[go: up one dir, main page]

JP2871292B2 - Manufacturing method of α + β type titanium alloy sheet - Google Patents

Manufacturing method of α + β type titanium alloy sheet

Info

Publication number
JP2871292B2
JP2871292B2 JP12820592A JP12820592A JP2871292B2 JP 2871292 B2 JP2871292 B2 JP 2871292B2 JP 12820592 A JP12820592 A JP 12820592A JP 12820592 A JP12820592 A JP 12820592A JP 2871292 B2 JP2871292 B2 JP 2871292B2
Authority
JP
Japan
Prior art keywords
rolling
titanium alloy
rolled
alloy sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12820592A
Other languages
Japanese (ja)
Other versions
JPH05295503A (en
Inventor
秀光 浜野
孝司 鈴木
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP12820592A priority Critical patent/JP2871292B2/en
Publication of JPH05295503A publication Critical patent/JPH05295503A/en
Application granted granted Critical
Publication of JP2871292B2 publication Critical patent/JP2871292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、α+β型チタン合金
板の製造方法、特に、引張強度等の機械的特性の異方性
を容易且つ確実に改善することができるα+β型チタン
合金板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an .alpha. +. Beta. Type titanium alloy sheet, and more particularly to a method of manufacturing an .alpha. +. Beta. Type titanium alloy sheet capable of easily and reliably improving anisotropy of mechanical properties such as tensile strength. It is about the method.

【0002】[0002]

【従来の技術】α+β型チタン合金板を同一方向に圧延
すると、チタン合金板の機械的特性に大きな異方性が生
じることが知られている。
2. Description of the Related Art It is known that when an α + β type titanium alloy sheet is rolled in the same direction, a large anisotropy occurs in the mechanical properties of the titanium alloy sheet.

【0003】従来、上述した性質を有するα+β型チタ
ン合金板の耐力の異方性のみを改善する方法として、特
開昭61-147864 号公報に、特定成分からなるチタン合金
の連続熱延焼鈍板を、熱間圧延方向と同一方向に67%以
上の冷間圧延率で冷間圧延し、次いで、650 から900 ℃
の範囲内の温度で焼鈍することからなるチタン合金板の
製造方法が開示されている。
Conventionally, as a method of improving only the anisotropy of the yield strength of an α + β type titanium alloy sheet having the above-mentioned properties, Japanese Patent Application Laid-Open No. 61-147864 discloses a continuous hot-rolled annealed sheet of a titanium alloy comprising a specific component. Cold-rolled in the same direction as the hot-rolling direction at a cold rolling reduction of 67% or more, and then at 650 to 900 ° C.
A method for producing a titanium alloy sheet, which comprises annealing at a temperature within the range described above.

【0004】また、この方法と同じ目的を有するものと
して、特開昭62-109956 号公報には、特定成分からなる
チタン合金の熱延板を、そのまま又は焼鈍後、85%以下
の冷間加工率で冷間加工し、次いで、歪み時効処理を施
すことからなるチタン合金板の製造方法が開示されてい
る。以下、これらの方法を先行技術1という。
Japanese Patent Application Laid-Open No. 62-109956 discloses a hot-rolled sheet of a titanium alloy comprising a specific component as it is or after annealing, having a cold work of 85% or less. A method for producing a titanium alloy sheet, comprising cold working at a low rate and then subjecting to strain aging. Hereinafter, these methods are referred to as Prior Art 1.

【0005】一方、耐力に限らず、常温の機械的特性の
異方性を改善する方法として、特開昭62-54508号公報
に、チタン合金の連続熱間圧延コイルを幅方向に切断
し、この切断したチタン合金片を、800 から970 ℃の範
囲内の温度で熱間圧延方向と直交する方向に、70%以上
の圧加率で圧延することからなるチタン合金板の製造方
法が開示されている。以下、この方法を先行技術2とい
う。
On the other hand, as a method for improving the anisotropy of the mechanical properties at room temperature, not limited to the proof stress, Japanese Patent Application Laid-Open No. 62-54508 discloses a method of cutting a continuous hot-rolled coil of a titanium alloy in the width direction. A method for producing a titanium alloy sheet, comprising rolling the cut titanium alloy piece at a temperature in the range of 800 to 970 ° C. in a direction orthogonal to the hot rolling direction at a pressing rate of 70% or more is disclosed. ing. Hereinafter, this method is referred to as Prior Art 2.

【0006】また、特開昭60-230968 号公報には、α+
β領域において、0.6 から1.4 のクロス比の下でクロス
圧延を実施し、次いで、再結晶焼鈍を施し、次いで、再
びα+β領域において0.6 から1.4 のクロス比の下でク
ロス圧延を実施し、次いで、焼鈍し、そして、溶体化時
効処理を行うことからなるチタン合金板の製造方法が開
示されている。以下、この方法を先行技術3という。
Japanese Patent Application Laid-Open No. 60-230968 discloses α +
In the β region, cross-rolling is performed under a cross ratio of 0.6 to 1.4, then recrystallization annealing is performed, and then again in the α + β region, cross-rolling is performed under a cross ratio of 0.6 to 1.4, A method for producing a titanium alloy plate, which comprises annealing and performing solution aging treatment, is disclosed. Hereinafter, this method is referred to as Prior Art 3.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た先行技術1〜3は、以下のような問題を有している。
However, the above-mentioned prior arts 1 to 3 have the following problems.

【0008】先行技術1 特定成分のチタン合金板でしかも耐力の異方性しか改善
することができない。しかも、冷間圧延率を大きくする
必要があるので、効率的ではない。
Prior art 1 It is possible to improve only the anisotropy of proof stress with a titanium alloy plate having a specific component. Moreover, it is not efficient because the cold rolling reduction needs to be increased.

【0009】先行技術2 異方性を改善するための圧延が熱間で行われる上、大き
な圧下を付与する必要があるので、効率的ではない。
Prior art 2 Rolling for improving anisotropy is performed hot and it is necessary to apply a large reduction, so that it is not efficient.

【0010】先行技術3 厚板の圧延であるために、熱間連続圧延板の場合と比較
すると量産に適さず、しかも、圧延そのものも高温域で
行う必要がある。
Prior art 3 Because of the rolling of a thick plate, it is not suitable for mass production as compared with the case of a hot continuous rolled plate, and the rolling itself needs to be performed in a high temperature range.

【0011】従って、この発明の目的は、機械的特性の
異方性を容易且つ確実に改善することができるα+β型
チタン合金板の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method of manufacturing an α + β type titanium alloy sheet which can easily and surely improve the anisotropy of mechanical properties.

【0012】[0012]

【課題を解決するための手段】この発明は、一方向に熱
間圧延されたα+β型チタン合金板に、熱間圧延方向と
直交する方向に、20から45%の範囲内の圧下率で冷
間圧延または温間圧延を施し、かくして、前記チタン合
金板の機械的特性の異方性を改善することに特徴を有す
るものである。
SUMMARY OF THE INVENTION The present invention relates to a method for controlling heat in one direction.
Hot-rolled α-β titanium alloy sheet
Cold rolling or warm rolling is performed at a rolling reduction in the range of 20 to 45% in the direction perpendicular to the direction, and thus the anisotropy of the mechanical properties of the titanium alloy sheet is improved. is there.

【0013】この発明において、一方向に熱間圧延され
たα+β型チタン合金板に、熱間圧延方向と直交する方
向に、所定圧下率で冷間圧延または温間圧延を施す理由
について説明する。
In the present invention, hot-rolled in one direction
The direction perpendicular to the hot rolling direction on the α + β type titanium alloy plate
The reason why cold rolling or warm rolling is performed at a predetermined reduction rate will be described.

【0014】α+β型チタン合金板の場合、一般的に熱
間圧延方向と直交する方向の冷間圧延限界が低く、20%
を下回ることがある。このような場合には、圧延素材を
250から500 ℃の温度範囲内に加熱後、圧延する、所
謂、温間圧延を行う必要がある。これによって、20%以
上の圧延率を得ることが可能となる。なお、α+β型チ
タン合金板を500 ℃の温度に加熱しても、チタン合金板
表面に発生する酸化スケール量は少なく、このために酸
洗仕上げ工程が軽減され、しかも、結晶粒の粗大化も殆
ど進行しない。従って、この発明においては、冷間圧延
限界が低いα+β型チタン合金板の場合には、チタン合
金板に温間圧延を施す。冷間圧延限界が高いα+β型チ
タン合金板の場合には、冷間圧延で良いことは勿論であ
る。
In the case of an α + β type titanium alloy sheet, the cold rolling limit in the direction orthogonal to the hot rolling direction is generally low,
May be below. In such a case, the rolling material
It is necessary to perform so-called warm rolling, which is performed after rolling in a temperature range of 250 to 500 ° C. and rolling. This makes it possible to obtain a rolling reduction of 20% or more. Even if the α + β type titanium alloy plate is heated to a temperature of 500 ° C., the amount of oxidized scale generated on the surface of the titanium alloy plate is small, so that the pickling finishing step is reduced and the crystal grains are coarsened. Hardly progresses. Therefore, in the present invention, in the case of an α + β type titanium alloy sheet having a low cold rolling limit, warm rolling is performed on the titanium alloy sheet. In the case of an α + β type titanium alloy sheet having a high cold rolling limit, it goes without saying that cold rolling may be used.

【0015】この発明において、圧下率を上述したよう
に限定した理由は、常温の機械的特性、即ち、硬度、耐
力、引張強度、全伸びにおける異方性が改善されるばか
りか、全伸びについては、圧延前の素材に比べて大きく
向上するからである。圧下率の限定理由については、後
述する。
In the present invention, the reason why the rolling reduction is limited as described above is that not only the mechanical properties at room temperature, that is, hardness, proof stress, tensile strength and anisotropy in total elongation are improved, but also Is greatly improved as compared with the material before rolling. The reason for limiting the rolling reduction will be described later.

【0016】[0016]

【実施例】次に、この発明の実施例について説明する。
Al:4.65%、V:3.02% 、Mo:1.95%、Fe:1.98%、O:0.072%、
H:0.003%(以上、重量%)からなる直径750mm のα+β
型チタン合金インゴットを熱間鍛造して、厚さ143mm 、
幅1000mmのスラブを調製した。熱間鍛造時のインゴット
の加熱温度は、1100℃、仕上がり温度は、830 ℃であっ
た。次いで、このようにして調製したスラブを連続熱間
圧延機によって圧延して、厚さ2.8mm 、幅1080mmのコイ
ルを調製した。熱間圧延時のスラブの加熱温度は、860
℃、仕上がり温度は、770 ℃であった。
Next, an embodiment of the present invention will be described.
Al: 4.65%, V: 3.02%, Mo: 1.95%, Fe: 1.98%, O: 0.072%,
H: α + β with a diameter of 750mm consisting of 0.003% (or more by weight)
Type titanium alloy ingot is hot forged, 143mm thick,
A slab having a width of 1000 mm was prepared. The heating temperature of the ingot during hot forging was 1100 ° C, and the finishing temperature was 830 ° C. Next, the slab thus prepared was rolled by a continuous hot rolling mill to prepare a coil having a thickness of 2.8 mm and a width of 1080 mm. The heating temperature of the slab during hot rolling is 860
° C and the finishing temperature were 770 ° C.

【0017】次に、このようにして調製したコイルから
厚さ2.5mm 、幅80mmの複数枚の試験片を切り出し、これ
ら試験片に10、20、30、40、45および50%の圧下率で熱
間圧延方向と直交する方向に圧延を施した。この内、3
0、40、45および50%の圧下率で圧延を施した試験片
は、300 ℃の温度で温間圧延を施し、残りの試験片は、
冷間圧延を施した。
Next, a plurality of test pieces having a thickness of 2.5 mm and a width of 80 mm were cut out from the coil thus prepared, and the test pieces were subjected to reductions of 10, 20, 30, 40, 45 and 50%. Rolling was performed in a direction perpendicular to the hot rolling direction. Of these, 3
The specimens rolled at 0, 40, 45 and 50% reduction were warm-rolled at a temperature of 300 ° C. and the remaining specimens were:
Cold rolling was performed.

【0018】そして、上述のようにして圧延を行った各
試験片を800 ℃の温度で1時間焼鈍を行い、圧下率と全
伸びおよび引張強度(YS、TS)との関係について調べ
た。これらの結果を併せて図1に示す。図1において、
L方向とは圧延方向であり、C方向とは圧延方向Lと直
交する方向である。
Each of the test pieces rolled as described above was annealed at a temperature of 800 ° C. for 1 hour, and the relationship between the rolling reduction, the total elongation and the tensile strength (YS, TS) was examined. FIG. 1 also shows these results. In FIG.
The L direction is a rolling direction, and the C direction is a direction orthogonal to the rolling direction L.

【0019】図1から明かなように、一方向連続圧延材
(図中の圧延率0%)は、圧延方向と、圧延方向と直交
する方向との耐力差が25kgf/mm2 、引張強度差が20kgf/
mm2もあるが、熱間圧延方向と直交する方向に20から45
%の範囲内の冷間または温間圧延を施すと、機械的特性
はほとんどなくなり、伸びについては圧延素材である熱
間圧延材よりも向上することが分かった。一方、圧下率
が45%を超えると、再び引張強度や伸びに異方性が現れ
ることが分かった。
As is apparent from FIG. 1, the unidirectional continuous rolled material (rolling ratio in the figure is 0%) has a difference in proof stress between the rolling direction and the direction perpendicular to the rolling direction of 25 kgf / mm 2 and a difference in tensile strength. Is 20kgf /
mm 2 also, but from 20 in a direction perpendicular to the hot rolling direction 45
It has been found that when cold or warm rolling is performed within the range of%, the mechanical properties are almost eliminated, and the elongation is improved as compared with the hot rolled material as a rolled material. On the other hand, it was found that when the rolling reduction exceeded 45%, anisotropy appeared again in tensile strength and elongation.

【0020】次に、この発明の他の実施例について説明
する。Al:6.12%、V:3.87% 、Fe:0.01%、O:0.104%、H:0.
012%(以上、重量%)からなる直径750mm のα+β型チ
タン合金インゴットを熱間鍛造して、厚さ147mm 、幅75
0mm のスラブを調製した。熱間鍛造時のインゴットの加
熱温度は、1200℃、仕上がり温度は、1100℃であった。
次いで、このようにして調製したスラブを連続熱間圧延
機によってクロス比16.2の条件下で圧延して、厚さ30m
m、幅1150mmの厚板を調製した。熱間圧延時のスラブの
加熱温度は、950 ℃、仕上がり温度は、800 ℃であっ
た。
Next, another embodiment of the present invention will be described. Al: 6.12%, V: 3.87%, Fe: 0.01%, O: 0.104%, H: 0.
Hot forging of α + β type titanium alloy ingot of diameter 750mm consisting of 012% (more than weight%), 147mm in thickness and 75 in width
A 0 mm slab was prepared. The heating temperature of the ingot during hot forging was 1200 ° C, and the finishing temperature was 1100 ° C.
Next, the slab thus prepared was rolled by a continuous hot rolling mill under conditions of a cross ratio of 16.2, and the thickness was 30 m.
A thick plate having a width of 1150 mm was prepared. The heating temperature of the slab during hot rolling was 950 ° C, and the finishing temperature was 800 ° C.

【0021】次に、このようにして調製した厚板から厚
さ28mm、幅80mmの複数枚の試験片を切り出し、これら試
験片に10、20および30%の圧延率で熱間圧延方向と直交
する方向に圧延を施した。この内、20および30%の圧延
率で圧延を施した試験片は、450 ℃の温度で温間圧延を
施し、残りの試験片は、冷間圧延を施した。
Next, a plurality of test pieces having a thickness of 28 mm and a width of 80 mm were cut out from the thick plate thus prepared, and these test pieces were cut at a rolling reduction of 10, 20, and 30% and orthogonal to the hot rolling direction. The rolling was performed in the direction in which the rolling was performed. Of these, the test pieces rolled at rolling rates of 20 and 30% were warm-rolled at a temperature of 450 ° C., and the remaining test pieces were cold-rolled.

【0022】そして、上述のようにして圧延を行った各
試験片を800 ℃の温度で1時間焼鈍を行い、圧下率と全
伸びおよび引張強度(YS、TS)との関係について調べ
た。これらの結果を併せて図2に示す。図2において、
L方向とは圧延方向であり、C方向とは圧延方向Lと直
交する方向である。
Each of the test pieces rolled as described above was annealed at a temperature of 800 ° C. for 1 hour, and the relationship between the rolling reduction, the total elongation, and the tensile strength (YS, TS) was examined. These results are shown in FIG. In FIG.
The L direction is a rolling direction, and the C direction is a direction orthogonal to the rolling direction L.

【0023】図2から明かなように、一方向連続圧延材
(図中の圧延率0%)は、圧延方向と、圧延方向と直交
する方向との耐力差が25kgf/mm2 、引張強度差が15kgf/
mm2もあるが、熱間圧延方向と直交する方向に20〜39%
の温間圧延を施すと、機械的特性はほとんどなくなり、
伸びについては圧延素材である熱間圧延材よりも5〜7
%程度向上することが明かである。
As is clear from FIG. 2, the unidirectional continuous rolled material (rolling ratio in the figure is 0%) has a difference in proof stress of 25 kgf / mm 2 between the rolling direction and the direction perpendicular to the rolling direction, and a difference in tensile strength. Is 15kgf /
mm 2 also, but 20 to 39% in a direction perpendicular to the hot rolling direction
When subjected to warm rolling, the mechanical properties almost disappear,
As for elongation, it is 5 to 7 compared to hot rolled material which is a rolled material.
%.

【0024】この実施例において使用したTi-6Al-4V チ
タン合金は、冷間加工性が低いために、上述したように
温間圧延を行ったが、それでも圧下率が30%を超える
と、温間圧延限界に達する。従って、このような材料を
使用する場合には、20%以上の圧下率が確保されていれ
ば、十分に常温の機械的特性の異方性を大幅に軽減する
ことができるので、温間圧延限が有効であることが分か
った。
[0024] The Ti-6Al-4V titanium alloy used in this example was subjected to warm rolling as described above because of its low cold workability. The rolling limit is reached. Therefore, when such a material is used, if the rolling reduction of 20% or more is ensured, the anisotropy of the mechanical properties at room temperature can be sufficiently reduced, so that warm rolling is performed. Limit was found to be effective.

【0025】[0025]

【発明の効果】以上説明したように、この発明によれ
ば、タンデムミル等によって製造される、機械的特性の
異方性の大きなα+β型チタン合金板の機械的特性の異
方性を容易且つ確実に改善することができ、しかも、全
伸びを向上させることができるといった有用な効果がも
たらされる。
As described above, according to the present invention, the anisotropy of the mechanical properties of an α + β type titanium alloy sheet having a large anisotropy of mechanical properties manufactured by a tandem mill or the like can be easily and easily obtained. A useful effect such that the improvement can be surely achieved and the total elongation can be improved is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ti-4.5Al-3V-2Mo-2Fe チタン合金の冷間および
温間における圧下率と、全伸びおよび引張強度(YS、T
S)との関係を示すグラフである。
Fig. 1 Reduction rate, total elongation and tensile strength (YS, T) of Ti-4.5Al-3V-2Mo-2Fe titanium alloy in cold and warm conditions
6 is a graph showing the relationship with S).

【図2】Ti-6Al-4V チタン合金の冷間および温間におけ
る圧下率と、全伸びおよび引張強度(YS、TS)との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the rolling reduction of a Ti-6Al-4V titanium alloy in cold and warm conditions, and the total elongation and tensile strength (YS, TS).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 683 C22F 1/00 683 685 685A 685Z 686 686A 694 694A (56)参考文献 特開 昭62−33750(JP,A) 特公 平2−19182(JP,B2) 鉄と鋼,Vol.72,No.5,P P.S735−S736(1986) (58)調査した分野(Int.Cl.6,DB名) C22F 1/18 B21B 1/24 B21B 3/00 ────────────────────────────────────────────────── 6 Continuation of the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 683 C22F 1/00 683 685 685A 685Z 686 686A 694 694A (56) ) Tokiko 2-19182 (JP, B2) Iron and Steel, Vol. 72, No. 5, PP. S735-S736 (1986) (58) Fields investigated (Int. Cl. 6 , DB name) C22F 1/18 B21B 1/24 B21B 3/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方向に熱間圧延されたα+β型チタン
合金板に、熱間圧延方向と直交する方向に、20から4
5%の範囲内の圧下率で冷間圧延または温間圧延を施
し、かくして、前記チタン合金板の機械的特性の異方性
を改善することを特徴とする、α+β型チタン合金板の
製造方法。
1. An α + β type titanium which is hot-rolled in one direction.
20 to 4 in the direction perpendicular to the hot rolling direction
Cold rolling or warm rolling at a rolling reduction within a range of 5%, thereby improving the anisotropy of the mechanical properties of the titanium alloy sheet, characterized by the fact that the titanium alloy sheet has anisotropy in mechanical properties. .
【請求項2】 前記冷間圧延または温間圧延した前記チ
タン合金板に、再結晶焼鈍を施すことを特徴とする、請
求項記載のα+β型チタン合金板の製造方法。
To wherein said titanium alloy plate was rolled between the cold rolling or warm, characterized in that the recrystallization annealing is subjected method of alpha + beta type titanium alloy plate according to claim 1, wherein.
JP12820592A 1992-04-21 1992-04-21 Manufacturing method of α + β type titanium alloy sheet Expired - Lifetime JP2871292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12820592A JP2871292B2 (en) 1992-04-21 1992-04-21 Manufacturing method of α + β type titanium alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12820592A JP2871292B2 (en) 1992-04-21 1992-04-21 Manufacturing method of α + β type titanium alloy sheet

Publications (2)

Publication Number Publication Date
JPH05295503A JPH05295503A (en) 1993-11-09
JP2871292B2 true JP2871292B2 (en) 1999-03-17

Family

ID=14979081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12820592A Expired - Lifetime JP2871292B2 (en) 1992-04-21 1992-04-21 Manufacturing method of α + β type titanium alloy sheet

Country Status (1)

Country Link
JP (1) JP2871292B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333469B (en) * 2021-06-30 2022-03-08 索罗曼(常州)合金新材料有限公司 TC4 titanium alloy sheet hot rolling process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鉄と鋼,Vol.72,No.5,PP.S735−S736(1986)

Also Published As

Publication number Publication date
JPH05295503A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
JP3445991B2 (en) Method for producing α + β type titanium alloy material having small in-plane anisotropy
EP0683242B1 (en) Method for making titanium alloy products
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
US6767412B2 (en) Method for producing non-grain-oriented magnetic steel sheet
US6406558B1 (en) Method for manufacturing magnetic steel sheet having superior workability and magnetic properties
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JP2884913B2 (en) Manufacturing method of α + β type titanium alloy sheet for superplastic working
EP0909339B1 (en) Method for processing billets from multiphase alloys
JP2871292B2 (en) Manufacturing method of α + β type titanium alloy sheet
US4486242A (en) Method for producing superplastic aluminum alloys
JPS6053727B2 (en) Method for manufacturing austenitic stainless steel sheets and steel strips
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
CN115710680B (en) A Fe-Mn-Si-Cr-Ni-C series shape memory alloy and preparation method thereof
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
JP4349504B2 (en) Manufacturing method of high gloss BA finish stainless steel using tandem mill
SU1509143A1 (en) Method of producing foil from magnesium alloys
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure
JPH0781177B2 (en) Method for manufacturing β-type titanium alloy strip
JPH0135915B2 (en)
JP3446512B2 (en) Manufacturing method of tapered steel plate
JP3474628B2 (en) Manufacturing method of ultra-high silicon electrical steel sheet
JPS607027B2 (en) Manufacturing method for cold-rolled titanium or zirconium sheets for warm processing
JPS61210164A (en) Production method of α+β type titanium alloy hot rolled material
JPH09176810A (en) Production of beta titanium alloy strip