JP2870778B2 - Gas turbine shroud structure - Google Patents
Gas turbine shroud structureInfo
- Publication number
- JP2870778B2 JP2870778B2 JP1014189A JP1418989A JP2870778B2 JP 2870778 B2 JP2870778 B2 JP 2870778B2 JP 1014189 A JP1014189 A JP 1014189A JP 1418989 A JP1418989 A JP 1418989A JP 2870778 B2 JP2870778 B2 JP 2870778B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- shroud
- gas turbine
- tip
- shroud structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 claims description 38
- 239000002245 particle Substances 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000000428 dust Substances 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 16
- 230000003628 erosive effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は発電用、輸送用など種々の分野で使用される
高温高効率のガスタービンに係り、特に動翼先端と摺接
するシュラウド内面を改良したガスタービンのシュラウ
ド構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-temperature and high-efficiency gas turbine used in various fields such as power generation and transportation, and in particular, improves an inner surface of a shroud which is in sliding contact with a blade tip. The present invention relates to a shroud structure of a gas turbine.
[従来の技術] 従来ガスタービンの効率を向上させるためには、動翼
先端とシュラウドとのクリアランスをできるだけ小さく
し、その間を通るガスのリークを小さくすることが重要
である。そのために動翼先端が万一シュラウドに接触し
てもシュラウド表面が容易に削られ動翼側に損傷を与え
ないアブレーダブルシールが研究開発されている。[Prior Art] In order to improve the efficiency of a conventional gas turbine, it is important to reduce the clearance between the blade tip and the shroud as much as possible and to reduce the leakage of gas passing between them. For this reason, an abradable seal that does not damage the blade side because the shroud surface is easily cut off even if the blade tip comes into contact with the shroud has been researched and developed.
特にタービン入口ガス温度の高い高効率ガスタービン
の場合、アブレーダブルシールにセラミックスを用いる
ことが望ましく、例えばセラミック粒子をプラズマ中で
半溶融状態にしつつ吹き付けるプラズマスプレー法によ
って金属製シュラウドの上にセラミックアブレーダブル
シールを形成させる方法が試みられている。In particular, in the case of a high-efficiency gas turbine having a high gas temperature at the turbine inlet, it is desirable to use ceramics for the abradable seal. Attempts have been made to form abradable seals.
[発明が解決しようとする課題] このプラズマスプレー法によって生成されるセラミッ
クアブレーダブルシールではセラミック粒子が直接半溶
融結合した状態であるため以下の問題点がある。[Problems to be Solved by the Invention] The ceramic abradable seal produced by the plasma spray method has the following problems because the ceramic particles are directly semi-molten bonded.
(1) 気孔率の低い緻密な材質とすると硬くなり、動
翼先端により容易に削られない。特に動翼にセラミック
スを用いる場合、かえって動翼先端が欠ける等の問題が
おこる。(1) If the material is made of a dense material having a low porosity, the material becomes hard and is not easily shaved by the blade tip. In particular, when ceramics are used for the moving blade, problems such as chipping of the moving blade tip occur.
(2) 他方、気孔率の高い材質とすると、硬度は下が
り、動翼先端によって容易に削られるようになるが、ダ
スト等を含む高温高速ガスによるエロージョンが起り易
くなりシールの寿命が短い。本発明は上記事情を考慮し
てなされたもので、動翼先端との接触時に容易に削ら
れ、かつダスト等によるエロージョンが起こりにくいガ
スタービンのシュラウド構造を提供することを目的とす
る。(2) On the other hand, if a material having a high porosity is used, the hardness is reduced and the blade is easily shaved by the tip of the moving blade. The present invention has been made in view of the above circumstances, and has as its object to provide a shroud structure of a gas turbine which is easily shaved at the time of contact with a blade tip and hardly causes erosion due to dust or the like.
[課題を解決するための手段] 本発明は上記の目的を達成するために、動翼の先端と
摺動するシュラウド構造において、タービン内に流入す
るダスト粒子より硬度の高い粒径10〜500μmのセラミ
ック粒子を、1μm以下の気孔を有する多孔質セラミッ
クにて結合した微視的組織を有すると共に上記動翼先端
との接触により容易に削られるセラミックシール層を形
成すると共に、このセラミックシール層を、熱膨張差を
吸収する中間層を介して金属製シュラウドに接合したも
のである。Means for Solving the Problems In order to achieve the above object, the present invention provides a shroud structure that slides on the tip of a moving blade, and has a particle diameter of 10 to 500 μm, which is higher in hardness than dust particles flowing into a turbine. The ceramic particles have a microstructure joined by a porous ceramic having pores of 1 μm or less and form a ceramic seal layer which is easily shaved by contact with the blade tip. It is joined to a metal shroud via an intermediate layer that absorbs the difference in thermal expansion.
[作用] 上記構成によればセラミックシール層は動翼先端によ
りに容易に削り取りができ、その間のシール性が良好と
なると共にエロージョンに対して耐久性のあるものとす
ることかができる。[Operation] According to the above configuration, the ceramic seal layer can be easily scraped off by the tip of the blade, thereby improving the sealing property therebetween and also being durable against erosion.
[実施例] 以下本発明の好適実施例を添付図面に基づいて説明す
る。EXAMPLES Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図において、1は回転ディスクに取り付けられた
セラミック製動翼、3は動翼1の先端1aと摺接するシュ
ラウドで、金属シュラウド4の内面に中間層5を介して
アブレーダブル(易削性)シールとしてのセラミックシ
ール層6が設けられて構成される。In FIG. 1, reference numeral 1 denotes a ceramic moving blade attached to a rotating disk, and 3 denotes a shroud which is in sliding contact with the tip 1a of the moving blade 1, and is abradable (easy to cut) on the inner surface of a metal shroud 4 via an intermediate layer 5. A ceramic seal layer 6 is provided as a seal.
セラミックシール層6は、第2図に示すように粒径10
〜500μmのセラミック粒子7を、気孔径1μm以下の
多孔質セラミックス8にて結合した微視的組織を有する
セラミックスからなる。セラミック粒子7としては、モ
ース硬度6以上で、タービン内に流入するダスト粒子よ
り硬度が高く、また高温ガスによる酸化腐食等に対して
安定なセラミックスが望ましく、アルミナ、ジルコニ
ア、ムライト、窒化ケイ素、炭化ケイ素等が考えられる
が、金属との熱膨張率の差が小さく、シールとして剥離
しにくい点を考えると、ジルコニアが最も望ましい。結
合層の多孔質セラミックス8としては、気孔率10〜50%
が望ましい、気孔率が低すぎる場合、硬度と強度が高す
ぎて削られにくくなり、気孔率が高すぎる場合、逆にエ
ロージョンに弱くまた破損もし易くなる。この材質とし
てはアルミナ、ジルコニア、ムライト、シリカ、窒化ケ
イ素、炭化ケイ素等が考えられる。この形成方法として
は、これらのセラミックスの前駆体となる可溶性化合物
の溶液、溶状高分子、超微粒子(コロイド)分散液等を
用い、これら液体と前記セラミック粒子7とを混合し、
シール形状に形成した後、焼成を行って微視的組織のセ
ラミックシール層6を形成する。The ceramic seal layer 6 has a particle size of 10 as shown in FIG.
It is made of ceramics having a microscopic structure in which ceramic particles 7 having a size of about 500 μm are bonded by porous ceramics 8 having a pore diameter of 1 μm or less. The ceramic particles 7 are desirably ceramics having a Mohs hardness of 6 or more, higher in hardness than dust particles flowing into the turbine, and stable against oxidative corrosion or the like by a high-temperature gas. Silicon and the like are conceivable, but zirconia is most desirable in view of the fact that the difference in the coefficient of thermal expansion from the metal is small, and it is difficult to peel off as a seal. As the porous ceramics 8 of the bonding layer, the porosity is 10 to 50%.
When the porosity is too low, the hardness and strength are too high to make it difficult to cut, and when the porosity is too high, it is susceptible to erosion and easily breaks. As this material, alumina, zirconia, mullite, silica, silicon nitride, silicon carbide and the like can be considered. As a forming method, a solution of a soluble compound serving as a precursor of these ceramics, a dissolved polymer, an ultrafine particle (colloid) dispersion liquid, or the like is used, and these liquids and the ceramic particles 7 are mixed.
After forming into a seal shape, firing is performed to form a ceramic seal layer 6 having a microscopic structure.
このセラミックシール層6を金属との熱膨張差等を吸
収しうる中間層5を介して、金属製シュラウド4上に接
合する。この中間層5としては、耐熱金属繊維の成形体
等柔軟性に富む材質を用いてもよく、またセラミック
ス、金属混合組成でその組成がセラミックシール層6側
から金属製シュラウド4側へ連続的または段階的に変化
する等傾斜機能材料を用いてもよい。また、シール層
6、中間層5、シュラウド4の接合方法は、ロウ付け、
拡散(焼結)接合等による。The ceramic seal layer 6 is bonded onto the metal shroud 4 via an intermediate layer 5 that can absorb a difference in thermal expansion with a metal. The intermediate layer 5 may be made of a material having high flexibility, such as a molded article of heat-resistant metal fiber. The composition may be a mixture of ceramics and metal, and the composition may be continuous from the ceramic seal layer 6 side to the metal shroud 4 side. You may use the same gradient functional material which changes stepwise. Further, the joining method of the seal layer 6, the intermediate layer 5, and the shroud 4 includes brazing,
By diffusion (sintering) bonding or the like.
セラミック粒子7の粒径を10〜500μmとする理由
は、10μm以下ではエロージョンに弱くなり、また500
μm以上では動翼1先端1aに損傷を与え易くなるためで
ある。The reason for setting the particle size of the ceramic particles 7 to 10 to 500 μm is that if the particle size is 10 μm or less, the particles are weak to erosion,
If the thickness is more than μm, the blade 1 tip 1a is liable to be damaged.
多孔質セラミック8の結合層の気孔径を1μm以下と
する理由は、削られ易くかつエロージョンに対する耐久
性を持たせるためである。またセラミック粒子7同士の
間隙即ち、多孔質セラミック8の結合層の厚さはできる
だけ小さく保った方がエロージョンに対する耐久性が向
上する。The reason why the pore diameter of the bonding layer of the porous ceramic 8 is set to 1 μm or less is that the bonding layer is easily scraped and has durability against erosion. The erosion durability is improved by keeping the gap between the ceramic particles 7, that is, the thickness of the bonding layer of the porous ceramic 8 as small as possible.
以下、より具体的な実施例を説明する。 Hereinafter, more specific examples will be described.
(実施例) 粒径20〜100μmのジルコニア+8%イットリア粒子
とジルコニアゾルとを混合し、プレス成形によりシール
形成に成形し、焼成を行うことにより、上記ジルコニア
系粒子を60体積%含み、その空隙を平均気孔径0.1μ
m、気孔率40%の多孔質ジルコニアにて結合した微視的
組織を有するセラミックシール層を得た。(Example) A mixture of zirconia + 8% yttria particles having a particle diameter of 20 to 100 μm and zirconia sol, press-molding to form a seal, and baking are performed to contain 60% by volume of the zirconia-based particles, thereby forming a void. The average pore diameter is 0.1μ
m, a ceramic seal layer having a microstructure bonded with porous zirconia having a porosity of 40% was obtained.
金属製シュラウド上に耐熱ニッケル合金の繊維成形焼
結体の薄板をロウ付けして中間層とし、その上にジルコ
ニアをプラズマスプレーコーティングした後、上記セラ
ミックシール層をジルコニアゾルにて接着し焼成して焼
結接合を行った。On a metal shroud, a thin plate of a heat-resistant nickel alloy fiber molded sintered body is brazed to form an intermediate layer, and zirconia is plasma spray-coated thereon, and then the ceramic seal layer is bonded with a zirconia sol and fired. Sinter joining was performed.
このようにして得られたシュラウド構造は、窒化ケイ
素、セラミック動翼に対する先端接触摺動試験におい
て、十分な被削性及びシール性を示し、またダスト粉体
吹き付けのエロージョン試験においても高い耐久性を示
した。The shroud structure thus obtained shows sufficient machinability and sealability in the tip contact sliding test with silicon nitride and ceramic blades, and has high durability in the erosion test of dust powder spraying. Indicated.
[発明の効果] 以上説明してきたように本発明は次の効果を奏する。[Effects of the Invention] As described above, the present invention has the following effects.
(1) 動翼と摺接する内面を、セラミック粒子と多孔
質セラミックからなる微視的構造のセラミックシール層
とすることにより、アブレーダブルシールとして動翼先
端による削り取りが容易で万一の接触の場合にも動翼側
に損傷を与えずかつシール性が良好となる。(1) By forming the inner surface in sliding contact with the moving blade with a ceramic seal layer having a microscopic structure composed of ceramic particles and porous ceramic, an abradable seal can be easily scraped off by the moving blade tip to ensure an easy contact. Also in this case, the rotor blade side is not damaged and the sealing performance is good.
(2) ダスト等によるエロージョンに対しても耐久性
に優れている。(2) Excellent durability against erosion due to dust and the like.
(3) 従って高温タービンとして、効率も信頼性も向
上させることができる。(3) As a high-temperature turbine, both efficiency and reliability can be improved.
第1図は本発明の一実施例を示す断面図、第2図は第1
図中丸Aで囲んだ部分の拡大断面図である。 図中、1……は動翼、3……はシュラウド、4……は金
属シュラウド、5……は中間層、6……はセラミックシ
ール層である。FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG.
It is an expanded sectional view of the part enclosed with the circle A in the figure. In the figures, 1 ... are blades, 3 ... are shrouds, 4 ... are metal shrouds, 5 ... are intermediate layers, 6 ... are ceramic seal layers.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−82815(JP,A) 特開 昭63−170254(JP,A) (58)調査した分野(Int.Cl.6,DB名) F01D 11/08 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-82815 (JP, A) JP-A-63-170254 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F01D 11/08
Claims (1)
いて、タービン内に流入するダスト粒子より硬度の高い
粒径10〜500μmのセラミック粒子を、1μm以下の気
孔を有する多孔質セラミックスにて結合した微視的組織
を有すると共に上記動翼先端との接触により容易に削ら
れるセラミックシール層を形成すると共に、このセラミ
ックシール層を、熱膨張差を吸収する中間層を介して金
属製シュラウドに接合したことを特徴とするガスタービ
ンのシュラウド構造。In a shroud structure which slides on the tip of a moving blade, ceramic particles having a particle diameter of 10 to 500 μm, which are higher in hardness than dust particles flowing into a turbine, are bonded by porous ceramics having pores of 1 μm or less. A ceramic seal layer having a microstructure as described above and easily scraped by contact with the blade tip is formed, and this ceramic seal layer is joined to a metal shroud via an intermediate layer that absorbs a difference in thermal expansion. A shroud structure for a gas turbine, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1014189A JP2870778B2 (en) | 1989-01-25 | 1989-01-25 | Gas turbine shroud structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1014189A JP2870778B2 (en) | 1989-01-25 | 1989-01-25 | Gas turbine shroud structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02196109A JPH02196109A (en) | 1990-08-02 |
JP2870778B2 true JP2870778B2 (en) | 1999-03-17 |
Family
ID=11854178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1014189A Expired - Fee Related JP2870778B2 (en) | 1989-01-25 | 1989-01-25 | Gas turbine shroud structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2870778B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6726448B2 (en) * | 2002-05-15 | 2004-04-27 | General Electric Company | Ceramic turbine shroud |
DE102007047739B4 (en) * | 2007-10-05 | 2014-12-11 | Rolls-Royce Deutschland Ltd & Co Kg | Gas turbine compressor with start-up layer |
FR2996874B1 (en) | 2012-10-11 | 2014-12-19 | Turbomeca | ROTOR-STATOR ASSEMBLY FOR GAS TURBINE ENGINE |
EP2789804A1 (en) | 2013-04-11 | 2014-10-15 | Alstom Technology Ltd | Gas turbine thermal shroud with improved durability |
JP7304858B2 (en) * | 2017-12-06 | 2023-07-07 | サフラン・エアクラフト・エンジンズ | Method for producing an ordered network of sound absorbing channels made of abradable material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4109031A (en) * | 1976-12-27 | 1978-08-22 | United Technologies Corporation | Stress relief of metal-ceramic gas turbine seals |
JPS63170254A (en) * | 1987-01-08 | 1988-07-14 | 日本碍子株式会社 | Manufacture of ceramics |
-
1989
- 1989-01-25 JP JP1014189A patent/JP2870778B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02196109A (en) | 1990-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2229031C2 (en) | Gas-turbine engine sealing device (versions), gas-turbine engine blade and gas-turbine engine sharp edge | |
US4336276A (en) | Fully plasma-sprayed compliant backed ceramic turbine seal | |
CA1255545A (en) | Method for adhesion of grit to blade tips | |
KR100813544B1 (en) | Abrasive sealing system | |
US20140147242A1 (en) | Seal systems for use in turbomachines and methods of fabricating the same | |
WO2002018674A2 (en) | Thermal barrier coating system for turbine components | |
EP3440318B1 (en) | Seal geometries for reduced leakage in gas turbines and methods of forming | |
US20040009365A1 (en) | Temperature-stable protective coating over a metallic substrate surface | |
EP1165941A1 (en) | High temperature erosion resistant, abradable thermal barrier composite coating | |
EP1312693B1 (en) | Thermal barrier coating material, gas turbine parts and gas turbine | |
JPH0893402A (en) | Blade with front end of zirconia base material having macro-crack structure and manufacture thereof | |
US10989066B2 (en) | Abradable coating made of a material having a low surface roughness | |
EP0382993B1 (en) | Run-in coating for abradable seals in gas turbines | |
JP2870778B2 (en) | Gas turbine shroud structure | |
GB2130244A (en) | Forming coatings by hot isostatic compaction | |
EP0605417A1 (en) | Impermeable, abradable seal and method for the production thereof. | |
WO1995021319A1 (en) | Honeycomb abradable seals | |
JPH03156103A (en) | Relative displacement device | |
JPH0396601A (en) | Relative moving device | |
Nagy et al. | Durable Abrasive Tip Design for Single Crystal Turbine Blades | |
JPS59220350A (en) | Porous heat-resisting composite body | |
JPH04106360U (en) | Heat shielding ceramic coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |