JP2886105B2 - Method for producing hydrophobic silica - Google Patents
Method for producing hydrophobic silicaInfo
- Publication number
- JP2886105B2 JP2886105B2 JP6596795A JP6596795A JP2886105B2 JP 2886105 B2 JP2886105 B2 JP 2886105B2 JP 6596795 A JP6596795 A JP 6596795A JP 6596795 A JP6596795 A JP 6596795A JP 2886105 B2 JP2886105 B2 JP 2886105B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- groups
- hmds
- hydrophobic
- hydrophobicity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 197
- 239000000377 silicon dioxide Substances 0.000 title claims description 97
- 230000002209 hydrophobic effect Effects 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 36
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000007789 gas Substances 0.000 description 25
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 238000011282 treatment Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 229920002545 silicone oil Polymers 0.000 description 8
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 8
- 239000008186 active pharmaceutical agent Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 125000001165 hydrophobic group Chemical group 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 description 3
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- -1 first Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009283 thermal hydrolysis Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Silicon Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、表面に十分な量の疎水
基を有し、しかもOH基の量は少なく、高い疎水性を示
すシリカの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing highly hydrophobic silica having a sufficient amount of hydrophobic groups on its surface and a small amount of OH groups.
【0002】[0002]
【従来の技術】クロロシランの火炎熱分解によって製造
されるシリカは、比表面積が50〜500m2/g程度
のシリカであり、一般にはフュームドシリカと呼ばれて
いる。このシリカは樹脂の充填・補強材や粉末の流動化
剤として用いられているが、これらの用途に使用するた
めにはシリカの表面を疎水性にすることがしばしば必要
とされている。疎水化処理されたシリカを上記の用途に
用いた場合の効果は一概にいえないが、例えば、シリコ
ーン樹脂の充填・補強材として使用した場合にはシリカ
粒子の分散性を高めてシリコーン樹脂の伸びや機械的強
度を向上させる効果があり、粉末の流動化剤として用い
た場合にはその流動性を著しく向上させる効果がある。 2. Description of the Related Art Silica produced by flame pyrolysis of chlorosilane has a specific surface area of about 50 to 500 m 2 / g, and is generally called fumed silica. This silica is used as a filler and reinforcing material for resins and as a fluidizing agent for powders. For use in these applications, it is often necessary to make the surface of the silica hydrophobic. The effect of using hydrophobized silica for the above applications cannot be said in general, but, for example, when it is used as a filler / reinforcing material for silicone resin, the dispersibility of silica particles is increased to increase the elongation of silicone resin. And when used as a fluidizing agent for powder, it has the effect of significantly improving its fluidity.
【0003】このような効果を求め、シリカの表面を高
度に疎水化する試みが従来から広く行われており、メチ
ルクロロシランやシランカップリング剤などが疎水化処
理剤として用いられてきた。このような疎水化処理剤の
なかでも、適度に大きい分子量の化合物が高疎水性シリ
カを得るためには有効であった。例えば、分子量の大き
い疎水化処理剤であるシリコーンオイルでシリカを処理
すると、後述する方法で測定された修飾疎水度で表され
る疎水性の程度が70%のシリカを得ることができる。
しかし、この場合のシリコーンオイルの大部分は、単に
シリカの表面に付着しているだけで、表面と反応してい
るわけではない。したがって、充填する樹脂の種類によ
っては、修飾されたシリコーンオイルが表面から離れて
樹脂中に溶け出し、分散したシリカ粒子の疎水度が期待
に反して悪化することが起こり得る。[0003] In order to obtain such effects, attempts have been made widely to make the surface of silica highly hydrophobic, and methylchlorosilane and silane coupling agents have been used as hydrophobizing agents. Among such hydrophobizing agents, a compound having a moderately large molecular weight was effective for obtaining highly hydrophobic silica. For example, when silica is treated with a silicone oil which is a hydrophobizing agent having a large molecular weight, silica having a degree of hydrophobicity represented by a modified hydrophobicity of 70% measured by the method described below can be obtained.
However, most of the silicone oil in this case simply adheres to the surface of the silica and does not react with the surface. Therefore, depending on the type of the resin to be filled, the modified silicone oil may separate from the surface and dissolve into the resin, and the hydrophobicity of the dispersed silica particles may worsen unexpectedly.
【0004】また、別の疎水化処理の方法としては、シ
リカをヘキサメチルジシラザン(以下、HMDSと略
す)で処理する方法がある(特開昭62−171913
号公報)。この方法は、HMDSがシリカの表面のOH
基と反応することを利用したものである。従って、この
方法により疎水化処理されたシリカの表面にはトリメチ
ルシリル基が化学結合により固定されており、修飾疎水
度60%以上のシリカを得ることができる。この方法に
おいて、シリカの表面に十分な量のトリメチルシリル基
を導入するためにはシリカを予め水で濡らせて表面のO
H基の数を増加させることが必要であった。この方法で
得たシリカは、その修飾疎水度が前述のシリコーンオイ
ル処理で得たシリカの修飾疎水度と比べ劣るが、疎水基
が表面に化学的に結合していることに特徴がある。As another method of hydrophobizing treatment, there is a method of treating silica with hexamethyldisilazane (hereinafter abbreviated as HMDS) (Japanese Patent Application Laid-Open No. 62-171913).
No.). In this method, HMDS is applied to the OH on the silica surface.
It utilizes the fact that it reacts with a group. Therefore, a trimethylsilyl group is fixed on the surface of silica hydrophobized by this method by a chemical bond, and silica having a modified hydrophobicity of 60% or more can be obtained. In this method, in order to introduce a sufficient amount of trimethylsilyl groups to the surface of the silica, the silica is wetted with water in advance and the O
It was necessary to increase the number of H groups. The silica obtained by this method is inferior to the modified hydrophobicity of the silica obtained by the above-described silicone oil treatment, but is characterized by a hydrophobic group chemically bonded to the surface.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
方法で得たシリカは修飾疎水度で表した疎水性の程度が
良好であるが、その応用分野においては、さらに高疎水
性のシリカの出現が望まれてきた。そのような高疎水性
のシリカが出現すれば、例えば、樹脂の充填剤として用
いた場合、樹脂とシリカの濡れ性向上や分散性向上に伴
う種々の応用特性の改善が期待できる。より具体的に
は、エポキシや不飽和ポリエステル樹脂に充填剤として
混合して、樹脂の粘度やチキソトロピー性の経時的な安
定性の向上が期待される。また、このようなシリカをシ
リコーンのような各種シーラントに混合して使用する
と、カートリッジからの押し出し性の経時的な安定性向
上効果が期待される。However, the silica obtained by the above-mentioned method has a good degree of hydrophobicity represented by the modified hydrophobicity. It has been desired. If such highly hydrophobic silica appears, for example, when it is used as a filler for a resin, it can be expected to improve various application characteristics accompanying improvement in wettability and dispersibility of the resin and silica. More specifically, it is expected to improve the viscosity and thixotropic properties of the resin over time by mixing it with a filler in an epoxy or unsaturated polyester resin. When such silica is mixed with various sealants such as silicone and used, an effect of improving the temporal stability of extrudability from the cartridge is expected.
【0006】ところで、前記した疎水化処理方法により
得られたシリカは、修飾疎水度が60%以上の高疎水性
を示すが、別の観点から見るとその疎水性の程度は必ず
しも良好でないことが判明した。すなわち、上記のシリ
カは修飾疎水度は良好であるが、その表面にOH基を多
数有していることがわかった。例えば、シリコーンオイ
ルで処理したシリカは、シリコーンオイルの大部分が表
面OH基と反応せずに単に付着されているだけであり、
表面OH基はほとんど減少していない。また、HMDS
でシリカを処理する方法は、HMDSがシリカの表面の
OH基と反応することを利用したものであるために、シ
リカの表面に予めOH基を導入しなければならず、そう
すると、導入されたOH基の一部がHMDSと反応せず
にシリカ表面に残存する。By the way, the silica obtained by the above-mentioned hydrophobizing treatment method shows high hydrophobicity with a modified hydrophobicity of 60% or more, but from another viewpoint, the degree of hydrophobicity is not necessarily good. found. That is, it was found that the above silica had good modified hydrophobicity, but had many OH groups on its surface. For example, in silica treated with silicone oil, most of the silicone oil is simply attached without reacting with surface OH groups,
The surface OH groups are hardly reduced. Also, HMDS
Since the method of treating silica with HMDS utilizes the fact that HMDS reacts with OH groups on the surface of silica, it is necessary to introduce OH groups into the surface of silica in advance. Some of the groups remain on the silica surface without reacting with HMDS.
【0007】従来の疎水化方法では、表面を高性能な疎
水基で修飾することにのみ目が向けられた。しかし、そ
れが表面OH基の数を減少させることには必ずしもつな
がらなかったと思われる。前述のシリコーンオイルやH
MDSによる疎水化処理は、モノメチルクロロシランや
ジメチルジクロロシランよりも高性能の疎水基を表面に
導入することによって表面の親油性を増すことができる
が、表面のOH基の減少にはつながらず、総合的な疎水
度が必ずしも良好ではない。[0007] In the conventional hydrophobizing method, attention was focused only on modifying the surface with a high-performance hydrophobic group. However, it seems that it did not always reduce the number of surface OH groups. The aforementioned silicone oil or H
Hydrophobic treatment by MDS can increase the lipophilicity of the surface by introducing hydrophobic groups with higher performance than monomethylchlorosilane or dimethyldichlorosilane to the surface, but does not lead to a decrease in OH groups on the surface. Is not always good.
【0008】このように、従来の方法で疎水化されたシ
リカは修飾疎水度は良好であるが、その表面にOH基を
多数有しており、シリカの総合的な疎水性の程度を判断
するには、表面を修飾した親油基に基づく疎水度と表面
OH基が少ないことに基づく疎水度の両方で論じなけれ
ばならないことが判明した。As described above, the silica hydrophobized by the conventional method has a good modified hydrophobicity, but has a large number of OH groups on its surface, and judges the overall degree of hydrophobicity of the silica. It has been found that both must be discussed in terms of the hydrophobicity based on the lipophilic group whose surface has been modified and the hydrophobicity based on the small number of surface OH groups.
【0009】そこで本発明者らは、このように総合的な
疎水度が良好なシリカを得ることを目的として、表面に
疎水基が十分な量存在し、修飾疎水度が良好で、しかも
OH基の数の少ないシリカを得るために研究を重ねてき
た。In order to obtain silica having good overall hydrophobicity, the inventors of the present invention have found that a sufficient amount of hydrophobic groups are present on the surface, the modified hydrophobicity is good, and the OH group is good. Research has been conducted to obtain silica having a small number of silica.
【0010】[0010]
【課題を解決するための手段】その結果、疎水化前のシ
リカとして表面OH基の比較的少ないものを使用し、H
MDSを接触させる際に水蒸気およびアンモニア、アミ
ン等の塩基性ガスを存在させることによって上記目的を
達成することができることを見いだした。As a result, silica having a relatively small number of OH groups on the surface is used as silica before hydrophobization.
It has been found that the above object can be achieved by the presence of steam and a basic gas such as ammonia or amine when MDS is brought into contact.
【0011】即ち、本発明は、単位表面積当たりの表面
OH基の数が1.5個/nm2以下であるシリカを水蒸
気および塩基性ガスの存在下にヘキサメチルジシラザン
と接触させることを特徴とする疎水性シリカの製造方法
である。That is, the present invention is characterized in that silica having the number of surface OH groups per unit surface area of not more than 1.5 / nm 2 is contacted with hexamethyldisilazane in the presence of steam and a basic gas. Is a method for producing hydrophobic silica.
【0012】本発明で原料として使用するシリカは、単
位表面積当たりの表面OH基の数が1.5個/nm2以
下である。このシリカの単位表面積当たりの表面のOH
基の数が1.5個/nm2を越えると、HMDSと接触
させた後においても未反応の表面OH基が残存し、シリ
カの表面に親水性基が多数残存するため好ましくない。
HMDSと接触させる前のシリカの表面のOH基の数は
1.5個/nm2以下であればよいが、得られる疎水性
シリカの表面OH基の数をできるだけ減少させるため、
0.5個/nm2以下であることがより好ましい。The silica used as a raw material in the present invention has a surface OH group number per unit surface area of 1.5 / nm 2 or less. Surface OH per unit surface area of this silica
If the number of groups exceeds 1.5 / nm 2 , unreacted surface OH groups remain even after contact with HMDS, and many hydrophilic groups remain on the silica surface, which is not preferable.
The number of OH groups on the surface of the silica before contact with HMDS may be 1.5 / nm 2 or less, but in order to reduce the number of OH groups on the surface of the resulting hydrophobic silica as much as possible,
More preferably, the number is 0.5 / nm 2 or less.
【0013】本発明で原料として使用するシリカは、単
位表面積当たりの表面OH基の数が1.5個/nm2以
下であればよいが、一般には、比表面積が50〜500
m2/g、特に200〜400m2/gの微細粒子よりな
るシリカを好適に用いることができる。このようなシリ
カは、通常、ハロゲノシランの熱分解あるいは加水分解
で製造することができ、このようにして得られたシリカ
を反応直後の吸湿していない状態で、または吸湿を避け
て保存したものを使用すれば良い。また、シリカをモノ
メチルクロロシランやトリメチルクロロシランで表面処
理をすることによっても調製することができる。The silica used as a raw material in the present invention may have a surface OH group number per unit surface area of 1.5 / nm 2 or less, but generally has a specific surface area of 50 to 500.
m 2 / g, the silica may be suitably used in particular made of fine particles of 200 to 400 m 2 / g. Such silica can usually be produced by thermal decomposition or hydrolysis of halogenosilane, and the silica thus obtained is stored immediately after the reaction in a state where it has not absorbed moisture, or is kept away from moisture absorption. Should be used. Alternatively, silica can be prepared by subjecting silica to a surface treatment with monomethylchlorosilane or trimethylchlorosilane.
【0014】本発明においては、上記のHMDSとシリ
カとの接触を水蒸気と塩基性ガスの存在下に行うことが
重要である。従来、トリメチルシリル基は、HMDSが
シリカ表面のOH基と反応することによりシリカ表面に
導入されるために、元のシリカには十分な量のOH基が
必要であると考えられていた。しかしながら、前述のよ
うに、OH基の一部はHMDSとの接触によっても未反
応の状態で残存し、そのために疎水基での修飾後もシリ
カ表面の親水基が残存し、好ましくないことが判明し
た。これを防ぐためには、元のシリカは表面OH基が比
較的少ない方がよい。しかし、表面OH基の量が少ない
とHMDSの反応性が悪く、十分な量のトリメチルシリ
ル基を導入することができないという矛盾が生じてい
た。ところが、HMDSとシリカの接触を水蒸気の存在
下に行うことによって、表面OH基の量が少ないシリカ
を使用するにもかかわらず、得られる疎水性シリカの表
面に、意外にも十分な量のトリメチルシリル基を効率よ
く導入することができ、しかも、表面OH基の数を極め
て少なくすることができることが判明した。In the present invention, it is important that the above-mentioned contact between HMDS and silica is carried out in the presence of steam and a basic gas. Conventionally, trimethylsilyl groups were considered to require a sufficient amount of OH groups in the original silica because HMDS was introduced into the silica surface by reacting with OH groups on the silica surface. However, as described above, a part of the OH group remains unreacted even by contact with HMDS, and therefore, the hydrophilic group on the silica surface remains even after modification with the hydrophobic group. did. To prevent this, the original silica preferably has relatively few surface OH groups. However, if the amount of surface OH groups is small, the reactivity of HMDS is poor, and contradiction arises that a sufficient amount of trimethylsilyl groups cannot be introduced. However, by performing the contact between HMDS and silica in the presence of water vapor, despite the use of silica having a small amount of surface OH groups, a surprisingly sufficient amount of trimethylsilyl is formed on the surface of the resulting hydrophobic silica. It has been found that groups can be introduced efficiently and the number of surface OH groups can be extremely reduced.
【0015】そして、さらに塩基性ガスを共存させるこ
とにより、トリメチルシリル基の導入量を上昇させ得る
ことが判明した。塩基性ガスの共存によりトリメチルシ
リル基の導入量を上昇させ得る理由は定かではないが、
水蒸気のみの添加の場合より、塩基性ガスが存在した場
合の方がHMDSの反応性もしくは、反応速度が向上す
るものと考えられる。It has been found that the coexistence of a basic gas can increase the amount of trimethylsilyl groups introduced. It is not clear why the introduction of trimethylsilyl groups can be increased by the coexistence of basic gas,
It is considered that the reactivity of HMDS or the reaction rate is improved when the basic gas is present, as compared with the case where only steam is added.
【0016】塩基性ガスとしては、公知の化合物のガス
を使用することができる。具体的にはアンモニア、アミ
ン、例えば、メチルアミン、エチルアミン、プロピルア
ミン、シクロヘキシル、ジメチルアミン、ジエチルアミ
ン、ジプロピルアミン、トリメチルアミン、トリエチル
アミン、トリプロピルアミン、アニリン等のガスを好適
に使用することができる。これらのなかでも、特にアン
モニアが疎水化効果が大きく、取扱が容易であるために
好適に使用できる。また、HMDSは、液体、気体の別
なく使用可能である。As the basic gas, a gas of a known compound can be used. Specifically, gases such as ammonia and amines such as methylamine, ethylamine, propylamine, cyclohexyl, dimethylamine, diethylamine, dipropylamine, trimethylamine, triethylamine, tripropylamine, and aniline can be suitably used. Among them, ammonia is particularly preferable because it has a large hydrophobizing effect and is easy to handle. Further, HMDS can be used regardless of whether it is a liquid or a gas.
【0017】塩基性ガスは、水蒸気の存在下でのシリカ
とHMDSとの接触時に存在させることが重要である。
予めシリカと塩基性ガスとを接触させた後、水蒸気の存
在下にHMDSと接触させても本発明の効果は得られな
い。It is important that the basic gas be present during the contact of the silica with the HMDS in the presence of water vapor.
Even if silica and a basic gas are brought into contact in advance and then brought into contact with HMDS in the presence of water vapor, the effect of the present invention cannot be obtained.
【0018】本発明における水蒸気、塩基性ガス、HM
DSの使用量は特に制限されないが、これらの比率は合
計の供給量を100モル%としたとき、水蒸気/塩基性
ガス/HMDS=20〜55/10〜55/15〜50
(モル%)、さらに、水蒸気/塩基性ガス/HMDS=
20〜55/20〜50/20〜40(モル%)の範囲
内であることがより好ましい。そして、これら各ガスの
合計の供給量は、シリカ100gに対して0.02〜
0.5モル/分の範囲から採用することが疎水化処理を
良好に行うために好ましい。In the present invention, water vapor, basic gas, HM
The amount of DS used is not particularly limited, but these ratios are determined assuming that the total supply amount is 100 mol%, steam / basic gas / HMDS = 20 to 55/10 to 55/15 to 50
(Mol%), and steam / basic gas / HMDS =
More preferably, it is in the range of 20 to 55/20 to 50/20 to 40 (mol%). And the total supply amount of each of these gases is 0.02 to 100 g of silica.
It is preferable to adopt from the range of 0.5 mol / min in order to favorably perform the hydrophobic treatment.
【0019】水蒸気および塩基性ガスは、シリカをHM
DSと接触させる反応器中に間欠的に供給してもよく、
また、連続的に供給しても良い。通常は、反応器中にH
MDSと水蒸気と塩基性ガスを一定の比率で連続的また
は間欠的に供給することが好ましい。また、水蒸気、塩
基性ガスおよびHMDSの各ガスを窒素等の不活性ガス
で希釈しても良いが、不活性ガスで希釈されたガス中に
含まれる各ガスの合計量は少なくとも50モル%以上で
あることが処理度向上の点で好ましい。Water vapor and basic gas convert silica to HM
It may be intermittently fed into the reactor contacted with DS,
Moreover, you may supply continuously. Usually, H
It is preferable to supply MDS, water vapor, and the basic gas continuously or intermittently at a fixed ratio. Further, each gas of steam, basic gas and HMDS may be diluted with an inert gas such as nitrogen, but the total amount of each gas contained in the gas diluted with the inert gas is at least 50 mol% or more. Is preferred from the viewpoint of improving the processing degree.
【0020】シリカとHMDSの接触時の温度に特に制
限はないが、凝集粒子の生成を防ぐため、HMDSを気
体状態で接触させることが好ましい。具体的には、HM
DSの沸点以上の温度、一般には150〜250℃の温
度を採用することが好ましい。また、接触時間は特に制
限ないが、通常0.5〜2時間の範囲から採用すればよ
い。The temperature at the time of contact between the silica and HMDS is not particularly limited, but it is preferable that the HMDS is brought into contact with a gas in order to prevent the formation of aggregated particles. Specifically, HM
It is preferable to employ a temperature higher than the boiling point of DS, generally a temperature of 150 to 250 ° C. The contact time is not particularly limited, but may be usually selected from the range of 0.5 to 2 hours.
【0021】反応の形式は特に制限されず、例えば、バ
ッチ式、連続式のいずれでもよく、また、反応装置も流
動床式、固定床式あるいは単なる混合器であってもよ
い。本発明においては、水蒸気と塩基性ガスの存在下に
おけるシリカとHMDSとの接触を行う前に、まず、シ
リカをメチルトリクロルシラン、ジメチルジクロロシラ
ン等のアルキルハロゲノシランと接触させておくことに
より、さらに優れた疎水性シリカを製造することができ
る。The type of the reaction is not particularly limited, and may be, for example, a batch system or a continuous system. The reaction apparatus may be a fluidized bed system, a fixed bed system, or a simple mixer. In the present invention, before contacting silica with HMDS in the presence of steam and a basic gas, first, silica is contacted with an alkylhalogenosilane such as methyltrichlorosilane, dimethyldichlorosilane, etc. Excellent hydrophobic silica can be produced.
【0022】この方法は、シリカ表面のOH基にアルキ
ルハロゲノシランを反応させて予め比較的立体障害の小
さいアルキルハロゲノシリル基を導入し、残存するOH
基を反応性の高いHMDSと反応させる方法である。ア
ルキルハロゲノシリル基の導入のみでは、修飾疎水度が
60%未満で表面OH数が0.3個/nm2以上のもの
しか得れないが、さらに反応性の高いHMDSを水蒸気
と塩基性ガスの存在下で反応させることにより、疎水度
の優れたシリカを得ることができる。この方法は、修飾
疎水度を高め、かつ表面OH基の数を最も減少させるこ
とができる方法であり、本発明において最も好ましい方
法である。尚上記の方法において、二段処理の順を逆に
すると、先に導入されたHMDSに基づくトリメチルシ
リル基の立体障害のために、アルキルハロゲノシランは
十分に反応せず、目的とする高疎水性シリカを得ること
ができない。In this method, an alkylhalogenosilane is reacted with an OH group on the silica surface to introduce an alkylhalogenosilyl group having relatively little steric hindrance, and the remaining OH group is introduced.
This is a method of reacting a group with highly reactive HMDS. Only by introducing an alkylhalogenosilyl group, only those having a modified hydrophobicity of less than 60% and a surface OH number of at least 0.3 / nm 2 can be obtained. By reacting in the presence, silica having excellent hydrophobicity can be obtained. This method can increase the modified hydrophobicity and minimize the number of surface OH groups, and is the most preferable method in the present invention. In the above method, when the order of the two-stage treatment is reversed, the alkylhalogenosilane does not react sufficiently due to the steric hindrance of the trimethylsilyl group based on HMDS introduced earlier, and the desired highly hydrophobic silica Can not get.
【0023】最初に行うシリカとアルキルハロゲノシラ
ンとの接触の条件は、西ドイツ特許第1163784号
に記載されている接触条件を採用すれば良い。例えば、
テトラクロルシランの火炎熱分解法により製造されたシ
リカを反応器中に投入した後、400〜500℃に加熱
し、アルキルハロゲノシランと水蒸気とを、シリカ1k
g当りアルキルハロゲノシランを0.05〜1kgで、
アルキルハロゲノシランと水蒸気との供給比率が水蒸気
/アルキルハロゲノシラン=1/3〜1/0.01(モ
ル比)となるように反応器中に窒素によって並流的に気
送し、未反応物や副生物を窒素でパージして乾燥する方
法が好ましい。The conditions for the first contact between the silica and the alkylhalogenosilane may be the contact conditions described in West German Patent 1,163,784. For example,
After the silica produced by the flame pyrolysis method of tetrachlorosilane is charged into a reactor, it is heated to 400 to 500 ° C., and the alkylhalogenosilane and water vapor are converted to silica 1k.
0.05 to 1 kg of alkylhalogenosilane per gram,
Nitrogen gas is fed into the reactor in a cocurrent manner so that the supply ratio of the alkylhalogenosilane and water vapor is 1/3 to 1 / 0.01 (molar ratio). It is preferable to purge by-products and by-products with nitrogen and dry.
【0024】このようにして、本発明では疎水性の優れ
たシリカを製造する事ができる。As described above, according to the present invention, silica having excellent hydrophobicity can be produced.
【0025】[0025]
【発明の効果】本発明で得られる疎水性シリカは、表面
のOH基の量が極めて少なく、しかも、HMDSとの接
触によって疎水基が導入されており、極めて疎水性の優
れたシリカである。従って、本発明の製法による疎水性
シリカを使用すれば、ある種の樹脂、たとえば、シリコ
ーン樹脂に混合した場合、濡れ性と分散性がよいために
粘度の上昇が小さく、また、粘度の経時安定性を向上さ
せることができる。粘度上昇が小さいことは、その樹脂
に多量のシリカが充填できるメリットを示唆する。ま
た、本発明で得られた疎水性シリカを各種シーラントや
樹脂に増粘剤として混合した場合、粘度やチキソトロピ
ー性の経時的な安定性を高めることができる。The hydrophobic silica obtained by the present invention has very small amount of OH groups on the surface and has a hydrophobic group introduced by contact with HMDS. Therefore, when the hydrophobic silica according to the production method of the present invention is used, when it is mixed with a certain kind of resin, for example, a silicone resin, the rise in viscosity is small due to good wettability and dispersibility, and the viscosity is stable with time. Performance can be improved. A small increase in viscosity suggests an advantage that the resin can be filled with a large amount of silica. When the hydrophobic silica obtained in the present invention is mixed with various sealants and resins as a thickener, the viscosity and the thixotropic property over time can be enhanced.
【0026】さらに、本発明で得られた疎水性シリカ
は、上記した用途の他にも、各種粉体、例えば、乾式コ
ピー機のトナー、粉状樹脂等、各種粉体の流動化剤とし
ても好適に用いることができる。これは湿度環境下で吸
湿しにくいため、その帯電量の環境変化や流動化性能低
下が少なく、好適に用いることができる。特にトナー樹
脂に用いた場合、高温高湿度環境において、添加したシ
リカの帯電量が低下する事による画像濃度等の画像品質
低下を減少する効果が見込まれる。Further, the hydrophobic silica obtained in the present invention can be used as a fluidizing agent for various powders such as toners for dry copiers and powdery resins in addition to the above-mentioned uses. It can be suitably used. Since it is difficult to absorb moisture in a humid environment, the change of the charge amount in the environment and a decrease in fluidization performance are small, and it can be suitably used. In particular, when used in a toner resin, it is expected that in a high-temperature and high-humidity environment, an effect of reducing a decrease in image quality such as image density due to a decrease in the charge amount of added silica is expected.
【0027】[0027]
【実施例】以下に実施例および比較例を掲げて本発明を
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。なお、以下の実施例および比較例におけ
る各種の物性の測定は以下の方法による。The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, the measurement of various physical properties in the following Examples and Comparative Examples is performed by the following methods.
【0028】(1)表面OH基および平衡吸着水分量 カールフィッシャー法により測定した。即ち、試料を1
20℃12時間乾燥した(この操作により表面の吸着水
分はなくなりOH基のみとなる。)後、この試料につい
て京都電子工業社製カールフィッシャー水分計MKS−
210型でメタノールを溶媒とし水分量を定量した。滴
定試薬には、HYDRANAL COMPOSITE
5Kを用いた。表面OH基数は、上記の方法で測定され
たシリカ表面の水分量から下記式により計算して求め
た。(1) Surface OH Group and Equilibrium Adsorbed Water Content Measured by the Karl Fischer method. That is, 1
After drying at 20 ° C. for 12 hours (moisture adsorbed on the surface is eliminated and only OH groups are removed by this operation), a Karl Fischer moisture meter MKS- manufactured by Kyoto Electronics Industry Co., Ltd. is obtained for this sample.
The amount of water was quantified with Model 210 using methanol as a solvent. HYDRANAL COMPOSITE was used as the titration reagent.
5K was used. The number of surface OH groups was calculated by the following formula from the water content of the silica surface measured by the above method.
【0029】 表面OH基数(個/nm2) = 668.9 × 水分量(wt%) / 比表面積(m2/g) 平衡吸着水分量は、試料を25℃相対湿度80%の雰囲
気中に45日静置した(この操作によって水分が吸着平
衡に達する。)後、上記と同様の装置を用いて測定し
た。The number of surface OH groups (pieces / nm 2 ) = 668.9 × water content (wt%) / specific surface area (m 2 / g) The equilibrium adsorbed water content was determined by placing the sample in an atmosphere at 25 ° C. and 80% relative humidity for 45 days. After allowing to stand (moisture reaches the adsorption equilibrium by this operation), measurement was carried out using the same apparatus as described above.
【0030】(2)炭素分析 シリカの表面修飾基が含有する炭素を1100℃、酸素
雰囲気中にてCO2に熱分解した後、微量炭素分析装置
(堀場社製EMIA−110型)により分析した。(2) Analysis of carbon The carbon contained in the silica surface modifying group was thermally decomposed into CO 2 at 1100 ° C. in an oxygen atmosphere, and then analyzed by a trace carbon analyzer (HORIBA EMIA-110). .
【0031】(3)修飾疎水度 疎水性シリカは水には浮遊するが、メタノールには完全
に懸濁する。このことを利用し、以下の方法によって測
定した修飾疎水度をシリカ表面有機基による疎水化度の
指標とした。(3) Modified Hydrophobicity Hydrophobic silica floats in water, but completely suspends in methanol. Taking advantage of this, the modified hydrophobicity measured by the following method was used as an index of the degree of hydrophobicity due to the organic group on the silica surface.
【0032】疎水性シリカ0.2gを容量250mlの
ビーカー中の50mlの水に添加した。メタノールをビ
ュレットからシリカの全量が懸濁するまで滴下した。こ
の際ビーカー内の溶液をマグネチックスターラーで常時
攪拌した。疎水性シリカの全量が溶液中に懸濁された時
点を終点とし、終点におけるビーカーの液体混合物中の
メタノールの容量百分率を修飾疎水度とした。0.2 g of hydrophobic silica was added to 50 ml of water in a 250 ml beaker. Methanol was added dropwise from the burette until all of the silica was suspended. At this time, the solution in the beaker was constantly stirred with a magnetic stirrer. The end point was when the total amount of hydrophobic silica was suspended in the solution, and the volume percentage of methanol in the liquid mixture of the beaker at the end point was defined as the modified hydrophobicity.
【0033】(4)比表面積 柴田理化学社製比表面積測定装置(SA−1000)を
用いて、窒素吸着BET1点法により測定した。(4) Specific surface area The specific surface area was measured by a nitrogen adsorption BET one-point method using a specific surface area measuring device (SA-1000) manufactured by Shibata Rikagaku Co., Ltd.
【0034】(5)PH測定 疎水性シリカ4gをはかり取り、先ずメタノール50m
lを加え、次いで脱気された純水50mlを加えてスタ
ーラーで10分間攪拌した後、液のPHを測定した。(5) PH measurement 4 g of hydrophobic silica was weighed out, and 50 m
1 and then 50 ml of degassed pure water was added, and the mixture was stirred with a stirrer for 10 minutes, and then the pH of the liquid was measured.
【0035】(6)シリコーンの粘度 180gのジメチルシリコーンオイル(粘度1000c
s)に、シリカ9gを添加し、常温においてディスパー
を用いて3000rpmで2分間分散させた後、25℃
の恒温水槽中に2時間放置した。試料をBL型回転粘度
計を用い60rpmでの粘度を測定した。(6) Viscosity of silicone 180 g of dimethyl silicone oil (viscosity 1000 c
9 g of silica was added to the mixture and dispersed at 3000 rpm for 2 minutes at room temperature using a disper at 25 ° C.
For 2 hours. The viscosity of the sample was measured at 60 rpm using a BL-type rotational viscometer.
【0036】(7)帯電量の測定 ガラス瓶にキャリアー鉄粉TEFV−200/300
(パウダーテック社製)を100g測り取り、シリカ
0.1gを添加する。添加後高温高湿器中35℃相対湿
度85%の条件で、18時間放置し水分を吸着させる。
水分吸着後、瓶を密封した状態でロラーミル100rp
mにて3分間攪拌混合による摩擦帯電を行った。帯電量
の測定には、東芝ケミカル社製TB200型ブローオフ
法帯電量測定装置を用て、ブローガス圧1kg/cm2
G、ブロー時間1分で行った。(7) Measurement of charge amount Carrier iron powder TEFV-200 / 300
100 g (made by Powder Tech) is measured and 0.1 g of silica is added. After the addition, the mixture is allowed to stand in a high-temperature high-humidifier at 35 ° C. and a relative humidity of 85% for 18 hours to adsorb moisture.
After adsorbing water, the bottle is sealed and roller mill 100 rpm.
m for 3 minutes to perform triboelectric charging by stirring and mixing. For the measurement of the charge amount, a blow gas pressure of 1 kg / cm 2 was used using a blow-off method charge amount measurement device TB200 manufactured by Toshiba Chemical Corporation.
G, Blowing time was 1 minute.
【0037】実施例1 テトラクロロシランの火炎熱分解により製造された比表
面積280m2/gのシリカ5Kgを流動層反応器に入
れ、ジメチルジクロロシランを20g/分、水蒸気を1
80g/分で450℃に加熱された流動層反応器中に窒
素によって並流的に40分間気送した。疎水化処理後、
未反応物や副生物は窒素でパージして乾燥した。以上の
操作により比表面積235m2/g、炭素含有量1.6
wt%、表面OH基の0.45個/nm2、修飾疎水度
52%の疎水性シリカが得られた。Example 1 5 kg of silica having a specific surface area of 280 m 2 / g produced by flame pyrolysis of tetrachlorosilane was placed in a fluidized bed reactor, 20 g / min of dimethyldichlorosilane and 1 g of steam were added.
Nitrogen was bubbled co-currently for 40 minutes into the fluidized bed reactor heated to 450 ° C. at 80 g / min. After hydrophobic treatment,
Unreacted materials and by-products were purged with nitrogen and dried. By the above operation, the specific surface area is 235 m 2 / g, and the carbon content is 1.6.
A hydrophobic silica having a wt% of 0.45 OH groups / nm 2 on the surface and a modified hydrophobicity of 52% was obtained.
【0038】この疎水性シリカ65gを内容積3Lのセ
パラブルフラスコ中において攪拌混合し窒素雰囲気に置
換を行った。反応温度190℃において、水蒸気0.1
5g/分、アンモニアガス200ml/分、HMDSを
1.34g/分にて50分供給し疎水化処理を行った。
反応後毎分800mlの窒素を30分間供給して未反応
物のパージと脱アンモニアを行った。結果を表1に示し
た。65 g of this hydrophobic silica was stirred and mixed in a 3 L internal volume separable flask, and the atmosphere was replaced with a nitrogen atmosphere. At a reaction temperature of 190 ° C., steam 0.1
5 g / min, 200 ml / min of ammonia gas and HMDS were supplied at 1.34 g / min for 50 minutes to perform a hydrophobic treatment.
After the reaction, 800 ml of nitrogen per minute was supplied for 30 minutes to purge unreacted substances and to remove ammonia. The results are shown in Table 1.
【0039】実施例2〜7 実施例1において、水蒸気、アンモニアガスおよびHM
DSの供給比を表1のようにしたこと以外は実施例1と
同様の処理を行った。結果を表1に示した。Examples 2 to 7 In Example 1, water vapor, ammonia gas and HM
The same processing as in Example 1 was performed except that the supply ratio of DS was as shown in Table 1. The results are shown in Table 1.
【0040】実施例8 製造直後の比表面積が300m2/gで表面OH基数が
1.4個/nm2の親水性シリカ65gを内容積3Lの
セパラブルフラスコ中において攪拌混合し、窒素雰囲気
に置換を行った。反応温度190℃において、HMDS
を1.34g/分、水蒸気を0.15g/分、アンモニ
アガス200ml/分で50分供給して疎水化処理を行
った。反応後毎分800mlの窒素を30分間供給し未
反応物のパージと脱アンモニアを行った。結果を表1に
示した。Example 8 Immediately after production, 65 g of hydrophilic silica having a specific surface area of 300 m 2 / g and the number of surface OH groups of 1.4 / nm 2 was stirred and mixed in a separable flask having an internal volume of 3 L, and the atmosphere was changed to a nitrogen atmosphere. A substitution was made. At a reaction temperature of 190 ° C., HMDS
Was supplied at 1.34 g / min, steam at 0.15 g / min, and ammonia gas at 200 ml / min for 50 minutes to perform a hydrophobic treatment. After the reaction, 800 ml of nitrogen per minute was supplied for 30 minutes to purge unreacted substances and to remove ammonia. The results are shown in Table 1.
【0041】実施例9 実施例8において、水蒸気、アンモニアガスおよびHM
DSの供給を表1の様にしたこと以外は実施例8と同様
の処理を行った。結果を表1に示した。Example 9 In Example 8, water vapor, ammonia gas and HM
The same processing as in Example 8 was performed except that the supply of DS was as shown in Table 1. The results are shown in Table 1.
【0042】比較例1〜3 実施例1において、水蒸気、アンモニアガスおよびHM
DSの供給を表2の様にしたこと以外は実施例1と同様
の処理を行った。結果を表2に示した。Comparative Examples 1 to 3 In Example 1, water vapor, ammonia gas and HM
The same processing as in Example 1 was performed except that the supply of DS was as shown in Table 2. The results are shown in Table 2.
【0043】比較例4〜5 実施例8において、水蒸気、アンモニアガスおよびHM
DSの供給を表2の様にしたこと以外は実施例8と同様
の処理を行った。結果を表2に示した。Comparative Examples 4 and 5 In Example 8, water vapor, ammonia gas and HM
The same processing as in Example 8 was performed except that the supply of DS was as shown in Table 2. The results are shown in Table 2.
【0044】比較例6〜7 比較例3および比較例5において、予めアンモニアを常
温で0.25%吸着させたシリカを原料にした事以外
は、比較例3および比較例5と同様の処理を行った。結
果を表2に示した。Comparative Examples 6 and 7 The same treatments as in Comparative Examples 3 and 5 were carried out except that silica having 0.25% of ammonia adsorbed in advance at room temperature was used as a raw material. went. The results are shown in Table 2.
【0045】[0045]
【表1】 [Table 1]
【0046】[0046]
【表2】 [Table 2]
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−10524(JP,A) 特開 昭63−39967(JP,A) 特開 昭54−101795(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01B 33/18 C09C 3/12 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-10524 (JP, A) JP-A-63-39967 (JP, A) JP-A-54-101795 (JP, A) (58) Investigation Field (Int.Cl. 6 , DB name) C01B 33/18 C09C 3/12
Claims (1)
1.5個/nm2以下であるシリカを水蒸気および塩基
性ガスの存在下にヘキサメチルジシラザンと接触させる
ことを特徴とする疎水性シリカの製造方法。1. A hydrophobic method characterized in that silica having the number of OH groups on the surface per unit surface area of not more than 1.5 / nm 2 is contacted with hexamethyldisilazane in the presence of water vapor and a basic gas. Method for producing functional silica.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6596795A JP2886105B2 (en) | 1995-03-24 | 1995-03-24 | Method for producing hydrophobic silica |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6596795A JP2886105B2 (en) | 1995-03-24 | 1995-03-24 | Method for producing hydrophobic silica |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08259216A JPH08259216A (en) | 1996-10-08 |
JP2886105B2 true JP2886105B2 (en) | 1999-04-26 |
Family
ID=13302286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6596795A Expired - Lifetime JP2886105B2 (en) | 1995-03-24 | 1995-03-24 | Method for producing hydrophobic silica |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2886105B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4321901B2 (en) * | 1999-03-19 | 2009-08-26 | 株式会社トクヤマ | Method for producing hydrophobic silica |
JP4812919B2 (en) * | 1999-09-24 | 2011-11-09 | 日本板硝子株式会社 | Non-aqueous electrolyte battery separator |
JP4574215B2 (en) * | 2003-04-28 | 2010-11-04 | 株式会社トクヤマ | Method for producing polymer-coated particle powder and polymer-coated inorganic particle |
FR2862236B1 (en) * | 2003-11-13 | 2006-07-28 | Centre Nat Rech Scient | DISSYMETRIC INORGANIC PARTICLES, PROCESS FOR THEIR PREPARATION. |
JP2011097024A (en) * | 2009-09-29 | 2011-05-12 | Jsr Corp | Method of manufacturing optical semiconductor element and composition for forming optical semiconductor element protection layer |
JP6326896B2 (en) * | 2014-03-25 | 2018-05-23 | 富士ゼロックス株式会社 | Sol-gel silica particles, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus and image forming method |
JP6968632B2 (en) * | 2017-09-07 | 2021-11-17 | 扶桑化学工業株式会社 | Hydrophobic silica powder |
-
1995
- 1995-03-24 JP JP6596795A patent/JP2886105B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08259216A (en) | 1996-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2886037B2 (en) | Hydrophobic fine silica and method for producing the same | |
JP4688895B2 (en) | Silica with low silanol group content | |
JP3787593B2 (en) | Silicic acid with uniform silylating agent layer | |
Vejayakumaran et al. | Structural and thermal characterizations of silica nanoparticles grafted with pendant maleimide and epoxide groups | |
US5009874A (en) | Hydrophobic precipitated silica granules | |
JP4359136B2 (en) | Toners, developers and emulsions containing partially hydrophobic silicic acid, additives to control the rheology of the system, and partially hydrophobic silicic acid | |
EP0860478B1 (en) | Surface-modified metal oxide fine particles and process for producing the same | |
EP0251176B1 (en) | Method for modifying the surface of finely divided silica | |
EP1316589B1 (en) | Hydrophobic silica fine powder and its manufacture | |
JP3217759B2 (en) | Silicon dioxide having partially or completely silylated polysilicate chains on its surface and method for producing the same, toner containing the same, silicone composition and silicone elastomer | |
JP5267758B2 (en) | Method for producing hydrophobic silica powder | |
JP2886105B2 (en) | Method for producing hydrophobic silica | |
JP2009292915A (en) | Surface-modified inorganic oxide powder and toner composition for electrophotography | |
JPS606379B2 (en) | Surface modification method of silica powder | |
JP2003171117A (en) | Hydrophobic silica fine powder and method for manufacturing the same | |
JP4321901B2 (en) | Method for producing hydrophobic silica | |
JP5542457B2 (en) | Method for producing surface-treated fumed silica powder | |
KR20070092251A (en) | Metal oxides with permanent positive surface charge over a wide range of pH | |
JP2002256173A (en) | Surface-modified inorganic oxide powder and its use | |
JP4093660B2 (en) | Hydrophobic silica and method for producing the same | |
US7494636B2 (en) | Highly dispersible fine hydrophobic silica powder and process for producing the same | |
JP6068518B2 (en) | Method for surface modification of particulate solid | |
JP2003192831A (en) | Filler for resin and method for producing the same | |
JP4065757B2 (en) | External toner additive | |
CN115413290A (en) | Modified metal oxide particle material and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080212 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100212 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120212 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120212 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140212 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |