[go: up one dir, main page]

JP2876235B2 - Method for measuring internal impedance of lead-acid battery - Google Patents

Method for measuring internal impedance of lead-acid battery

Info

Publication number
JP2876235B2
JP2876235B2 JP2023864A JP2386490A JP2876235B2 JP 2876235 B2 JP2876235 B2 JP 2876235B2 JP 2023864 A JP2023864 A JP 2023864A JP 2386490 A JP2386490 A JP 2386490A JP 2876235 B2 JP2876235 B2 JP 2876235B2
Authority
JP
Japan
Prior art keywords
lead
measured
storage battery
lead storage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2023864A
Other languages
Japanese (ja)
Other versions
JPH03229181A (en
Inventor
彰彦 工藤
健介 弘中
浩 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2023864A priority Critical patent/JP2876235B2/en
Publication of JPH03229181A publication Critical patent/JPH03229181A/en
Application granted granted Critical
Publication of JP2876235B2 publication Critical patent/JP2876235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉛蓄電池の内部インピーダンスを測定する
方法に関するものである。
The present invention relates to a method for measuring the internal impedance of a lead storage battery.

[従来の技術] 従来から鉛蓄電池の内部インピーダンスの変化から密
閉形鉛蓄電池の寿命(電解液の減少及び陽極格子体の劣
化)を判定することが行われている。従来から行われて
いる内部インピーダンスの測定方法では、被測定鉛蓄電
池の陽極と陰極との間に交流電流成分を含んだ測定電流
を通電し、所定の測定用電極間の交流電圧成分から内部
インピーダンスを測定している。電解液の減少を測定す
る場合には、測定電流の交流電流成分の周波数を高い周
波数(例えば100Hz以上、通常1KHz)とし、陽極格子体
の劣化を測定する場合には、測定電流の交流電流成分の
周波数を低い周波数(例えば100Hz以下)とする。なお
出願人も、この従来の方法を利用した鉛蓄電池の劣化状
態検知装置を出願している(特願昭63−79586号)。
2. Description of the Related Art Conventionally, the life of a sealed lead-acid battery (decrease in electrolyte and deterioration of an anode grid) has been determined from changes in the internal impedance of the lead-acid battery. In a conventional method of measuring the internal impedance, a measurement current including an AC current component is applied between an anode and a cathode of a lead storage battery to be measured, and the internal impedance is calculated from an AC voltage component between predetermined measurement electrodes. Is measured. When measuring the decrease in the electrolyte, set the frequency of the alternating current component of the measurement current to a high frequency (for example, 100 Hz or more, usually 1 kHz). When measuring the deterioration of the anode grid, the alternating current component of the measurement current is measured. Is set to a low frequency (for example, 100 Hz or less). The applicant has also applied for an apparatus for detecting the deterioration state of a lead storage battery using this conventional method (Japanese Patent Application No. 63-79586).

[発明が解決しようとする課題] 従来の方法で、複数セルが直列接続された比較的高い
電圧の鉛蓄電池の内部インピーダンスを低い周波数で測
定する場合には、電池の電圧に応じて測定電流を通電す
る測定電流通電装置の電源電圧を高くする必要がある。
これは低い周波数の交流電流成分を含む測定電流を被測
定鉛蓄電池に通電する場合には、トランスや結合用コン
デンサを介して通電することが難しいため、測定電流通
電装置と被測定鉛蓄電池とを直流結合とせざるを得ず、
そのために電池電圧よりも測定電流通電装置の電源電圧
を高くする必要があるからである。測定電流通電装置の
電源電圧が高くなると、必然的に消費電力が増大する
上、測定電流通電装置に用いられる通電用スイッチング
素子等の制御素子での発熱量が増大するため、より大形
の放熱器が必要となる。その結果、従来の方法ではイン
ピーダンス測定装置の小形化を図ることが難しいという
問題があった。
[Problems to be Solved by the Invention] In the conventional method, when measuring the internal impedance of a lead-acid battery of a relatively high voltage in which a plurality of cells are connected in series at a low frequency, the measured current is measured according to the voltage of the battery. It is necessary to increase the power supply voltage of the measuring current supply device to be supplied.
This is because it is difficult to supply a measured current including a low-frequency AC current component to a lead storage battery to be measured through a transformer or a coupling capacitor. It has to be DC coupled,
For that reason, it is necessary to make the power supply voltage of the measurement current supply device higher than the battery voltage. When the power supply voltage of the measuring current flow device increases, power consumption inevitably increases, and the amount of heat generated by the control elements such as switching devices used in the measuring current flow device increases. Vessel is required. As a result, there is a problem that it is difficult to reduce the size of the impedance measuring device by the conventional method.

本発明は、被測定鉛蓄電池の陽極と陰極との間に交流
電流成分を含んだ測定電流を通電し、所定の測定用電極
間の交流電圧成分から内部インピーダンスを測定する方
法において、低い周波数の交流電流成分を含む測定電流
を通電して測定を行う場合でも、電源電圧を高くするこ
となく被測定鉛蓄電池の内部インピーダンスを測定でき
る方法を提供することにある。
The present invention provides a method for measuring a internal impedance from an AC voltage component between predetermined measurement electrodes by applying a measurement current including an AC current component between an anode and a cathode of a lead storage battery to be measured. It is an object of the present invention to provide a method capable of measuring the internal impedance of a measured lead-acid battery without increasing the power supply voltage even when the measurement is performed by applying a measurement current including an AC current component.

[課題を解決するための手段] 本発明の方法では、被測定鉛蓄電池に対して該被測定
鉛蓄電池の電圧を相殺する方向に二次電池を直列接続し
た状態で測定電流を通電する。そして直列接続する二次
電池として被測定鉛蓄電池と同じ特性の鉛蓄電池を用い
る。更本発明では、二次電池として接続する鉛蓄電池を
浮動充電する。
[Means for Solving the Problems] In the method of the present invention, a measurement current is supplied to a measured lead storage battery in a state where a secondary battery is connected in series in a direction to offset the voltage of the measured lead storage battery. Then, a lead storage battery having the same characteristics as the lead storage battery to be measured is used as the secondary batteries connected in series. Further, in the present invention, the lead storage battery connected as a secondary battery is floatingly charged.

[作 用] 被測定鉛蓄電池に対して該被測定鉛蓄電池の電圧を相
殺する方向に二次電池を直列接続すれば、被測定鉛蓄電
池の電池電圧を打ち消すことができるため、測定電流通
電装置の電源電圧を小さくすることができる。その結
果、測定電流通電装置での消費電力および発熱量を小さ
くすることができる。従って本発明の方法によれば、測
定電流通電装置として小容量で小形のものを用いること
ができる。また直列接続する二次電池を被測定鉛蓄電池
と同じ特性の鉛蓄電池とすれば、被測定鉛蓄電池の電圧
を等価的に打ち消すことができ、測定電流通電装置の電
源電圧を最小にすることができる。更に、二次電池とし
て接続する鉛蓄電池を浮動充電すれば、この鉛蓄電池を
常に内部インピーダンスの低い満充電状態に保持して被
測定鉛蓄電池の電圧を等価的に打ち消すことができる。
二次電池として接続される鉛蓄電池にも交流電流成分を
含む測定電流が流れるが、この鉛蓄電池では交流電流に
よる充放電電流が流れるだけで殆ど放電はないため、浮
動充電を行う充電器は極めて小容量のものでよい。
[Operation] If a secondary battery is connected in series to the lead storage battery to be measured in such a direction as to cancel the voltage of the lead storage battery, the battery voltage of the lead storage battery to be measured can be canceled out. Power supply voltage can be reduced. As a result, power consumption and calorific value of the measurement current supply device can be reduced. Therefore, according to the method of the present invention, it is possible to use a small-sized and small-sized current-flowing device. If the secondary battery connected in series is a lead storage battery having the same characteristics as the lead storage battery to be measured, the voltage of the lead storage battery to be measured can be equivalently canceled, and the power supply voltage of the measurement current supply device can be minimized. it can. Furthermore, if a lead storage battery connected as a secondary battery is float-charged, this lead storage battery can always be kept in a fully charged state having a low internal impedance, and the voltage of the lead storage battery to be measured can be canceled out equivalently.
A measurement current containing an AC current component also flows through a lead-acid battery connected as a secondary battery.However, in this lead-acid battery, only charging / discharging current due to the AC current flows and there is almost no discharge. A small capacity is acceptable.

[実施例] 以下図面を参照して本発明の実施例を詳細に説明す
る。
Embodiment An embodiment of the present invention will be described below in detail with reference to the drawings.

図面には、本発明の方法を実施するために用いる測定
電流通電側の装置の一例が示してあり、内部インピーダ
ンスを測定する測定装置側の構成については公知である
ため省略してある。図において、1は交流信号発振器、
2は増幅回路、3および4は通電制御用トランジスタ、
5は電源、6は被測定鉛蓄電池(実施例では密閉形鉛蓄
電池)、7は電流検出用抵抗、8は二次電池、9は浮動
充電器である。交流信号発振器1は、所望の周波数の交
流信号を発生するように構成され、交流信号発振器1の
出力電圧Vは増幅回路2の+入力端子に入力される。増
幅回路2の−入力端子には、電流検出用抵抗7の両端電
圧が入力され、増幅回路2は電流検出用抵抗7の抵抗値
Rと交流信号発振器1の出力電圧Vとに基いてV/Rの大
きさの交流電流が、被測定鉛蓄電池6に通電されるよう
に制御用トランジスタ3および4にベース電流を供給す
べく構成されている。なお図においては説明を簡単にす
るために、制御用トランジスタ3および4だけを概略的
に示してあるが、実際には増幅回路3から出力される正
負両極性の信号と電源5からの電圧とに対して制御用ト
ランジスタ3および4を保護するための保護回路が設け
られる。
The drawing shows an example of a device on the measurement current conducting side used for carrying out the method of the present invention, and the configuration of the measuring device for measuring the internal impedance is omitted because it is known. In the figure, 1 is an AC signal oscillator,
2 is an amplifier circuit, 3 and 4 are energization control transistors,
Reference numeral 5 denotes a power supply, 6 denotes a lead storage battery to be measured (in the embodiment, a sealed lead storage battery), 7 denotes a current detection resistor, 8 denotes a secondary battery, and 9 denotes a floating charger. The AC signal oscillator 1 is configured to generate an AC signal having a desired frequency, and an output voltage V of the AC signal oscillator 1 is input to a + input terminal of the amplifier circuit 2. The voltage at both ends of the current detection resistor 7 is input to the − input terminal of the amplifier circuit 2, and the amplifier circuit 2 outputs V / V based on the resistance value R of the current detection resistor 7 and the output voltage V of the AC signal oscillator 1. It is configured to supply a base current to the control transistors 3 and 4 so that an AC current having a magnitude of R is supplied to the lead storage battery 6 to be measured. Although only the control transistors 3 and 4 are schematically shown in the figure for the sake of simplicity, in practice, both the positive and negative polarity signals output from the amplifier circuit 3 and the voltage from the power supply 5 are shown. A protection circuit for protecting control transistors 3 and 4 is provided.

電源5は、NPNトランジスタからなる制御用トランジ
スタ3に順方向の電圧を出力する第1の出力端子5aと、
PNPトランジスからなる制御用トランジスタ4に順方向
の電圧を出力する第2の出力端子5bとを備えている。増
幅回路2から正極性の信号が出力されると、トランジス
タ3が導通して、電源5から導通したトランジスタ3を
通して被測定鉛蓄電池6に一方の極性の電源が通電され
る。増幅回路2から負極性の信号が出力されると、トラ
ンジスタ3は遮断状態となってトランジスタ4が導通
し、電源5から導通したトランジスタ4を通して被測定
鉛蓄電池6に他方の極性の電流(図ではアース端子側か
ら出力端子5bに向かう方向の電流)が通電される。トラ
ンジスタ3及び4は、交流発振器1の出力信号の周波数
に同期してオンオフを繰り返し、被測定鉛蓄電池6に交
流電流が通電される。
The power supply 5 includes a first output terminal 5a that outputs a forward voltage to the control transistor 3 including an NPN transistor;
A second output terminal 5b for outputting a forward voltage to the control transistor 4 comprising a PNP transistor. When a signal having a positive polarity is output from the amplifier circuit 2, the transistor 3 is turned on, and a power supply of one polarity is supplied to the lead storage battery 6 from the power supply 5 through the turned on transistor 3. When a signal having a negative polarity is output from the amplifier circuit 2, the transistor 3 is turned off, the transistor 4 is turned on, and the current of the other polarity is supplied to the lead storage battery 6 to be measured through the transistor 4 turned on from the power supply 5 (in FIG. (A current flowing from the ground terminal to the output terminal 5b). The transistors 3 and 4 are repeatedly turned on and off in synchronization with the frequency of the output signal of the AC oscillator 1, and an AC current is supplied to the lead storage battery 6 to be measured.

二次電池8は、被測定鉛蓄電池6に対して、トランジ
スタ3および4の出力と抵抗7との間から見て、被測定
鉛蓄電池6の電圧を相殺する方向即ち逆極性の方向に直
列接続されている。本実施例では、被測定鉛蓄電池6の
電圧を二次電池8の電圧で等価的に相殺するために、二
次電池8として被測定鉛蓄電池と特性(電圧,容量等)
が同じ鉛蓄電池を用いており、この鉛蓄電池を充電器9
により浮動充電している。このように二次電池8を被測
定鉛蓄電池6に対して逆極性に接続すれば、二次電池8
を挿入しない場合に比べて電源5の電圧を大幅に低くし
て交流電流を通電することができる。したがって装置全
体での消費電力を下げることができる上、トランジスタ
3及び4の耐電圧を下げることができ、しかもトランジ
スタ3及び4での発熱量を小さくすることができる。
The secondary battery 8 is connected in series to the measured lead-acid battery 6 in a direction to cancel the voltage of the measured lead-acid battery 6, that is, in a direction of the opposite polarity when viewed from between the outputs of the transistors 3 and 4 and the resistor 7. Have been. In this embodiment, in order to equivalently cancel the voltage of the lead storage battery 6 to be measured by the voltage of the secondary battery 8, the secondary battery 8 has characteristics (voltage, capacity, etc.) different from those of the lead storage battery to be measured.
Use the same lead-acid battery, and this lead-acid battery is
Floating charging. If the secondary battery 8 is connected in the opposite polarity to the lead storage battery 6 to be measured in this manner, the secondary battery 8
In this case, the voltage of the power supply 5 can be made much lower than in the case where the power supply 5 is not inserted, and an alternating current can be supplied. Therefore, the power consumption of the entire device can be reduced, the withstand voltage of the transistors 3 and 4 can be reduced, and the amount of heat generated by the transistors 3 and 4 can be reduced.

なお被測定鉛蓄電池6の内部インピーダンスの測定
は、一般的には被測定鉛蓄電池6の陽極と負極とを測定
用電極として両電極間の交流電圧成分を検出して求める
が、電池6の内部に電解液と接触するが陽極および陰極
とは接触しないようにして専用の測定用電極を設ける場
合には、陽極と測定用電極との間のインピーダンスを測
定してもよい。
The internal impedance of the lead-acid battery 6 to be measured is generally measured by using the anode and the negative electrode of the lead-acid battery 6 to be measured and detecting an AC voltage component between both electrodes. When a dedicated measurement electrode is provided in such a manner that the electrode contacts the electrolyte but does not contact the anode and the cathode, the impedance between the anode and the measurement electrode may be measured.

二次電池8として用いる鉛蓄電池として被測定鉛蓄電
池と同じ特性のものを用いるのが好ましいが、特性が異
なるものを用いても本発明の効果は得られる。このこと
を確認するために、被測定鉛蓄電池6として12V,50Ahの
陰極吸引式鉛蓄電池即ち密閉形鉛蓄電池を用い、二次電
池8として12V,1.2Ahの密閉形鉛蓄電池を用い、被測定
鉛蓄電池6に0.1Hzで振幅が1AP-Pの測定電流を通電して
試験を行った。このときに電源5の出力端子5aおよび5b
からの出力電圧が±5V以上で、上記測定電流の通電がで
きることが確認された。また比較のために、二次電池8
を取り除いて同じ条件で実験を行ったところ、電源5か
らの出力電圧を最低でも±15V以上にしなければ、上記
と同じ測定電流を通電することはできなかった。従って
この例では、本発明を用いることにより、電源5の出力
電圧を1/3にすることができ、その結果消費電力を約1/3
にできることが確認された。
As the lead storage battery used as the secondary battery 8, it is preferable to use a lead storage battery having the same characteristics as the lead storage battery to be measured. However, the effects of the present invention can be obtained by using a lead storage battery having different characteristics. In order to confirm this, a 12 V, 50 Ah cathode suction type lead storage battery, that is, a sealed lead storage battery was used as the lead storage battery 6 to be measured, and a 12 V, 1.2 Ah sealed lead storage battery was used as the secondary battery 8. amplitude tested by energizing the measured current of 1A PP at 0.1Hz in lead-acid battery 6. At this time, the output terminals 5a and 5b of the power supply 5
It was confirmed that the above measurement current could be supplied when the output voltage from the device was ± 5 V or more. For comparison, the secondary battery 8
When the experiment was performed under the same conditions with removing the above, it was impossible to supply the same measurement current as described above unless the output voltage from the power supply 5 was at least ± 15 V or more. Therefore, in this example, by using the present invention, the output voltage of the power supply 5 can be reduced to 1/3, and as a result, the power consumption can be reduced to about 1/3.
It was confirmed that it could be done.

上記実施例では、最良の結果を得るために二次電池8
を浮動充電しているが、本発明を実施する場合には、必
ず浮動充電を行う必要はなく、内部インピーダンスの低
い電池をそのまま二次電池として用いても本発明の効果
を得ることができる。
In the above embodiment, in order to obtain the best result,
However, when implementing the present invention, it is not always necessary to perform the floating charge, and the effect of the present invention can be obtained even if a battery having a low internal impedance is used as it is as a secondary battery.

また本発明の方法は、図面に示された測定電流通電装
置以外の構成の通電装置を用いても実施できるのは勿論
である。
Further, the method of the present invention can of course be carried out using an energizing device having a configuration other than the measuring current energizing device shown in the drawings.

なお本実施例の装置を用いて高い周波数の交流電流を
通電する場合でも、二次電池8を通電回路から除去する
必要はない。
It is not necessary to remove the secondary battery 8 from the energizing circuit even when a high-frequency alternating current is applied by using the apparatus of the present embodiment.

[発明の効果] 本発明によれば、被測定鉛蓄電池に対して該被測定鉛
蓄電池の電圧を相殺する方向に二次電池を直列接続して
測定電流を通電するため、被測定鉛蓄電池の電池電圧を
打ち消すことができ、その結果測定電流通電装置の電源
電圧を小さくすることができ、測定電流通電装置での消
費電力および発熱量を小さくすることができる。従って
本発明の方法によれば、測定電流通電装置として小容量
で小形のものを用いることができる。
[Effects of the Invention] According to the present invention, a secondary battery is connected in series to a measured lead storage battery in a direction to offset the voltage of the measured lead storage battery, and a measurement current is applied. The battery voltage can be canceled, and as a result, the power supply voltage of the measurement current supply device can be reduced, and the power consumption and heat generation of the measurement current supply device can be reduced. Therefore, according to the method of the present invention, it is possible to use a small-sized and small-sized current-flowing device.

特に本発明のように直列接続する二次電池を被測定鉛
蓄電池と同じ特性の鉛蓄電池とすれば、被測定鉛蓄電池
の電圧を等価的に打ち消すことができ、測定電流通電装
置の電源電圧を最小にすることができる利点がある。そ
して二次電池として接続する鉛蓄電池を浮動充電すれ
ば、この鉛蓄電池を常に内部インピーダンスの低い満充
電状態に保持して被測定鉛蓄電池の電圧を等価的に打ち
消すことができる利点がある。
In particular, if the secondary battery connected in series is a lead storage battery having the same characteristics as the lead storage battery to be measured as in the present invention, the voltage of the lead storage battery to be measured can be equivalently canceled, and the power supply voltage of the measurement current supply device can be reduced There are advantages that can be minimized. If a lead storage battery connected as a secondary battery is float-charged, there is an advantage that the lead storage battery can always be kept in a fully charged state with a low internal impedance and the voltage of the lead storage battery to be measured can be equivalently canceled.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明の方法を実施するために用いる測定電流通
電側の装置の一例の概略構成を示す回路図である。 1……交流信号発振器、2……増幅回路、3,4……通電
制御用トランジスタ、5……電源、6……被測定鉛蓄電
池、7……電流検出用抵抗、8……二次電池、9……浮
動充電器。
The drawing is a circuit diagram showing a schematic configuration of an example of a device on the measurement current supply side used for carrying out the method of the present invention. DESCRIPTION OF SYMBOLS 1 ... AC signal oscillator, 2 ... Amplification circuit, 3,4 ... Transmission control transistor, 5 ... Power supply, 6 ... Lead storage battery to be measured, 7 ... Resistance for current detection, 8 ... Secondary battery , 9 ... Floating charger.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01R 31/36 H01M 10/42 - 10/48 301 G01R 27/00 - 27/31 H02J 7/00 - 7/12 H02J 7/34 - 7/36 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01R 31/36 H01M 10/42-10/48 301 G01R 27/00-27/31 H02J 7/00-7/12 H02J 7/34-7/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定鉛蓄電池の陽極と陰極との間に交流
電流成分を含む測定電流を測定電流通電装置から通電
し、所定の測定用電極間の交流電圧成分から内部インピ
ーダンスを測定する方法において、 前記被測定鉛蓄電池に対して該被測定鉛蓄電池の電圧を
相殺する方向に二次電池を直列接続した状態で前記測定
電流を通電し、 前記二次電池として前記被測定鉛蓄電池と同じ特性の鉛
蓄電池を用い、 前記二次電池として用いられる前記鉛蓄電池を浮動充電
することを特徴とする鉛蓄電池の内部インピーダンス測
定方法。
1. A method for applying a measurement current containing an AC current component between an anode and a cathode of a lead storage battery to be measured from a measurement current supply device and measuring an internal impedance from an AC voltage component between predetermined measurement electrodes. In the above-mentioned lead-acid battery to be measured, the measurement current is passed in a state where a secondary battery is connected in series in a direction to offset the voltage of the lead-acid battery to be measured, and the same as the lead-acid battery to be measured as the secondary battery A method for measuring the internal impedance of a lead-acid battery, wherein the lead-acid battery used as the secondary battery is float-charged using a lead-acid battery having characteristics.
JP2023864A 1990-02-02 1990-02-02 Method for measuring internal impedance of lead-acid battery Expired - Fee Related JP2876235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023864A JP2876235B2 (en) 1990-02-02 1990-02-02 Method for measuring internal impedance of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023864A JP2876235B2 (en) 1990-02-02 1990-02-02 Method for measuring internal impedance of lead-acid battery

Publications (2)

Publication Number Publication Date
JPH03229181A JPH03229181A (en) 1991-10-11
JP2876235B2 true JP2876235B2 (en) 1999-03-31

Family

ID=12122309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023864A Expired - Fee Related JP2876235B2 (en) 1990-02-02 1990-02-02 Method for measuring internal impedance of lead-acid battery

Country Status (1)

Country Link
JP (1) JP2876235B2 (en)

Also Published As

Publication number Publication date
JPH03229181A (en) 1991-10-11

Similar Documents

Publication Publication Date Title
US4307330A (en) Method and device for monitoring the state of charge of a storage battery
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
US6480003B1 (en) Method for detecting deterioration of electrochemical device, method for measuring remaining capacity, charger comprising them, and discharge controller
JP4627588B2 (en) Battery pack and its inspection device
JP3229696B2 (en) How to charge the battery
US3816807A (en) Impedance controlled battery charger and method of charging with monitoring of a.c. answer signal
JP3539123B2 (en) Method and apparatus for determining deterioration of secondary battery
JP2876235B2 (en) Method for measuring internal impedance of lead-acid battery
JPH07105986A (en) Battery pack
JP3796918B2 (en) Battery device
JP2012209246A (en) Apparatus for preventing deterioration of power storage capacity of secondary battery, regenerating power storage capacity, and measuring power storage amount
JP3010563B2 (en) Apparatus for optimizing the discharge of at least two electrochemical cells
JPH0821434B2 (en) Method for detecting deterioration of sealed lead-acid battery
US4360779A (en) Measuring device for electrical cells
US3431481A (en) Coulometer
JP2658502B2 (en) Lead-acid battery internal impedance measurement device
JP3203533B2 (en) Battery pack charging device
JP2977183B2 (en) Deterioration judgment method of secondary battery
JPH05109436A (en) Method of detecting liquid leaking from battery
JP3268513B2 (en) Battery pack charger
JPH04281334A (en) Quick charger
JPH06189461A (en) Battery device
JP2001525651A (en) Rechargeable current source
JP3219498B2 (en) Rechargeable battery charging circuit
JP2000200625A (en) Device for evaluating capacity of electrode active material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees