[go: up one dir, main page]

JP2873239B2 - Quadrupole mass spectrometer - Google Patents

Quadrupole mass spectrometer

Info

Publication number
JP2873239B2
JP2873239B2 JP1207387A JP20738789A JP2873239B2 JP 2873239 B2 JP2873239 B2 JP 2873239B2 JP 1207387 A JP1207387 A JP 1207387A JP 20738789 A JP20738789 A JP 20738789A JP 2873239 B2 JP2873239 B2 JP 2873239B2
Authority
JP
Japan
Prior art keywords
frequency
voltage
tuning
mass spectrometer
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1207387A
Other languages
Japanese (ja)
Other versions
JPH0371546A (en
Inventor
成治 廣木
哲也 阿部
義夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GENSHIRYOKU KENKYUSHO
Original Assignee
NIPPON GENSHIRYOKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GENSHIRYOKU KENKYUSHO filed Critical NIPPON GENSHIRYOKU KENKYUSHO
Priority to JP1207387A priority Critical patent/JP2873239B2/en
Publication of JPH0371546A publication Critical patent/JPH0371546A/en
Application granted granted Critical
Publication of JP2873239B2 publication Critical patent/JP2873239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、真空容器内の残留ガス成分の測定に用いる
四重極質量分析計に関する。
Description: TECHNICAL FIELD The present invention relates to a quadrupole mass spectrometer used for measuring a residual gas component in a vacuum vessel.

[従来の技術] 第7図は、従来の四重極質量分析計を用いて残留ガス
成分を測定する一測定系を示す。同図において、四重極
質量分析計は、測定部2、RF(高周波)ユニット部4及
び制御電源6から成る。測定部2はイオン源8、四重極
棒10及びイオン検出器12から成り、容器に収められてい
る。RFユニット部4は、高周波同調回路14及び高周波増
幅器16から成る。高周波同調回路14はコイル18と可変コ
ンデンサ20からなる並列共振回路である。制御電源6に
は、固定周波数の高周波電圧を発生する高周波発振器
(図示せず)が設けられている。該高周波発振器により
発生された高周波電圧はRFユニット部4の高周波増幅器
16により増幅され高周波同調回路14を介して測定部2の
四重極棒10に印加される。なお、四重極棒10には、印加
された高周波電圧に対して一定の振幅比を持つ直流電圧
が制御電源6によりつくられ、該高周波電圧に重ね合わ
されて印加される。測定部2は真空容器22に接続され、
該真空容器22は真空ポンプ24に接続されている。真空ポ
ンプ24により真空容器22内の気体が排気され、それと共
に測定部2内の気体も排気される。その後に、測定すべ
き気体が真空容器22を介して測定部2に導入され、該測
定すべき気体がイオン源8でイオン化される。該イオン
は直流電圧と高周波電圧が重量されている四重極棒10を
所定の条件下で通過しイオン検出器12に入り、この検出
結果からガス成分が測定される。
[Prior Art] FIG. 7 shows one measurement system for measuring residual gas components using a conventional quadrupole mass spectrometer. In FIG. 1, the quadrupole mass spectrometer includes a measurement unit 2, an RF (high frequency) unit unit 4, and a control power supply 6. The measuring unit 2 includes an ion source 8, a quadrupole rod 10, and an ion detector 12, and is housed in a container. The RF unit 4 includes a high-frequency tuning circuit 14 and a high-frequency amplifier 16. The high-frequency tuning circuit 14 is a parallel resonance circuit including a coil 18 and a variable capacitor 20. The control power supply 6 is provided with a high-frequency oscillator (not shown) that generates a high-frequency voltage having a fixed frequency. The high-frequency voltage generated by the high-frequency oscillator is supplied to a high-frequency amplifier of the RF unit 4.
The signal is amplified by 16 and applied to the quadrupole rod 10 of the measuring section 2 via the high-frequency tuning circuit 14. A DC voltage having a constant amplitude ratio with respect to the applied high-frequency voltage is generated by the control power supply 6 and applied to the quadrupole rod 10 while being superimposed on the high-frequency voltage. The measuring unit 2 is connected to the vacuum vessel 22,
The vacuum vessel 22 is connected to a vacuum pump 24. The gas in the vacuum chamber 22 is evacuated by the vacuum pump 24, and the gas in the measuring section 2 is also evacuated. Thereafter, the gas to be measured is introduced into the measuring section 2 via the vacuum vessel 22, and the gas to be measured is ionized by the ion source 8. The ions pass under a predetermined condition through a quadrupole rod 10 weighed with a DC voltage and a high-frequency voltage, and enter an ion detector 12, from which the gas component is measured.

上記した従来の四重極質量分析計では、高周波同調回
路14は、固定周波数の高周波電圧が四重極棒10に反射等
しないで適切に印加されるように、四重極棒10の静電容
量の影響を打ち消すために設けられている。従って、四
重極棒10と高周波同調回路14間の距離は、長くなるほど
同調が取りにくくなるため、通常数10cm以内と短い。
In the above-described conventional quadrupole mass spectrometer, the high-frequency tuning circuit 14 controls the electrostatic force of the quadrupole rod 10 so that the fixed-frequency high-frequency voltage is appropriately applied to the quadrupole rod 10 without being reflected. It is provided to cancel the effect of capacity. Accordingly, the longer the distance between the quadrupole bar 10 and the high-frequency tuning circuit 14 becomes, the more difficult it is to tune, so that the distance is usually shorter than several tens cm.

また、高周波増幅器16も高周波同調回路14から離す
と、高周波電圧を送るための両者を接続する絶縁被覆電
線が長くなる。そのため絶縁被覆電線の静電容量が増
え、温度変化等により該静電容量の変化分も大きくな
り、高周波増幅器16と四重極棒10間全体の同調もずれや
すくなる。従って、高周波増幅器16も高周波同調回路14
に近接して配置され、従来の四重極質量分析計では、第
1図に示すように高周波増幅器16と高周波同調回路14は
RFユニット部4に収容され、且つ測定部2に近接して配
置されている。
Further, when the high-frequency amplifier 16 is separated from the high-frequency tuning circuit 14, the insulated wire connecting both for transmitting the high-frequency voltage becomes longer. For this reason, the capacitance of the insulated wire increases, and the amount of change in the capacitance increases due to a change in temperature or the like, and the entire tuning between the high-frequency amplifier 16 and the quadrupole rod 10 is likely to shift. Therefore, the high frequency amplifier 16 is also connected to the high frequency tuning circuit 14.
In the conventional quadrupole mass spectrometer, the high-frequency amplifier 16 and the high-frequency tuning circuit 14 are arranged as shown in FIG.
It is housed in the RF unit 4 and is arranged close to the measuring unit 2.

このように構成されているので、測定部2における測
定が高温雰囲気内で行う必要がある場合には、空冷ファ
ン26によりRFユニット部4を冷却して、RFユニット部4
が室温から40℃の温度範囲になるようにして測定が行な
われていた。
With this configuration, when the measurement in the measuring section 2 needs to be performed in a high-temperature atmosphere, the RF unit section 4 is cooled by the air-cooling fan 26 and the RF unit section 4 is cooled.
Was measured in a temperature range from room temperature to 40 ° C.

[発明が解決しようとする課題] 上記したように、従来の四重極質量分析計において
は、四重極棒10と高周波同調回路14間の距離が通常数10
cm以内と短いため、高周波同調回路14にとっては、最適
な設置場所を選択する余裕がなく、一般的には測定環境
状態と同様の苛酷な環境条件となる。従って、温度等の
変化で高周波同調回路14を構成するコイル18のインダク
タンスやコンデンサ20の静電容量がその都度変化してし
まうので最適な同調状態から逸脱しやすく、そのため同
調回路のコンデンサとして可変コンデンサ20を用いて、
たびたび同調を取り直す必要があった。
[Problems to be Solved by the Invention] As described above, in the conventional quadrupole mass spectrometer, the distance between the quadrupole rod 10 and the high-frequency tuning circuit 14 is usually several tens.
Since it is shorter than cm, the high-frequency tuning circuit 14 cannot afford to select an optimal installation place, and generally has severe environmental conditions similar to the measurement environmental conditions. Therefore, since the inductance of the coil 18 and the capacitance of the capacitor 20 constituting the high-frequency tuning circuit 14 change each time due to a change in temperature or the like, it is easy to deviate from the optimum tuning state. Using 20,
I often had to re-tune.

このように、従来の四重極質量分析計は、人が容易に
近付くことができない高放射線場や、高温雰囲気または
低温雰囲気や、真空容器内等に測定部2だけでなく高周
波同調回路14も設置して測定しなければならない場合に
は、ひとたび同調がずれてしまうと、充分な振幅の高周
波電圧が四重極棒10に加わらないため、高質量数側のイ
オン分析ができなくなったり、高周波電圧の反射波が増
えて高周波増幅器16の増幅素子が破壊されたり、更には
分解能が低下したりしてしまうという深刻な問題があっ
た。
As described above, the conventional quadrupole mass spectrometer includes not only the measuring unit 2 but also the high-frequency tuning circuit 14 in a high radiation field, a high-temperature atmosphere or a low-temperature atmosphere, which cannot be easily accessed by humans, or in a vacuum vessel. If it must be installed and measured, once the tuning is deviated, a high-frequency voltage of sufficient amplitude will not be applied to the quadrupole rod 10, making it impossible to perform ion analysis on the high mass number side, There is a serious problem that the reflected wave of the voltage is increased and the amplifying element of the high-frequency amplifier 16 is destroyed, and further the resolution is reduced.

また、高周波同調回路14を上記のような苛酷な環境条
件下に設置しなければならない場合には、該高周波同調
回路14に近接して配置される高周波増幅器16もまた同様
の苛酷な環境条件下に置かれので、該高周波増幅器16は
出力低下をきたしたり、あるいは高温の場合には増幅素
子の破壊等が生じやすくなる。従って、RFユニット部4
が測定部2に近接して配置しなければならない従来の四
重極質量分析計では、その点からも測定環境条件が限定
されるという問題もあった。
Further, when the high-frequency tuning circuit 14 must be installed under the severe environmental conditions as described above, the high-frequency amplifier 16 arranged close to the high-frequency tuning circuit 14 also has the same severe environmental conditions. Therefore, the output of the high-frequency amplifier 16 is lowered, or when the temperature is high, the amplifying element is easily broken. Therefore, the RF unit 4
However, in the conventional quadrupole mass spectrometer, which must be disposed close to the measurement unit 2, there is also a problem that the measurement environment conditions are limited from that point.

本発明は以上述べた従来技術の問題点に鑑み、高周波
同調回路内の調整が物理的に困難な場所に設置された場
合でも、回路内の素子は調整しないで自動的に最適な同
調状態を維持でき、広範囲の測定環境条件で測定できる
四重極質量分析計を提供することを目的にするものであ
る。
In view of the problems of the prior art described above, the present invention automatically adjusts the optimum tuning state without adjusting the elements in the high-frequency tuning circuit without adjusting the elements in the circuit even when the circuit is installed in a physically difficult place. It is an object of the present invention to provide a quadrupole mass spectrometer that can be maintained and can be measured under a wide range of measurement environment conditions.

[課題を解決するための手段] 上記目的を達成するために、本発明の四重極質量分析
計は、四重極棒と、該四重極棒に接続されその静電容量
と組み合わさる高周波同調手段と、測定される気体が導
入される真空容器とを備える。
[Means for Solving the Problems] In order to achieve the above object, a quadrupole mass spectrometer of the present invention comprises a quadrupole rod, a high frequency connected to the quadrupole rod and combined with its capacitance. It comprises a tuning means and a vacuum vessel into which the gas to be measured is introduced.

そして、前記四重極棒と前記高周波同調手段とが前記
真空容器の中に設置されている。
And the quadrupole and the high frequency tuning means are installed in the vacuum vessel.

また、本発明の四重極質量分析計には、前記高周波同
調手段を介して前記四重極棒に印加される周波数可変の
高周波電圧を発生する可変高周波電圧発生手段と、前記
高周波同調手段の同調周波数と前記可変高周波電圧発生
手段により発生された高周波電圧の周波数との周波数ず
れを検出する周波数ずれ検出手段とが設けられている。
Further, the quadrupole mass spectrometer of the present invention includes a variable high-frequency voltage generating means for generating a variable frequency high-frequency voltage applied to the quadrupole rod through the high-frequency tuning means, Frequency deviation detecting means for detecting a frequency deviation between a tuning frequency and a frequency of the high frequency voltage generated by the variable high frequency voltage generating means is provided.

該可変高周波電圧発生手段は、前記周波数ずれ検出手
段からの周波数ずれを表す検出信号に応答して、該発生
された高周波電圧の可変周波数を前記高周波同調手段の
同調周波数に自動設定するようにする。
The variable high-frequency voltage generating means automatically sets a variable frequency of the generated high-frequency voltage to a tuning frequency of the high-frequency tuning means in response to a detection signal indicating a frequency deviation from the frequency deviation detecting means. .

[作用] 上記のように構成された本発明の四重極質量分析計
は、高周波同調手段の設置環境、例えば温度等が極端に
変化しても、高周波同調手段を一切調整しないで、変化
した同調周波数を周波数ずれ検出手段により検出し、該
検出信号に基づいて前記可変高周波電圧発生手段により
発生した高周波電圧の周波数を自動的に変化させ、該変
化した同調周波数に自動追尾して一致するようにする。
[Operation] In the quadrupole mass spectrometer of the present invention configured as described above, even if the installation environment of the high-frequency tuning means, for example, the temperature or the like extremely changes, the high-frequency tuning means is changed without any adjustment. The tuning frequency is detected by the frequency deviation detecting means, and the frequency of the high-frequency voltage generated by the variable high-frequency voltage generating means is automatically changed based on the detected signal so that the tuning frequency is automatically tracked and matched. To

[実施例] 本発明による一実施例を以下に説明する。第1図は、
高周波同調回路が真空容器内に設置された場合の本発明
の一実施例を示し、同図中、第7図と同一符号は同一部
分を示し、説明は省略する。第1図において、真空容器
内22に設置される四重極質量分析計の構成は、イオン源
8、四重極棒10、イオン検出器12、高周波同調回路収容
容器30、高周波同調回路32、電流導入端子34、電流導入
端子増付真空フランジ36及び38、絶縁被覆電線40、42,4
4,46,48及び50である。なお、真空容器22には真空ポン
プ24が接続されている。
Example An example according to the present invention will be described below. Figure 1
One embodiment of the present invention when a high-frequency tuning circuit is installed in a vacuum vessel is shown. In FIG. 7, the same reference numerals as those in FIG. 7 denote the same parts, and a description thereof will be omitted. In FIG. 1, the configuration of the quadrupole mass spectrometer installed in the vacuum vessel 22 includes an ion source 8, a quadrupole rod 10, an ion detector 12, a high-frequency tuning circuit housing container 30, a high-frequency tuning circuit 32, Current introduction terminal 34, current introduction terminal additional vacuum flanges 36 and 38, insulated wire 40, 42, 4
4, 46, 48 and 50. Note that a vacuum pump 24 is connected to the vacuum container 22.

高周波同調回路32と四重極棒10とを接続する電線40を
長くすると静電容量が増えて同調が取りにくくなるた
め、電線40は最短距離で配線されている。電線44、46、
48及び50の長さには特に制限はない。電線42の長さにつ
いては後述する。
When the electric wire 40 connecting the high-frequency tuning circuit 32 and the quadrupole rod 10 is lengthened, the capacitance is increased and it is difficult to tune the electric wire 40. Therefore, the electric wire 40 is routed with the shortest distance. Electric wires 44, 46,
There is no particular limitation on the length of 48 and 50. The length of the electric wire 42 will be described later.

なお、これらの部品は、真空中で耐熱性の有するもの
を使用する。
Note that these parts have heat resistance in a vacuum.

真空容器22外に設置される四重極質量分析計の構成
は、イオン源制御電源52、イオン検出器制御電源54、直
流増幅回路56、可変高周波発生回路58、鋸歯状波発生回
路60、振幅変調器62及び高周波増幅器16である。
The configuration of the quadrupole mass spectrometer installed outside the vacuum vessel 22 includes an ion source control power supply 52, an ion detector control power supply 54, a DC amplification circuit 56, a variable high frequency generation circuit 58, a sawtooth wave generation circuit 60, an amplitude A modulator 62 and a high-frequency amplifier 16;

イオン源制御電源52は電線50を介してイオン源8を駆
動し、イオン検出制御電源54は電線48を介してイオン検
出器12を駆動する。可変高周波発生回路58で発生された
高周波電圧は振幅変調器62において鋸歯状波発生回路60
で発生された波形により振幅変調され、該振幅変調され
た高周波電圧は高周波増幅器16で増幅され電線42を介し
て高周波同調回路32に与えられる。高周波同調回路32に
与えられた高周波電圧は電線40を介して四重極棒10に印
加される。また、高周波同調回路32においては、それに
かかる高周波電圧の大きさが後述するように全波整流電
圧として検出され、該検出された全波整流電圧は電線46
を介して可変高周波発生回路58に与えられる。可変高周
波発生回路58で全波整流電圧は平滑化され、該平滑化さ
れた全波整流電圧に基づき可変高周波発生回路58で発生
される高周波電圧の周波数は高周波同調回路32の同調周
波数に一致するように自動設定される。従って、自動設
定後の四重極棒10には高周波同調回路32の同調周波数と
一致した高周波電圧が印加される。また、該検出された
全波整流電圧は直流増幅回路56にも与えられ、該直流増
幅回路56に設けられた平滑回路(図示せず)により平滑
化され、該平滑化された全波整流電圧に基づき直流増幅
回路56は四重極棒10に与えられる高周波電圧に対して一
定の振幅比を持つ直流電圧を発生し、該直流電圧を電線
44、高周波同調回路32及び電線40を介して四重極棒10に
印加する。
The ion source control power supply 52 drives the ion source 8 via the electric wire 50, and the ion detection control power supply 54 drives the ion detector 12 via the electric wire 48. The high-frequency voltage generated by the variable high-frequency generation circuit 58 is converted into a sawtooth wave generation circuit 60 by the amplitude modulator 62.
The amplitude-modulated high-frequency voltage is amplified by the high-frequency amplifier 16 and supplied to the high-frequency tuning circuit 32 via the electric wire 42. The high-frequency voltage applied to the high-frequency tuning circuit 32 is applied to the quadrupole rod 10 via the electric wire 40. Further, in the high-frequency tuning circuit 32, the magnitude of the high-frequency voltage applied thereto is detected as a full-wave rectified voltage as described later, and the detected full-wave rectified voltage is supplied to the electric wire 46.
Is supplied to the variable high-frequency generation circuit 58. The full-wave rectified voltage is smoothed by the variable high-frequency generating circuit 58, and the frequency of the high-frequency voltage generated by the variable high-frequency generating circuit 58 based on the smoothed full-wave rectified voltage matches the tuning frequency of the high-frequency tuning circuit 32. Is set automatically. Therefore, a high-frequency voltage that matches the tuning frequency of the high-frequency tuning circuit 32 is applied to the quadrupole rod 10 after the automatic setting. Further, the detected full-wave rectified voltage is also supplied to a DC amplifier circuit 56, and is smoothed by a smoothing circuit (not shown) provided in the DC amplifier circuit 56. The DC amplification circuit 56 generates a DC voltage having a constant amplitude ratio with respect to the high-frequency voltage applied to the quadrupole rod 10 based on
44, the voltage is applied to the quadrupole rod 10 via the high-frequency tuning circuit 32 and the electric wire 40.

鋸歯状波発生回路60は、第2図に示すような出力波形
を発生する。鋸歯状波発生回路60は、同図に示すイオン
の質量数を測定する測定期間64(可変高周波発生回路58
は高周波同調回路32の同調周波数に一致した高周波電圧
を発生)は一定の勾配で増大する電圧を発生し、次に可
変高周波発生回路58が周波数を可変にして高周波電圧を
発生する可変周波数発生期間66では測定期間64の終わり
における電圧に等しい大きさの電圧パルスを所定数一定
間隔で発生する。鋸歯状波発生回路60は測定期間64と可
変周波数発生期間66とを交互に繰り返す。第2図に示さ
れるような波形の電圧が、鋸歯状波発生回路60から振幅
変調器62に与えられ、該波形の電圧により可変高周波発
生回路58の高周波電圧が振幅変調されるので、振幅変調
器62の出力には、高周波電圧の振幅の包絡が第2図に示
す波形と同じ形をした高周波電圧が与えられる。従っ
て、測定期間64においては、四重極棒10には振幅が一定
の勾配で増大する高周波電圧が印加されるので、イオン
の質量数の小さいものから大きいものへ順に測定が可能
となる。なお、第2図に示す波形の電圧は振幅変調器62
の振幅変調のためのベース信号にあたり、鋸歯状波発生
回路60はベース信号発生回路でもある。
The sawtooth wave generating circuit 60 generates an output waveform as shown in FIG. The saw-tooth wave generation circuit 60 performs a measurement period 64 (variable high-frequency generation circuit 58) for measuring the mass number of ions shown in FIG.
Generates a high-frequency voltage that matches the tuning frequency of the high-frequency tuning circuit 32) generates a voltage that increases with a constant gradient, and then the variable high-frequency generating circuit 58 changes the frequency to generate a high-frequency voltage. At 66, a predetermined number of voltage pulses having a magnitude equal to the voltage at the end of the measurement period 64 are generated. The sawtooth wave generation circuit 60 alternately repeats the measurement period 64 and the variable frequency generation period 66. A voltage having a waveform as shown in FIG. 2 is applied from the sawtooth wave generating circuit 60 to the amplitude modulator 62, and the high frequency voltage of the variable high frequency generating circuit 58 is amplitude-modulated by the voltage of the waveform. A high-frequency voltage having an envelope of the high-frequency voltage having the same shape as the waveform shown in FIG. Accordingly, in the measurement period 64, a high-frequency voltage whose amplitude increases with a constant gradient is applied to the quadrupole bar 10, so that the measurement can be performed in ascending order of ion mass number. The voltage having the waveform shown in FIG.
The sawtooth wave generating circuit 60 is also a base signal generating circuit.

第3図は、第2図の高周波同調回路32の回路構成図で
ある。同図において、高周波トランス68の1次側のコイ
ルに電線42を介して高周波増幅器16から高周波電圧が印
加される。直流増幅回路56からの直流電圧を電線44、高
周波同調回路32及び電線40を介して四重極棒10に高周波
電圧と共に重畳させるため、高周波トランス68の2次側
は2つのコイルから成る。該2つのコイルの夫々の一端
には電線44を介して直流電圧が印加される。該2つのコ
イルの夫々の一端と接地との間に各コンデンサ70が高周
波カット用コンデンサとして挿入される。1次側コイル
に印加される高周波電圧の極性が図に示す矢印の向きで
あるとき、2つのコイルに誘起される電圧の向きが図に
示す矢印の向きになるように2つのコイルはコアに巻か
れる。2つのコイルの夫々の他端は電流導入端子34を介
して電線40に接続され、高周波電圧及び直流電圧を四重
極棒10に印加する出力側を形成する。2つのコイルの他
端間に直列に順にコンデンサ72、整流器として作用する
2つの2極真空管74及びコンデンサ72が接続される。2
つの2極真空管74はアノードを共通に接続され且つ接地
され、それぞれのカソードはコンデンサ72の端子のうち
2次側コイルに接続されていない各端子に接続される。
2つの抵抗76のそれぞれの一端は2つの2極真空管74の
カソードのそれぞれに接続され、該2つの抵抗76の他端
は共通接続され、電線46に接続される。抵抗76は2つの
2極真空管74のカソード間を分離するため挿入されてい
る。高周波トランス68とコンデンサ72は並列共振する高
周波同調回路を形成する。また、2つの2極真空管74及
び2つの抵抗76により構成される回路は高周波トランス
の2次側に発生する電圧からコンデンサ72を介して全波
整流電圧をつくり、高周波同調回路32の同調周波数を検
出する作用をする。
FIG. 3 is a circuit configuration diagram of the high-frequency tuning circuit 32 of FIG. In the figure, a high-frequency voltage is applied from the high-frequency amplifier 16 to the primary coil of the high-frequency transformer 68 via the electric wire 42. In order to superimpose the DC voltage from the DC amplification circuit 56 on the quadrupole rod 10 together with the high-frequency voltage via the electric wire 44, the high-frequency tuning circuit 32 and the electric wire 40, the secondary side of the high-frequency transformer 68 comprises two coils. A DC voltage is applied to one end of each of the two coils via an electric wire 44. Each capacitor 70 is inserted between one end of each of the two coils and the ground as a high frequency cut capacitor. When the polarity of the high-frequency voltage applied to the primary coil is in the direction of the arrow shown in the figure, the two coils are connected to the core such that the direction of the voltage induced in the two coils is in the direction of the arrow shown in the figure. Rolled up. The other end of each of the two coils is connected to an electric wire 40 via a current introducing terminal 34, and forms an output side for applying a high-frequency voltage and a DC voltage to the quadrupole rod 10. A capacitor 72, two bipolar vacuum tubes 74 acting as a rectifier, and a capacitor 72 are connected in series between the other ends of the two coils. 2
The two vacuum tubes 74 have their anodes commonly connected and grounded, and their cathodes are connected to terminals of the capacitor 72 that are not connected to the secondary coil.
One end of each of the two resistors 76 is connected to each of the cathodes of the two bipolar vacuum tubes 74, and the other ends of the two resistors 76 are commonly connected and connected to the electric wire 46. A resistor 76 is inserted to separate between the cathodes of the two bipolar vacuum tubes 74. The high-frequency transformer 68 and the capacitor 72 form a high-frequency tuning circuit that resonates in parallel. Further, a circuit composed of two two-electrode vacuum tubes 74 and two resistors 76 generates a full-wave rectified voltage from a voltage generated on the secondary side of the high-frequency transformer via a capacitor 72, and adjusts the tuning frequency of the high-frequency tuning circuit 32. Acts to detect.

このような高周波同調回路32における周波数に対する
高周波トランスの2次側に発生する電圧の関係、即ち同
調特性を第4図に示す。高周波トランスの2次側に発生
する電圧は同調時に最大となり印加される高周波電圧の
周波数が同調周波数から上側または下側のいずれの方に
ずれてもずれるに従い該発生電圧は小さくなる。即ち、
該発生電圧の大きさは周波数に対して単峯特性を有す
る。
FIG. 4 shows the relationship between the frequency in such a high-frequency tuning circuit 32 and the voltage generated on the secondary side of the high-frequency transformer, that is, the tuning characteristics. The voltage generated on the secondary side of the high-frequency transformer becomes maximum during tuning, and the generated voltage decreases as the frequency of the applied high-frequency voltage shifts upward or downward from the tuning frequency. That is,
The magnitude of the generated voltage has a single peak characteristic with respect to the frequency.

ここで、室温(20℃)、大気圧(1kPa)の雰囲気で高
周波同調回路32が例えば2.0MHzに同調するように設定す
るには、コンデンサ72に100pFの静電容量を持つガラス
コンデンサを用い、高周波トランス68に外径29mmのフェ
ライト・トロイルダルコアに4ターンの1次巻き線と19
ターンの2次巻き線を巻いたものを用いることができ
る。なお、コンデンサ70及び抵抗76はそれぞれ1000pF、
100kΩにする。このときの同調特性は第4図ののよう
になる。この状態で真空ポンプ24を使って真空容器22を
排気し始め、10-2Pa以下に排気しながら真空容器2全体
を徐々に加熱してやると、フェライト・トロイダルコア
の透磁率の温度係数が約0.15、ガラスコンデンサの静電
容量の温度係数が約−1.0×10-4であるため、同調周波
数は低いほうに変化して行く。例えば、加熱温度が200
℃になると同調周波数は約1.9MHzに変化する。このとき
の同調特性は第4図ののようになる。したがって、2
つの抵抗76の共通接続点に発生する上記全波整流電圧の
大きさは周波数に対して同調特性に対応したものとな
る。
Here, in order to set the high-frequency tuning circuit 32 to tune to, for example, 2.0 MHz in an atmosphere of room temperature (20 ° C.) and atmospheric pressure (1 kPa), a glass capacitor having a capacitance of 100 pF is used for the capacitor 72. A high-frequency transformer 68 with a 29-mm ferrite toroidal core and a 4-turn primary winding and 19
A secondary winding of a turn can be used. Incidentally, the capacitor 70 and the resistor 76 are each 1000 pF,
Set to 100kΩ. The tuning characteristics at this time are as shown in FIG. In this state, the vacuum vessel 24 is evacuated using the vacuum pump 24, and the entire vacuum vessel 2 is gradually heated while evacuating to 10 -2 Pa or less. As a result, the temperature coefficient of magnetic permeability of the ferrite toroidal core becomes about 0.15 Pa. Since the temperature coefficient of the capacitance of the glass capacitor is about −1.0 × 10 −4 , the tuning frequency changes to a lower one. For example, if the heating temperature is 200
At ℃, the tuning frequency changes to about 1.9MHz. The tuning characteristics at this time are as shown in FIG. Therefore, 2
The magnitude of the full-wave rectified voltage generated at the common connection point of the two resistors 76 corresponds to the tuning characteristic with respect to the frequency.

第5図は、可変高周波発生回路58のブロック構成図で
ある。同図において、80は基準周波数発振器、82はPLL
(フェーズ・ロックド・ループ)、84はオフセット周波
数発生器、86はクロック発生器、88は電圧比較器及び90
は基準電圧発生器を示す。なお、このPLL82は、ミク
サ、位相比較器及び電圧制御発信器を有し、基準信号と
電圧制御発振器の出力とがミクサに入力され且つオフセ
ット周波数の信号が位相比較器に入力されることによ
り、基準信号に対してオフセット周波数だけシフトした
周波数の信号を出力する公知の周波数変換を行うPLLで
ある。電圧比較器88には高周波同調回路32において検出
された全波整流電圧が電線46を介して与えられ、該与え
られた全波整流電圧は電圧比較器88に設けられた平滑回
路(図示せず)により平滑化される。また、電圧比較器
88には、第4図に示すように高周波同調回路32の同調周
波数あるいはそれに近い周波数に対応する基準電圧が基
準電圧発生器90により与えられる。電圧比較器88は上記
平滑化された全波整流電圧が基準電圧より小さいときは
ローレベルを出力し、上記平滑化された全波整流電圧が
基準電圧に等しいかそれより大きいときはハイレベルを
出力する。クロック発生器86は、電圧比較器90からロー
レベルを受け、且つ鋸歯状波発生回路60からの出力波形
のうち第2図に示す可変周波数発生期間66の電圧パルス
を1つ受けたときクロックパルスを1つ出力する。クロ
ック発生器86は、電圧比較器88からハイレベルを受けて
いるときは、鋸歯状波発生回路60から可変周波数発生期
間66の電圧パルスを受けてもクロックパルスを出力しな
い。また、クロック発生器86は、鋸歯状波発生回路60か
ら第2図に示す測定期間64における出力波形を受けてい
るとき及び可変周波数発生期間66における電圧パルスを
受けてないないときもクロックパルスを出力しない。オ
フセット周波数発生器84は、0〜100KHzの間の周波数を
有する交流電圧をクロック発生器86からのクロックパル
スを受ける毎に10KHz間隔で次々にシフトして出力す
る。基準周波数発振器80は基準周波数、例えば2MHzの高
周波電圧を出力する。PLL82は、基準周波数発振器80か
らの2MHzの基準周波数の高周波電圧と、オフセット周波
数発生器84からのオフセット周波数(0〜100KHz)を有
する交流電圧とを受け、差の周波数変換を行って振幅変
調器62に出力する。即ち、クロック発生器86がクロック
を発生していれば、PLL82は、2.0〜1.9MHzの間を10KHz
間隔で高周波電圧を振幅変調器62に供給する。
FIG. 5 is a block diagram of the variable high-frequency generation circuit 58. In the figure, 80 is a reference frequency oscillator, 82 is a PLL
(Phase locked loop), 84 is an offset frequency generator, 86 is a clock generator, 88 is a voltage comparator and 90
Indicates a reference voltage generator. Note that the PLL 82 has a mixer, a phase comparator, and a voltage-controlled oscillator, and the reference signal and the output of the voltage-controlled oscillator are input to the mixer, and the offset frequency signal is input to the phase comparator. This is a known frequency conversion PLL that outputs a signal having a frequency shifted by an offset frequency with respect to a reference signal. The voltage comparator 88 is supplied with the full-wave rectified voltage detected in the high-frequency tuning circuit 32 via the electric wire 46, and the supplied full-wave rectified voltage is supplied to a smoothing circuit (not shown) provided in the voltage comparator 88. ). Also, voltage comparator
4, a reference voltage generator 90 supplies a reference voltage corresponding to the tuning frequency of the high-frequency tuning circuit 32 or a frequency close thereto. The voltage comparator 88 outputs a low level when the smoothed full-wave rectified voltage is smaller than the reference voltage, and outputs a high level when the smoothed full-wave rectified voltage is equal to or larger than the reference voltage. Output. The clock generator 86 receives the low level from the voltage comparator 90, and receives the clock pulse when it receives one voltage pulse of the variable frequency generation period 66 shown in FIG. Is output. When receiving a high level from the voltage comparator 88, the clock generator 86 does not output a clock pulse even when receiving a voltage pulse during the variable frequency generation period 66 from the sawtooth wave generation circuit 60. The clock generator 86 also generates a clock pulse when receiving the output waveform from the sawtooth wave generating circuit 60 during the measurement period 64 shown in FIG. 2 and when receiving no voltage pulse during the variable frequency generation period 66. Do not output. The offset frequency generator 84 shifts and outputs an AC voltage having a frequency between 0 and 100 KHz at intervals of 10 KHz each time it receives a clock pulse from the clock generator 86. The reference frequency oscillator 80 outputs a reference frequency, for example, a high frequency voltage of 2 MHz. The PLL 82 receives a high-frequency voltage having a reference frequency of 2 MHz from the reference frequency oscillator 80 and an AC voltage having an offset frequency (0 to 100 KHz) from the offset frequency generator 84, performs frequency conversion of a difference, and performs amplitude conversion. Output to 62. That is, if the clock generator 86 is generating a clock, the PLL 82 operates between 2.0 and 1.9 MHz at 10 KHz.
The high frequency voltage is supplied to the amplitude modulator 62 at intervals.

次に、このように構成された本発明の四重極質量分析
計の可変高周波発生回路58の出力周波数を高周波同調回
路32の同調周波数に自動的に設定する動作を説明する。
Next, an operation of automatically setting the output frequency of the variable high frequency generation circuit 58 of the quadrupole mass spectrometer of the present invention thus configured to the tuning frequency of the high frequency tuning circuit 32 will be described.

初めに、高周波同調回路32は20℃の雰囲気に置かれ、
その同調特性は第4図のに示す特性を有し、可変高周
波発生回路58も同調周波数2.0MHzの高周波電圧を出力し
ているとする。次に、真空容器2が加熱され高周波同調
回路32は200℃の雰囲気に置かれると、その同調周波数
は1.9MHzに下がり、同調特性は第4図のに示すように
なる。従って、抵抗76(第3図)の共通接続点の全波整
数電圧も基準電圧より小さくなり、電圧比較器88の出力
はローレベルとなり、該ローレベルの出力がクロック発
生器86に与えられる。クロック発生器86は、鋸歯状波発
生回路60(第1図)からの可変周波数発生期間66(第2
図)の最初の電圧パルスでタイミングを取り、クロック
パルスをオフセット周波数発生器84に与える。オフセッ
ト周波数発生器84は該クロックパルスに応答して10KHz
の周波数の交流電圧をPLL82に出力する。PLL82は基準周
波数発信器80からの2.0MHzの高周波電圧とオフセット周
波数発生器84からの10KHzの交流電圧とを受けて、1.99M
Hzの周波数の高周波電圧を出力する。この1.99MHzの周
波数の高周波電圧は振幅変調器62、高周波増幅器16及び
電線42を介して高周波同調回路32の高周波トランスの1
次側コイルに印加される。その結果、2.0MHzの高周波電
圧が印加されたときより大きいが基準電圧より小さい全
波整流電圧が得られ、電圧比較器88に与えられるので、
該電圧比較器88はローレベルを維持し、以下上記した動
作を繰返すことによりPLL82の出力周波数は10KHz間隔で
1.9MHzのほうに順次シフトされる。従って、全波整流電
圧は第4図ので示される1.9MHzの同調特性から明らか
なように順次大きくなり、基準電圧に等しくなったとき
電圧比較器88の出力はハイレベルとなり、クロック発生
器86はクロックを出力することを停止し、PLL82の出力
周波数をロックする。このようにして、可変高周波発生
回路58は、高周波同調回路32の同調周波数の変化に追随
して該可変高周波発生回路58の出力周波数を該変化した
同調周波数に自動的に設定する。
First, the high-frequency tuning circuit 32 is placed in an atmosphere of 20 ° C.
It is assumed that the tuning characteristics have the characteristics shown in FIG. 4, and that the variable high-frequency generation circuit 58 also outputs a high-frequency voltage having a tuning frequency of 2.0 MHz. Next, when the vacuum vessel 2 is heated and the high-frequency tuning circuit 32 is placed in an atmosphere of 200 ° C., the tuning frequency drops to 1.9 MHz, and the tuning characteristics become as shown in FIG. Accordingly, the full-wave integer voltage at the common connection point of the resistors 76 (FIG. 3) also becomes smaller than the reference voltage, the output of the voltage comparator 88 becomes low level, and the low level output is supplied to the clock generator 86. The clock generator 86 controls the variable frequency generation period 66 (second period) from the sawtooth wave generation circuit 60 (FIG. 1).
The timing is set by the first voltage pulse shown in FIG. 9 and a clock pulse is given to the offset frequency generator 84. The offset frequency generator 84 responds to the clock pulse by 10 KHz.
An AC voltage having the frequency of is output to the PLL 82. The PLL 82 receives the 2.0 MHz high frequency voltage from the reference frequency generator 80 and the 10 KHz AC voltage from the offset frequency
Outputs a high-frequency voltage with a frequency of Hz. The high frequency voltage having a frequency of 1.99 MHz is supplied to the high frequency transformer 1
Applied to the secondary coil. As a result, a full-wave rectified voltage that is larger than when the high-frequency voltage of 2.0 MHz is applied but smaller than the reference voltage is obtained, and given to the voltage comparator 88.
The voltage comparator 88 maintains the low level, and by repeating the above-described operation, the output frequency of the PLL 82 is changed at 10 KHz intervals.
Shifted sequentially to 1.9MHz. Accordingly, the full-wave rectified voltage sequentially increases as is clear from the tuning characteristic of 1.9 MHz shown in FIG. Stop outputting the clock and lock the output frequency of PLL82. In this way, the variable high-frequency generation circuit 58 automatically sets the output frequency of the variable high-frequency generation circuit 58 to the changed tuning frequency following the change of the tuning frequency of the high-frequency tuning circuit 32.

なお、高周波同調回路32が20〜200℃の間の雰囲気温
度に置かれる、即ち高周波同調回路32の同調周波数が2.
0〜1.9MHzの間に移動したときも上記と同様にして可変
高周波発生回路58の出力周波数が高周波同調回路32の移
動後の同調周波数に追随して自動的に設定されることは
明らかである。
Note that the high-frequency tuning circuit 32 is placed at an ambient temperature between 20 and 200 ° C., that is, the tuning frequency of the high-frequency tuning circuit 32 is 2.
It is clear that the output frequency of the variable high-frequency generation circuit 58 is automatically set to follow the tuning frequency after the movement of the high-frequency tuning circuit 32 in the same manner as described above even when the frequency shifts between 0 and 1.9 MHz. .

また、第1図に示すように高周波同調回路32から高周
波増幅器16を離して電線42により両者を接続すると、該
電線42の静電容量が雰囲気温度等の変化により変化する
ので、電線42の静電容量を含めた高周波同調回路32の同
調周波数も変化するが、上記のように可変高周波発生回
路58の出力周波数は変化した同調周波数に追随する。従
って、従来の四重極質量分析計のように高周波増幅器を
高周波同調回路に近接して配置する必要がなく、高周波
増幅器16を第1図に示すように真空容器22の外に配置で
きるので、測定可能な環境条件が、例えば温度200℃と
従来より著しく拡大される。なお、電線42の長さは、可
変高周波発生回路58の出力周波数が、電線42の静電容量
を含めた高周波同調回路32の同調周波数の変化に追随で
きる範囲まで長くすることが可能である。
Also, as shown in FIG. 1, when the high-frequency amplifier 16 is separated from the high-frequency tuning circuit 32 and connected to each other by the electric wire 42, the capacitance of the electric wire 42 changes due to a change in ambient temperature or the like. Although the tuning frequency of the high-frequency tuning circuit 32 including the capacitance also changes, as described above, the output frequency of the variable high-frequency generating circuit 58 follows the changed tuning frequency. Therefore, unlike the conventional quadrupole mass spectrometer, it is not necessary to dispose the high-frequency amplifier close to the high-frequency tuning circuit, and the high-frequency amplifier 16 can be disposed outside the vacuum vessel 22 as shown in FIG. The measurable environmental conditions are remarkably expanded, for example, to a temperature of 200 ° C. as compared with the related art. Note that the length of the electric wire 42 can be increased to a range where the output frequency of the variable high-frequency generation circuit 58 can follow a change in the tuning frequency of the high-frequency tuning circuit 32 including the capacitance of the electric wire 42.

本発明による四重極質量分析計は、高周波同調回路32
を測定部(イオン源8、四重極棒10及びイオン検出器1
2)と共に真空中で移動できるので真空中駆動型の四重
極質量分析計といいうる。該真空中駆動型四重極質分析
計の有効性を確認するため、真空容器22を真空ポンプ24
で1×10-2Pa以下に排気して200℃に加熱した状態で、
第6図(a)に示すように真空容器22に設けられたポー
ト92の一部からリークバルブ94でアルゴンガスを導入
し、真空容器22の内壁に沿って真空中駆動型四重極質量
分析計の測定部及び高周波同調回路を同図の参照番号96
に示すように共に動かして、アルゴンイオン電流を検出
すると第6図(b)のようになり、真空容器22内に噴出
したアルゴンガスの該真空容器22の内壁に沿っての分布
状態がわかる。なお、前述した従来の四重極質量分析計
では高周波同調回路と高周波増幅回路を200℃という高
温環境下に設置できないので、このような環境下でのア
ルゴンガスの分布状態は測定できなかった。
The quadrupole mass spectrometer according to the present invention has a high frequency tuning circuit 32.
The measuring unit (ion source 8, quadrupole 10 and ion detector 1
It can be called a quadrupole mass spectrometer driven in vacuum because it can move in vacuum together with 2). In order to confirm the effectiveness of the vacuum driven quadrupole mass spectrometer, the vacuum container 22 was connected to a vacuum pump 24.
And exhausted to 1 × 10 -2 Pa or less and heated to 200 ° C.
As shown in FIG. 6 (a), argon gas is introduced from a part of a port 92 provided in the vacuum vessel 22 with a leak valve 94, and the vacuum-driven quadrupole mass spectrometer is driven along the inner wall of the vacuum vessel 22. The measuring part of the meter and the high-frequency tuning circuit
6 (b), the distribution of the argon gas ejected into the vacuum vessel 22 along the inner wall of the vacuum vessel 22 can be seen. In the above-described conventional quadrupole mass spectrometer, the high-frequency tuning circuit and the high-frequency amplifier circuit cannot be installed in a high-temperature environment of 200 ° C., so that the distribution state of the argon gas in such an environment cannot be measured.

なお、以上説明した実施例においては、可変高周波発
生回路58は周波数をステップ状に変化させているが、連
続的に変化させてもよいことは明らかである。
In the embodiment described above, the frequency of the variable high-frequency generation circuit 58 is changed stepwise, but it is clear that the frequency may be changed continuously.

また、可変高周波発生回路58に基準周波数に対して増
加・減少いずれの方向にも周波数をシフトできる回路
と、周波数をシフトさせたときの全波整流電圧の大きさ
の増減方向を検出する回路とを設け、測定環境、例えば
雰囲気温度が種々に変化する場合においても可変高周波
発生回路58の出力周波数が高周波同調回路32の同調周波
数に自動的に追随できるようにしてもよい。
Also, the variable high frequency generation circuit 58 includes a circuit capable of shifting the frequency in both directions of increasing and decreasing with respect to the reference frequency, and a circuit detecting the increasing / decreasing direction of the magnitude of the full-wave rectified voltage when the frequency is shifted. May be provided so that the output frequency of the variable high-frequency generation circuit 58 can automatically follow the tuning frequency of the high-frequency tuning circuit 32 even when the measurement environment, for example, the ambient temperature changes variously.

また、上記のように測定雰囲気温度が200℃と高い場
合は整流器として2極真空管が適しているが、測定環境
がそれほど苛酷でない、例えば−20℃〜70℃のような温
度範囲においては、全波整流電圧をつくる整流器として
2極真空管の代わりに、半導体製の整流器を用いてもよ
い。
When the measurement atmosphere temperature is as high as 200 ° C. as described above, a two-electrode vacuum tube is suitable as a rectifier, but the measurement environment is not so severe, for example, in a temperature range such as −20 ° C. to 70 ° C. A rectifier made of a semiconductor may be used instead of a two-pole vacuum tube as a rectifier for generating a wave rectified voltage.

また、高周波同調回路32の同調周波数を検出する方法
は、上記実施例のように電圧検出型に限らず電流検出型
でもよい。
Further, the method of detecting the tuning frequency of the high-frequency tuning circuit 32 is not limited to the voltage detection type as in the above embodiment, but may be a current detection type.

[発明の効果] 以上説明したように、本発明によれば、四重極質量分
析計の高周波同調手段を調整することが困難な場所に設
置して雰囲気温度等が極端に変化しても、高周波同調手
段を調整する必要がなく、高周波同調手段の同調周波数
に可変高周波電圧発生手段の高周波電圧の周波数が自動
的に追尾して、最適な同調状態を維持することができ
る。従って、四重極棒に印加される高周波電力の損失が
少なくなり、安定した質量分析をすることが可能とな
る。特に高質量数側のイオン分析も安定に行える。
[Effects of the Invention] As described above, according to the present invention, even if the high-frequency tuning means of a quadrupole mass spectrometer is installed in a place where it is difficult to adjust and the ambient temperature or the like changes extremely, There is no need to adjust the high-frequency tuning means, and the frequency of the high-frequency voltage of the variable high-frequency voltage generating means automatically tracks the tuning frequency of the high-frequency tuning means, so that an optimum tuning state can be maintained. Therefore, the loss of the high-frequency power applied to the quadrupole is reduced, and stable mass analysis can be performed. In particular, high-mass-number ion analysis can be performed stably.

ところで、電圧でインダクタンス(L)や静電容量
(C)を変化させることのできる素子を四重極質量分析
計の高周波(RF)共振回路に付加して、その電圧により
共振周波数を変化させる方法があるが、この方法には次
のような欠点が存在する。即ち、四重極質量分析計の高
周波共振回路に付加される電圧でインダクタンスLや静
電容量Cを変化させることのできる素子を四重極質量分
析計の四極子電極即ち四重極棒から離すとその間を接続
する絶縁被覆電線が長くなり、そのため絶縁被覆電線の
静電容量が増え、温度変化等による該静電容量の変化分
も大きくなり、電圧でインダクタンスLや静電容量Cを
変化させることのできる素子により同調させることがで
きなくなる。そのため、電圧でインダクタンスLや静電
容量Cを変化させることのできる素子を四重極質量分析
計の四極子電極即ち四重極棒から離すことができないの
で、高周波共振回路の部品点数がその分増加し、配線も
複雑になる。しかるに、実施例でも述べたように、高周
波共振回路を含めて四極子電極即ち四重極棒を真空容器
の中に設置する場合には、高周波共振回路を構成する素
子は150〜300℃程度と非常に高い温度のベーキング時に
も正常に動作することが要求される。しかも高周波共振
回路はガス放出率が小さくなるように真空封じされたで
きるだけ小さい耐熱容器に入れられる。この場合、共振
周波数を変化させる上記の方法を用いた四重極質量分析
計では、高周波共振回路の部品点数が前述のとおり増加
し、該部品点数の増加は故障率の増加を招き、また、部
品の交換は容易ではなく、更に、電圧でインダクタンス
Lや静電容量Cを変化させることのできる素子に印加す
る電圧を供給するための余分な配線も必要になり、上記
環境での使用は極めて困難である。
By the way, an element capable of changing inductance (L) or capacitance (C) by voltage is added to a high frequency (RF) resonance circuit of a quadrupole mass spectrometer, and the resonance frequency is changed by the voltage. However, this method has the following disadvantages. That is, an element whose inductance L and capacitance C can be changed by a voltage applied to the high-frequency resonance circuit of the quadrupole mass spectrometer is separated from the quadrupole electrode of the quadrupole mass spectrometer, that is, the quadrupole rod. And the length of the insulated wire connecting between them becomes longer, so that the capacitance of the insulated wire increases, the amount of change in the capacitance due to a temperature change or the like also increases, and the inductance L and the capacitance C change with voltage. A tunable element will not allow tuning. For this reason, an element that can change the inductance L and the capacitance C by voltage cannot be separated from the quadrupole electrode of the quadrupole mass spectrometer, that is, the quadrupole rod, and the number of components of the high-frequency resonance circuit is accordingly reduced. And the wiring becomes complicated. However, as described in the embodiment, when the quadrupole electrode, that is, the quadrupole rod including the high-frequency resonance circuit is installed in the vacuum vessel, the elements constituting the high-frequency resonance circuit are about 150 to 300 ° C. It is required to operate normally even during very high temperature baking. In addition, the high-frequency resonance circuit is placed in a vacuum-sealed heat-resistant container as small as possible so as to reduce the gas emission rate. In this case, in the quadrupole mass spectrometer using the above method of changing the resonance frequency, the number of components of the high-frequency resonance circuit increases as described above, and the increase in the number of components causes an increase in the failure rate, and Replacement of parts is not easy, and furthermore, extra wiring for supplying a voltage to be applied to an element whose inductance L and capacitance C can be changed by a voltage is required, and use in the above environment is extremely difficult. Have difficulty.

本発明は、可変高周波電圧発生手段が周波数ずれ検出
手段からの周波数ずれを表す検出信号に応答して、該発
生された高周波電圧の可変周波数を高周波同調手段の同
調周波数に自動設定するようにする構成を採用すること
より、高周波同調手段には可変の同調機構、即ち電圧イ
ンダクタンスLや静電容量Cを変化させることのできる
素子やそれに伴う配線を設けないですむため、高周波共
振回路用には必要最低限の素子を組み合わせるだけでよ
い。従って、高周波共振回路を含めて四極子電極即ち四
重極棒を真空容器の中に設置する場合には、真空容器に
入れられる高周波同調手段の部品点数は上記周波数を変
化させる方法よりもはるかに少なくてすみ、従って部品
点数の低減により故障率も低減され、また、真空容器の
大きさも小さくなるためガス放出率も小さくなり、更に
外部に接続される配線数も少なくてすみ、その結果真空
で150〜300℃程度と非常に高い温度の厳いし環境でも容
易に測定できる。
According to the present invention, the variable high-frequency voltage generating means automatically sets the variable frequency of the generated high-frequency voltage to the tuning frequency of the high-frequency tuning means in response to a detection signal indicating the frequency deviation from the frequency deviation detecting means. By adopting the configuration, the high-frequency tuning means does not require a variable tuning mechanism, that is, an element capable of changing the voltage inductance L and the capacitance C and the wiring associated therewith. Only the minimum required elements need to be combined. Therefore, when a quadrupole electrode, that is, a quadrupole rod including a high-frequency resonance circuit is installed in a vacuum vessel, the number of components of the high-frequency tuning means to be put in the vacuum vessel is far more than the method of changing the frequency. As a result, the failure rate is reduced due to the reduction in the number of parts, and the size of the vacuum vessel is also reduced, so that the gas emission rate is reduced, and the number of wires connected to the outside is also reduced. It can be easily measured even in severe environments with temperatures as high as 150 to 300 ° C.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による四重極質量分析計の一実施例の構
成図、第2図は第1図に係る鋸歯状波発生回路の出力波
形を示す図、第3図は第1図に係る高周波同調回路の構
成図、第4図は第3図の高周波同調回路の同調特性を示
す図、第5図は第1図に係る可変高周波発生回路のブロ
ック構成図、第6図(a)は真空容器中に導入したアル
ゴンガスを本発明による四重極質量分析計で検出する状
態を示す図、第6図(b)は第6図(a)における検出
結果を示す図、及び第7図は従来の四重極質量分析計の
構成図である。 2:測定部、4:RFユニット部、6:制御電源、8:イオン源、
10:四重極棒、 12:イオン検出器、 14、32:高周波同調回路、 16:高周波増幅器、18:コイル、 20:可変コンデンサ、22:真空容器、 24:真空ポンプ、26:空冷ファン、30:高周波同調回路収
容容器、 34:電流導入端子、 36、38:電流導入端子付真空フランジ、 40、42、44、46、48、50:電線、52:イオン源制御電源、 54:イオン検出器制御電源、 56:直流増幅回路、58:可変高周波発生回路、60:鋸歯状
波発生回路、62:振幅変調器、 68:高周波トランス、70、72:コンデンサ、74:2極真空
管、80:基準周波数発振器、 82:PLL、84:オフセット周波数発生器、 86:クロック発生器、88:電圧比較器、 90:基準電圧発生器、92:ポート、 94:リークバルブ、
1 is a block diagram of an embodiment of a quadrupole mass spectrometer according to the present invention, FIG. 2 is a diagram showing an output waveform of a sawtooth wave generating circuit according to FIG. 1, and FIG. 3 is a diagram in FIG. FIG. 4 is a diagram showing the tuning characteristics of the high-frequency tuning circuit of FIG. 3, FIG. 5 is a block diagram of the variable high-frequency generating circuit of FIG. 1, and FIG. FIG. 6B is a diagram showing a state in which the argon gas introduced into the vacuum vessel is detected by the quadrupole mass spectrometer according to the present invention, FIG. 6B is a diagram showing the detection results in FIG. 6A, and FIG. The figure is a configuration diagram of a conventional quadrupole mass spectrometer. 2: Measuring section, 4: RF unit section, 6: Control power supply, 8: Ion source,
10: quadrupole, 12: ion detector, 14, 32: high frequency tuning circuit, 16: high frequency amplifier, 18: coil, 20: variable capacitor, 22: vacuum vessel, 24: vacuum pump, 26: air cooling fan, 30: High frequency tuning circuit container, 34: Current introduction terminal, 36, 38: Vacuum flange with current introduction terminal, 40, 42, 44, 46, 48, 50: Electric wire, 52: Ion source control power supply, 54: Ion detection Control power supply, 56: DC amplification circuit, 58: variable high frequency generation circuit, 60: sawtooth wave generation circuit, 62: amplitude modulator, 68: high frequency transformer, 70, 72: capacitor, 74: 2-pole vacuum tube, 80: Reference frequency oscillator, 82: PLL, 84: Offset frequency generator, 86: Clock generator, 88: Voltage comparator, 90: Reference voltage generator, 92: Port, 94: Leak valve,

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01J 37/252 H01J 49/42 G01N 27/62 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01J 37/252 H01J 49/42 G01N 27/62

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】四重極棒と、該四重極棒に接続されその静
電容量と組み合わさる高周波同調手段と、測定される気
体が導入される真空容器とを備える四重極質量分析計に
おいて、 前記四重極棒と前記高周波同調手段とが前記真空容器の
中に設置され、 前記高周波同調手段を介して前記四重極棒に印加される
周波数可変の高周波電圧を発生する可変高周波電圧発生
手段と、 前記高周波同調手段の同調周波数と前記可変高周波電圧
発生手段により発生された高周波電圧の周波数との周波
数ずれを検出する周波数ずれ検出手段とを設け、 該可変高周波電圧発生手段は、前記周波数ずれ検出手段
からの周波数ずれを表す検出信号に応答して、該発生さ
れた高周波電圧の可変周波数を前記高周波同調手段の同
調周波数に自動設定するようにすることを特徴とする四
重極質量分析計。
1. A quadrupole mass spectrometer comprising a quadrupole rod, high frequency tuning means connected to the quadrupole rod and associated with its capacitance, and a vacuum vessel into which a gas to be measured is introduced. In the above, the quadrupole bar and the high-frequency tuning means are installed in the vacuum vessel, and a variable high-frequency voltage generating a variable frequency high-frequency voltage applied to the quadrupole rod through the high-frequency tuning means Generating means, and frequency shift detecting means for detecting a frequency shift between a tuning frequency of the high-frequency tuning means and a frequency of the high-frequency voltage generated by the variable high-frequency voltage generating means, wherein the variable high-frequency voltage generating means comprises: The variable frequency of the generated high-frequency voltage is automatically set to the tuning frequency of the high-frequency tuning means in response to a detection signal indicating the frequency deviation from the frequency deviation detecting means. Quadrupole mass spectrometer.
【請求項2】請求項1記載の四重極質量分析計におい
て、前記高周波同調手段の同調周波数は前記四重極棒及
び前記高周波同調手段の設置環境の変化により変化する
ものである四重極質量分析計。
2. The quadrupole mass spectrometer according to claim 1, wherein the tuning frequency of said high-frequency tuning means changes according to a change in an installation environment of said quadrupole bar and said high-frequency tuning means. Mass spectrometer.
【請求項3】請求項1又は2記載の四重極質量分析計に
おいて、前記可変高周波電圧発生手段と前記高周波同調
手段との間に高周波増幅手段を更に設け、当該高周波増
幅手段は前記真空容器が置かれる環境とは異なる環境に
置くことができるように、前記高周波増幅手段と前記高
周波同調手段とが所与の長さの電気的接続手段により接
続されていることを特徴とする四重極質量分析計。
3. The quadrupole mass spectrometer according to claim 1, further comprising a high frequency amplifying means between said variable high frequency voltage generating means and said high frequency tuning means, wherein said high frequency amplifying means is a vacuum vessel. Characterized in that the high-frequency amplification means and the high-frequency tuning means are connected by an electric connection means of a given length so that the high-frequency amplification means and the high-frequency tuning means can be placed in an environment different from the environment where the quadrupole is placed. Mass spectrometer.
【請求項4】請求項1又は2記載の四重極質量分析計に
おいて、前記周波数ずれ検出手段は、前記高周波同調手
段にかかる高周波電圧を全波整流する手段と、当該全波
整流する手段からの全波整流電圧と前記高周波同調手段
の同調周波数あるいはそれに近い周波数を表す基準電圧
とに基づいて周波数ずれを表す検出信号を生成する手段
とを有することを特徴とする四重極質量分析計。
4. The quadrupole mass spectrometer according to claim 1, wherein said frequency shift detecting means includes means for performing full-wave rectification of a high-frequency voltage applied to said high-frequency tuning means, and means for performing full-wave rectification. And a means for generating a detection signal indicating a frequency shift based on the full-wave rectified voltage and a reference voltage indicating a tuning frequency of the high-frequency tuning means or a frequency close thereto.
【請求項5】請求項4記載の四重極質量分析計におい
て、前記全波整流する手段は2極真空管を有することを
特徴とする四重極質量分析計。
5. The quadrupole mass spectrometer according to claim 4, wherein said means for full-wave rectification has a two-pole vacuum tube.
【請求項6】請求項4又は5記載の四重極質量分析計に
おいて、前記全波整流する手段からの全波整流電圧を受
け、該全波整流電圧に基づいて前記四重極棒に印加され
る高周波電圧に対して所定の振幅比を有する直流電圧を
つくる直流電圧発生手段を更に設け、該直流電圧を前記
四重極棒に印加するようにすることを特徴とする四重極
質量分析計。
6. The quadrupole mass spectrometer according to claim 4, wherein the full-wave rectification voltage is received from the full-wave rectification means and applied to the quadrupole bar based on the full-wave rectification voltage. DC voltage generating means for generating a DC voltage having a predetermined amplitude ratio with respect to the high-frequency voltage to be applied, and the DC voltage is applied to the quadrupole bar. Total.
【請求項7】請求項4又は5記載の四重極質量分析計に
おいて、 前記周波数ずれを表す検出信号を生成する手段は、前記
全波整流電圧と前記基準電圧とを比較する電圧比較器を
有し、 前記可変高周波電圧発生手段は、基準周波数発振器と、
前記電圧比較器と前記基準周波数発振器とに接続され該
基準周波数発振器からの基準周波数を有する高周波電圧
を受けこれに対して周波数をシフトした高周波電圧をつ
くる周波数シフト手段とを有し、 該周波数シフト手段は、前記全波整流電圧が前記基準電
圧より小さいときの前記電圧比較器の比較結果に応答し
て周波数をシフトし、前記全波整流電圧が前記基準電圧
に等しいかそれより大きくなるときの前記電圧比較器の
比較結果に応答して周波数のシフトを停止して周波数を
ロックすることを特徴とする四重極質量分析計。
7. The quadrupole mass spectrometer according to claim 4, wherein the means for generating the detection signal indicating the frequency shift includes a voltage comparator for comparing the full-wave rectified voltage with the reference voltage. And the variable high-frequency voltage generating means includes a reference frequency oscillator,
Frequency shift means connected to the voltage comparator and the reference frequency oscillator for receiving a high frequency voltage having a reference frequency from the reference frequency oscillator and generating a high frequency voltage shifted in frequency with respect to the high frequency voltage; The means shifts a frequency in response to a comparison result of the voltage comparator when the full-wave rectified voltage is smaller than the reference voltage, and when the full-wave rectified voltage is equal to or larger than the reference voltage. A quadrupole mass spectrometer characterized in that the frequency shift is stopped and the frequency is locked in response to the comparison result of the voltage comparator.
【請求項8】請求項7記載の四重極質量分析計におい
て、所定の勾配で上昇する電圧と、該上昇する電圧が所
定の電圧に達した後に所定の間隔と前記所定の電圧の大
きさを有する複数のパルス電圧とからなるベース信号を
周期的に発生するベース信号発生手段と、 該ベース信号発生手段に接続され且つ前記可変高周波電
圧発生手段及び前記高周波同調手段の間に挿入され、前
記可変高周波電圧発生手段からの高周波電圧を前記ベー
ス信号発生手段からのベース信号により振幅変調する振
幅変調手段と、 前記電圧比較器と前記周波数シフト手段との間に挿入さ
れ且つ前記ベース信号発生手段に接続され、前記全波整
流電圧が前記基準電圧より小さいときの前記電圧比較器
の比較結果と前記ベース信号発生手段からのベース信号
のうちの前記パルス電圧とを受けたときクロックパルス
を発生するクロックパルス発生手段とを更に設け、 前記所定の勾配で上昇する電圧が発生する期間に測定を
行い、前記パルス電圧を発生する期間に前記クロックパ
ルス発生手段からのクロックパルスに応答して前記周波
数シフト手段が高周波電圧の周波数をシフトすることに
より前記可変高周波電圧発生手段の高周波電圧の可変周
波数を前記高周波同調手段の同調周波数に自動設定する
ようにすることを特徴とする四重極質量分析計。
8. The quadrupole mass spectrometer according to claim 7, wherein a voltage rising at a predetermined gradient, a predetermined interval after the rising voltage reaches a predetermined voltage, and a magnitude of the predetermined voltage A base signal generating means for periodically generating a base signal comprising a plurality of pulse voltages having: a base signal generating means connected to the base signal generating means and inserted between the variable high frequency voltage generating means and the high frequency tuning means; Amplitude modulation means for amplitude-modulating the high-frequency voltage from the variable high-frequency voltage generation means with the base signal from the base signal generation means; inserted between the voltage comparator and the frequency shift means; And a comparison result of the voltage comparator when the full-wave rectified voltage is smaller than the reference voltage and the base signal from the base signal from the base signal generation means. A clock pulse generating means for generating a clock pulse when receiving the pulse voltage, performing measurement during a period in which the voltage rising at the predetermined gradient is generated, and generating the clock pulse in a period in which the pulse voltage is generated. The frequency shift means shifts the frequency of the high-frequency voltage in response to a clock pulse from the means, so that the variable frequency of the high-frequency voltage of the variable high-frequency voltage generation means is automatically set to the tuning frequency of the high-frequency tuning means. A quadrupole mass spectrometer characterized in that:
JP1207387A 1989-08-10 1989-08-10 Quadrupole mass spectrometer Expired - Lifetime JP2873239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207387A JP2873239B2 (en) 1989-08-10 1989-08-10 Quadrupole mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207387A JP2873239B2 (en) 1989-08-10 1989-08-10 Quadrupole mass spectrometer

Publications (2)

Publication Number Publication Date
JPH0371546A JPH0371546A (en) 1991-03-27
JP2873239B2 true JP2873239B2 (en) 1999-03-24

Family

ID=16538896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207387A Expired - Lifetime JP2873239B2 (en) 1989-08-10 1989-08-10 Quadrupole mass spectrometer

Country Status (1)

Country Link
JP (1) JP2873239B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE469969B (en) * 1992-03-11 1993-10-18 Inst Foer Produktions Och Arbe Method and apparatus for securing the opening of a valve to a poured metal spout
US7973277B2 (en) * 2008-05-27 2011-07-05 1St Detect Corporation Driving a mass spectrometer ion trap or mass filter
EP2674963B1 (en) * 2011-02-10 2016-11-16 Shimadzu Corporation Quadrupole type mass spectrometer

Also Published As

Publication number Publication date
JPH0371546A (en) 1991-03-27

Similar Documents

Publication Publication Date Title
AU2009260573B2 (en) Driving a mass spectrometer ion trap or mass filter
US5273610A (en) Apparatus and method for determining power in plasma processing
JP4672941B2 (en) High frequency power supply for generating inductively coupled plasma
EP1952537B1 (en) Inductively-coupled rf power source
EP0564629B1 (en) Power supply for multipolar mass filter
Van Dyck Jr et al. Ultraprecise Atomic Mass Measurement of the α Particle and He 4
TWI821157B (en) Apparatus and method for detecting ions
KR101122305B1 (en) Control method of mass spectrometer and spectrometer
US5180949A (en) Plasma generator
JP2873239B2 (en) Quadrupole mass spectrometer
Narasimham et al. Lamb shift in singly ionized helium
JP4305832B2 (en) Multipole mass spectrometer
Vella et al. Development of rf plasma generators for neutral beams
Hill et al. A multi-shot dense plasma focus with improved cathode design
US20030008593A1 (en) Method and device for evaporating a getter material in a vacuum tube
US2952813A (en) Device for the amplification of minute space currents
Poirier et al. RF systems of the TRIUMF ISAC facility
CN117059469A (en) Self-excitation type radio frequency power supply for multipole rod ion transmission
JPH0750597B2 (en) Quadrupole mass spectrometer
Stephan et al. VHF Coaxial Helix Plasma Source for a-Si: H
Cavenago et al. A Vapour Source for ECR Ion Sources
Elmore Cyclotron resonance of electrons trapped in a microwave cavity
JP2004200082A (en) Mass spectrometry device and its adjustment method
JPH08124750A (en) High-voltage power unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11