[go: up one dir, main page]

JP2883426B2 - Method for growing compound semiconductor crystal - Google Patents

Method for growing compound semiconductor crystal

Info

Publication number
JP2883426B2
JP2883426B2 JP22366790A JP22366790A JP2883426B2 JP 2883426 B2 JP2883426 B2 JP 2883426B2 JP 22366790 A JP22366790 A JP 22366790A JP 22366790 A JP22366790 A JP 22366790A JP 2883426 B2 JP2883426 B2 JP 2883426B2
Authority
JP
Japan
Prior art keywords
crystal
growth
growth rate
compound semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22366790A
Other languages
Japanese (ja)
Other versions
JPH04104995A (en
Inventor
弘喜 浜田
正治 本多
昌幸 庄野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16801766&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2883426(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP22366790A priority Critical patent/JP2883426B2/en
Publication of JPH04104995A publication Critical patent/JPH04104995A/en
Application granted granted Critical
Publication of JP2883426B2 publication Critical patent/JP2883426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、MOCVD法を用いてGaAs基板上にGaInP結晶あ
るいはAlGaInP結晶を成長させる化合物半導体結晶の成
長方法に関する。
The present invention relates to a method for growing a compound semiconductor crystal for growing a GaInP crystal or AlGaInP crystal on a GaAs substrate by using the MOCVD method.

(ロ)従来の技術 AlGaInP系化合物半導体は0.6μm帯の波長を有し、可
視光半導体レーザの材料として用いられている。
(B) Conventional technology AlGaInP-based compound semiconductors have a wavelength in the 0.6 μm band and are used as materials for visible light semiconductor lasers.

斯るAlGaInP化合物半導体の成長には、例えばJournal
of Crystal Growth,68(1984),p.483〜489に開示され
ているようにMOCVD法(有機金属化学気相成長法)が用
いられ、その成長条件は、表1の通りである。
For the growth of such AlGaInP compound semiconductors, for example, Journal
of the Crystal Growth, 68 (1984), pp. 483 to 489, the MOCVD method (metal organic chemical vapor deposition) is used, and the growth conditions are as shown in Table 1.

一方、可視光半導体レーザにおいては、更なる短波長
化が要望されており、本出願人は、特願平1−68784
号、特願平1−83107号で、GaAs(100面)から<011>
方向に5〜7゜オフした面を結晶成長面に用いることに
よって短波長化が図れることを提案した。
On the other hand, in the visible light semiconductor laser, there is a demand for further shortening of the wavelength.
No., Japanese Patent Application No. 1-83107, from GaAs (100 faces) <011>
It has been proposed that the wavelength can be shortened by using a plane 5 to 7 ° off in the direction as a crystal growth plane.

(ハ)発明が解決しようとする課題 しかし乍ら、このようにGaAs基板を5〜7℃オフさせ
ても、この上にGaInPを活性層とする半導体レーザを作
製した場合で、その発振波長は656〜660nm程度であり、
これよりも短い波長を得ることはできなかった。
(C) Problems to be Solved by the Invention However, even if the GaAs substrate is turned off at 5 to 7 ° C., a semiconductor laser using GaInP as an active layer is manufactured thereon. About 656-660nm,
No shorter wavelength could be obtained.

従って、本発明は、更に短波長化が図れる化合物半導
体結晶の成長方法を提供するものである。
Accordingly, the present invention provides a method for growing a compound semiconductor crystal that can further shorten the wavelength.

(ニ)課題を解決するための手段 本発明は、MOCVD法によりGaAs基板上にGaInP結晶ある
いはAlGaInP結晶を成長させる化合物半導体結晶の成長
方法であって、上記課題を解決するため、前記基板とし
て、その結晶成長面の面方位を(100)面から<011>方
向に5〜7゜傾けたものを用いると共に、成長速度を4
〜10μm/hrとすることを特徴とする。
(D) Means for Solving the Problems The present invention is a method for growing a compound semiconductor crystal for growing a GaInP crystal or an AlGaInP crystal on a GaAs substrate by MOCVD. The crystal growth plane whose plane orientation is inclined by 5 to 7 ° from the (100) plane in the <011> direction is used, and the growth rate is 4 °.
1010 μm / hr.

(ホ)作用 本発明方法によれば、GaAs基板上に成長される化合物
半導体結晶のバンドギャップが更に広がる。
(E) Function According to the method of the present invention, the band gap of the compound semiconductor crystal grown on the GaAs substrate is further widened.

(ヘ)実施例 本発明は、AlGaInP系化合物半導体のバンドギャップ
がGaAs基板の面方位に依存するという、本出願人によっ
て初めて見出された現象を基礎として、更にこの面方位
においては成長速度によってもバンドギャップが変化す
ることを見出したことによってなされたものである。
(F) Example The present invention is based on the phenomenon first discovered by the present applicant that the band gap of an AlGaInP-based compound semiconductor depends on the plane orientation of a GaAs substrate, and furthermore, the growth rate in this plane orientation is determined by the growth rate. Was also made by finding that the band gap changed.

第1図に、バンドギャップの成長速度依存性を調べた
実験結果を示す。斯る実験は、GaAs基板の結晶成長面の
面方位を(100)面から<011>方位に5゜及び7゜傾け
た面とし、これらの上にGaInP結晶を、MOCVD法を用いて
成長速度を種々変化させて夫々成長させ、そのPL(フォ
トルミネッセンス)ピークエネルギを調べたものであ
る。斯る成長は、成長温度を650℃、成長圧力を70Tor
r、V/III原料供給比を550とし、更に均一な成長を行う
ため、反応室内で基板を8rpmで回転して行った。また、
各成長速度の設定は原料ガスの供給量を変えることによ
って行った。
FIG. 1 shows the experimental results of examining the growth rate dependence of the band gap. In this experiment, the crystal orientation of the crystal growth surface of the GaAs substrate was set to a plane inclined by 5 ° and 7 ° from the (100) plane to the <011> direction, and a GaInP crystal was grown thereon by MOCVD using MOCVD. Are varied and each is grown, and its PL (photoluminescence) peak energy is examined. In such growth, the growth temperature is 650 ° C. and the growth pressure is 70 Tor.
The substrate was rotated at 8 rpm in the reaction chamber in order to achieve more uniform growth with the r / V / III raw material supply ratio set to 550. Also,
Each growth rate was set by changing the supply amount of the source gas.

第1図より、成長速度が4μm/hr以上でPLピークエネ
ルギが略最大となり、従来の成長速度の1.5μm/hrの場
合に比して十分大きなPLピークエネルギが得られ、特に
5゜傾けた場合で5μm/hr以上、7゜傾けた場合で4μ
m/hr以上のとき、夫々PLピークエネルギはGaInPバルク
のバンドギャップである1.92eVになっていることが分か
る。このようなPLピークエネルギの成長速度依存性は、
(AlxGa1-x)InP結晶(0≦x≦0.5)においても現れ、
各結晶における略最大のPLピークエネルギは、GaInP結
晶と同様、4μm/hr以上で得られた。ここで、図では示
していないが、傾斜角度がどちらの場合でも、成長速度
が10μm/hrを超えると、成長層の表面が凹凸となり良好
な表面状態が得られなかった。従って、成長層の表面状
態を考えて、成長速度は10μm/hr以下とする必要があ
る。
From FIG. 1, it can be seen that the PL peak energy becomes substantially maximum when the growth rate is 4 μm / hr or more, and a sufficiently large PL peak energy is obtained as compared with the conventional case where the growth rate is 1.5 μm / hr. 5μm / hr or more, 4μ when tilted 7 °
At m / hr or more, it can be seen that the PL peak energy is 1.92 eV, which is the band gap of GaInP bulk. The growth rate dependence of such PL peak energy is
It also appears in (Al x Ga 1-x ) InP crystal (0 ≦ x ≦ 0.5),
Substantially the maximum PL peak energy of each crystal was obtained at 4 μm / hr or more as in the case of the GaInP crystal. Here, although not shown in the figure, in either case of the inclination angle, when the growth rate exceeded 10 μm / hr, the surface of the growth layer became uneven, and a favorable surface state could not be obtained. Therefore, the growth rate needs to be 10 μm / hr or less in consideration of the surface state of the growth layer.

また、基板の傾斜角が5゜より小さい場合では、十分
PLピークエネルギが大きくなる成長速度が10μm/hr以上
となり、成長層の表面状態が悪いものしか得られなくな
る。
When the inclination angle of the substrate is smaller than 5 °,
The growth rate at which the PL peak energy increases becomes 10 μm / hr or more, and only the growth layer having a poor surface condition can be obtained.

次に、結晶成長面の面方位を(100)面から<011>方
向に5゜及び7゜傾けた面としたGaAs基板を用いて、こ
の上に成長速度を種々変えて第2図に示す、共振器長30
0μmのAlGaInP系半導体レーザを作製し、各々の連続発
振時の波長を調べた。その結果を第3図に示す。
Next, using a GaAs substrate in which the plane orientation of the crystal growth plane is inclined by 5 ° and 7 ° in the <011> direction from the (100) plane, the growth rate is changed variously on this, as shown in FIG. , Resonator length 30
An AlGaInP-based semiconductor laser having a thickness of 0 μm was fabricated, and the wavelength during continuous oscillation was examined. FIG. 3 shows the results.

第2図の半導体レーザにおいて、(1)はn型GaAsか
らなる基板で、その一主面(1a)を(100)面から<011
>方向に5゜又は7゜傾けた面としている。(2)はn
型Ga0.5In0.5Pからなるバッファ層、(3)はn型(Al
0.6Ga0.40.5In0.5Pからなるn型クラッド層、(4)
はアンドープGa0.5In0.5Pからなる活性層、(5)はp
型(Al0.6Ga0.40.5In0.5Pからなるp型クラッド層、
(6)はp型Ga0.5In0.5Pからなるコンタクト層で、こ
れらの層はMOCVD法を用いて、成長温度650℃、成長圧力
70Torr、V/III供給比550の成長条件で、上記基板(1)
の一主面(1a)上に連続的に成長される。この時の成長
速度は、各層を通じて一定に保たれる。また、p型クラ
ッド層(5)及びコンタクト層(6)には、コンタクト
層(6)表面からp型クラッド層(5)内まで選択的に
エッチング除去して形成された、図面垂直方向に延在す
る、幅5μm程度の頂部(7a)を有するストライプ状の
リッジ(7)が形成される。
In the semiconductor laser shown in FIG. 2, (1) is a substrate made of n-type GaAs, and one main surface (1a) of the substrate is <011 from the (100) plane.
> 5 ° or 7 ° in the direction. (2) is n
Buffer layer composed of Ga 0.5 In 0.5 P, and (3) is an n-type (Al
0.6 Ga 0.4 ) 0.5 In 0.5 P n-type cladding layer, (4)
Is an active layer made of undoped Ga 0.5 In 0.5 P, and (5) is p
Type (Al 0.6 Ga 0.4 ) p-type cladding layer composed of 0.5 In 0.5 P,
(6) is a contact layer made of p-type Ga 0.5 In 0.5 P. These layers are formed by MOCVD at a growth temperature of 650 ° C. and a growth pressure of
Under the growth conditions of 70 Torr and V / III supply ratio of 550, the above substrate (1)
Continuously grown on one main surface (1a) of The growth rate at this time is kept constant throughout each layer. Further, the p-type cladding layer (5) and the contact layer (6) are formed by selectively etching away from the surface of the contact layer (6) to the inside of the p-type cladding layer (5) and extend in the direction perpendicular to the drawing. An existing stripe-shaped ridge (7) having a top (7a) having a width of about 5 μm is formed.

(8)はコンタクト層(6)上を除いてp型クラッド
層(5)上に形成されたn型GaAsからなるブロック層、
(9)はコンタクト層(6)上及びブロック層(8)上
に形成されたp型GaAsからなるキャップ層である。
(8) a block layer made of n-type GaAs formed on the p-type cladding layer (5) except on the contact layer (6);
(9) is a cap layer made of p-type GaAs formed on the contact layer (6) and the block layer (8).

また、各層のキャリア濃度は表2の通りである。 Table 2 shows the carrier concentration of each layer.

(10)はキャップ層(9)上に、Cr膜、Au膜をこの順
に装着したp側電極、(11)は基板(1)の他主面(1
b)上に、Cr膜、Sn膜、Au膜をこの順に被着したn側電
極である。
(10) is a p-side electrode in which a Cr film and an Au film are mounted in this order on a cap layer (9), and (11) is the other main surface (1) of the substrate (1).
b) An n-side electrode on which a Cr film, a Sn film, and an Au film are applied in this order.

而して、第3図の実験結果を見ると、従来の成長速
度、即ち1.5μm/hrのときの発振波長が660nm程度であっ
たのに対し、成長速度が4μm/hr以上で650nm程度の波
長が得られ、短波長化が図れていることが分かる。
Thus, looking at the experimental results in FIG. 3, the oscillation wavelength at the conventional growth rate, that is, about 660 nm at 1.5 μm / hr, was about 650 nm at the growth rate of 4 μm / hr or more. It can be seen that the wavelength can be obtained and the wavelength can be shortened.

また、成長速度4〜10μm/hrで作製した半導体レーザ
の発振しきい値電流と最高発振温度は、いずれも50mA、
80〜90℃と、従来のAlGaInP系半導体レーザの特性と略
同じであった。さらに成長速度4〜10μm/hrで作製した
各々の半導体レーザを、40℃の温度下で3mWの定出力連
続動作試験を行ったところ、1000時間以上安定に動作し
た。
The oscillation threshold current and the maximum oscillation temperature of a semiconductor laser manufactured at a growth rate of 4 to 10 μm / hr were both 50 mA,
The temperature was 80 to 90 ° C., which was almost the same as the characteristics of the conventional AlGaInP semiconductor laser. Further, each semiconductor laser produced at a growth rate of 4 to 10 μm / hr was subjected to a constant output continuous operation test of 3 mW at a temperature of 40 ° C., and it was operated stably for 1000 hours or more.

本発明方法では、基板の傾斜角が5゜〜7゜を用いな
ければならない。これは、基板の傾斜角が5゜より小さ
いと、前述したように成長層の表面状態が悪くなるこ
と、及び基板の傾斜角が7゜を超えると、作製される半
導体レーザの発振しきい値電流が大幅に増加し、実用的
でなくなることによる。
In the method of the present invention, the inclination angle of the substrate must be 5 ° to 7 °. This is because if the tilt angle of the substrate is smaller than 5 °, the surface condition of the growth layer is deteriorated as described above, and if the tilt angle of the substrate exceeds 7 °, the oscillation threshold of the semiconductor laser to be manufactured is increased. This is due to the fact that the current increases significantly and becomes impractical.

以上、本実施例では、第2図に示す半導体レーザの活
性層(4)をGa0.5In0.5Pとしたが、これを(AlxG
a1-x0.5In0.5P(0.05≦x≦0.2)で置き換えても、
成長速度4〜10μm/hrで同様の短波長化が達成できた。
Above, in this embodiment, although the active layer of the semiconductor laser shown in FIG. 2 (4) was Ga 0.5 In 0.5 P, this (Al x G
a 1-x ) 0.5 In 0.5 P (0.05 ≦ x ≦ 0.2)
A similar shortening of the wavelength could be achieved at a growth rate of 4 to 10 μm / hr.

(ト)発明の効果 本発明方法によれば、MOCVD法によりGaAs基板上にGaI
nP結晶あるいはAlGaInP結晶を成長させる際に、前記基
板として、その結晶成長面の面方位を、(100)面から
<011>方向に5〜7゜傾けたものを用いると共に、成
長速度を4〜10μm/hrとすることによって、成長層の表
面状態が良好な状態で成長層のバンドギャップが広が
り、半導体レーザに適用したときに短波長化が図れる。
(G) Effects of the Invention According to the method of the present invention, GaI is deposited on a GaAs substrate by MOCVD.
When growing an nP crystal or an AlGaInP crystal, a crystal whose growth direction is inclined from the (100) plane by 5 to 7 ° in the <011> direction is used as the substrate, and the growth rate is 4 to 4. By setting the thickness to 10 μm / hr, the band gap of the growth layer is widened while the surface state of the growth layer is good, and the wavelength can be shortened when applied to a semiconductor laser.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、バンドギャップの成長速度依存性を示す特性
図、第2図は本実施例に用いたAlGaInP系半導体レーザ
の構造を示す断面図、第3図は発振波長の成長速度依存
性を示す特性図である。
FIG. 1 is a characteristic diagram showing the dependence of the band gap on the growth rate, FIG. 2 is a cross-sectional view showing the structure of the AlGaInP-based semiconductor laser used in this embodiment, and FIG. FIG.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 H01L 21/205 H01S 3/18 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C30B 1/00-35/00 H01L 21/205 H01S 3/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】MOCVD法によりGaAs基板上にGaInP結晶ある
いはAlGaInP結晶を成長させる化合物半導体結晶の成長
方法において、前記基板として、その結晶成長面の面方
位を(100)面から<011>方向に5〜7゜傾けたものを
用いると共に、成長速度を4〜10μm/hrとすることを特
徴とする化合物半導体結晶の成長方法。
1. A compound semiconductor crystal growth method for growing a GaInP crystal or an AlGaInP crystal on a GaAs substrate by MOCVD, wherein said substrate has a crystal growth plane in a <011> direction from a (100) plane. A method for growing a compound semiconductor crystal, characterized in that a crystal tilted at 5 to 7 ° is used and the growth rate is 4 to 10 μm / hr.
JP22366790A 1990-08-23 1990-08-23 Method for growing compound semiconductor crystal Expired - Fee Related JP2883426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22366790A JP2883426B2 (en) 1990-08-23 1990-08-23 Method for growing compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22366790A JP2883426B2 (en) 1990-08-23 1990-08-23 Method for growing compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JPH04104995A JPH04104995A (en) 1992-04-07
JP2883426B2 true JP2883426B2 (en) 1999-04-19

Family

ID=16801766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22366790A Expired - Fee Related JP2883426B2 (en) 1990-08-23 1990-08-23 Method for growing compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2883426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472714B2 (en) * 1999-01-25 2003-12-02 シャープ株式会社 Method for manufacturing semiconductor light emitting device

Also Published As

Publication number Publication date
JPH04104995A (en) 1992-04-07

Similar Documents

Publication Publication Date Title
US6618413B2 (en) Graded semiconductor layers for reducing threshold voltage for a nitride-based laser diode structure
US5889805A (en) Low-threshold high-efficiency laser diodes with aluminum-free active region
JP2555881B2 (en) A (1) Crystal growth method of GaInP type crystal and semiconductor laser
US5016252A (en) Semiconductor laser device
US5263040A (en) Strained quantum well laser diode
US4948753A (en) Method of producing stripe-structure semiconductor laser
US5619519A (en) Semiconductor laser device
JP2870486B2 (en) Semiconductor laser device
JPH08274411A (en) Semiconductor laser device
US5146466A (en) Semiconductor laser device
JP2883426B2 (en) Method for growing compound semiconductor crystal
KR100249629B1 (en) Semiconductor laser
US5887011A (en) Semiconductor laser
JPH01128423A (en) Semiconductor device
JPH07111367A (en) Semiconductor laser device
JP2002064247A (en) Semiconductor laser and method of manufacturing the same
US6275515B1 (en) Semiconductor laser device and method of producing the same
JP2889645B2 (en) Semiconductor laser
JPH0529715A (en) Semiconductor element having distortion quantum well structure
JPH02106082A (en) semiconductor light emitting device
JPH0567839A (en) Semiconductor laser device
JP2933163B2 (en) Visible light emitting element
JP2967719B2 (en) Semiconductor crystal growth method and semiconductor device
JP2821600B2 (en) Semiconductor laser
JPH077863B2 (en) Visible semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees