1, wherein the other polarized light is provided on a light exit side of the λ / 2 retardation layer.
A polarizing element, comprising: a lens that converts the one polarized light beam emitted from the λ / 2 retardation layer into a parallel light beam.
JP1313176A 1989-12-01 1989-12-01 Polarizing element Expired - Lifetime JP2893769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313176A JP2893769B2 (en) 1989-12-01 1989-12-01 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313176A JP2893769B2 (en) 1989-12-01 1989-12-01 Polarizing element

Publications (2)

Publication Number Publication Date
JPH03172803A JPH03172803A (en) 1991-07-26
JP2893769B2 true JP2893769B2 (en) 1999-05-24

Family

ID=18038022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313176A Expired - Lifetime JP2893769B2 (en) 1989-12-01 1989-12-01 Polarizing element

Country Status (1)

Country Link
JP (1) JP2893769B2 (en)

Also Published As

Publication number Publication date
JPH03172803A (en) 1991-07-26

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
CN1132031C (en) Lenticular polarization converter
US20230022744A1 (en) Optical element, image display unit, and head-mounted display
JP2019503514A (en) Embedded eyepiece
JPH03174502A (en) Polarization-sensitive beam splitter and method of manufacturing the same
JP2006503325A (en) Polarization arrangement
CN100359387C (en) Light converging system and transmission liquid crystal display
CN100386664C (en) Polarization Conversion Optical System
JP4792679B2 (en) Isolator and variable voltage attenuator
EP0474237B1 (en) Prism optical device and polarizer using it
JP2718057B2 (en) Polarizing element
USRE26506E (en) Multilayer lenticular light polarizing device
JP2893769B2 (en) Polarizing element
JP2004037480A (en) Liquid crystal device and optical attenuator
JP2007225744A (en) Polarization conversion element
JPH032732A (en) polarizing element
JP2900896B2 (en) Polarizing element and lighting device
JP5038968B2 (en) Condensing element, surface light source using the same, and liquid crystal display device
JPH035706A (en) polarizing element
JP4149731B2 (en) Condensing element, surface light source using the same, and liquid crystal display device
JPH01277203A (en) polarizing element
RU2143128C1 (en) Polarizer
JP2011075968A (en) Polarization converting element and liquid crystal display device using the same
JP2005077545A (en) Polarization conversion optical system, its manufacturing method and liquid crystal display
JPH02308204A (en) Optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11