[go: up one dir, main page]

JP2867150B2 - Microwave plasma CVD equipment - Google Patents

Microwave plasma CVD equipment

Info

Publication number
JP2867150B2
JP2867150B2 JP1266308A JP26630889A JP2867150B2 JP 2867150 B2 JP2867150 B2 JP 2867150B2 JP 1266308 A JP1266308 A JP 1266308A JP 26630889 A JP26630889 A JP 26630889A JP 2867150 B2 JP2867150 B2 JP 2867150B2
Authority
JP
Japan
Prior art keywords
source gas
deposited film
microwave
substrate
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1266308A
Other languages
Japanese (ja)
Other versions
JPH03219081A (en
Inventor
哲也 武井
宏之 片桐
寿康 白砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1266308A priority Critical patent/JP2867150B2/en
Priority to US07/549,243 priority patent/US5129359A/en
Publication of JPH03219081A publication Critical patent/JPH03219081A/en
Application granted granted Critical
Publication of JP2867150B2 publication Critical patent/JP2867150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は基体上に堆積膜、とりわけ機能性膜、特に半
導体デバイス、電子写真用感光体、画像入力用ラインセ
ンサー、撮像デバイス、光起電力デバイス等に用いるア
モルファス半導体膜を形成するマイクロ波プラズマCVD
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a deposited film on a substrate, especially a functional film, especially a semiconductor device, a photoconductor for electrophotography, a line sensor for image input, an imaging device, and a photovoltaic device. Microwave plasma CVD for forming amorphous semiconductor films used for devices, etc.
Related to the device.

〔従来技術の説明〕[Description of Prior Art]

従来、半導体デバイス、電子写真用感光体、画像入力
用ラインセンサー、撮像デバイス、光起電力デバイス、
その他各種エレクトロニクス素子、光学素子等に用いる
素子部材として、アモルファスシリコン、例えば水素又
は/及びハロゲン(例えばフッ素、塩素等)で補償され
たアモルファスシリコン(以下、“A−Si(H,X)”と
いう。)等のアモルファス材料で構成された半導体等用
の堆積膜が提案され、その中のいくつかは実用に付され
ている。
Conventionally, semiconductor devices, photoreceptors for electrophotography, line sensors for image input, imaging devices, photovoltaic devices,
As other element members used for various electronic elements, optical elements, etc., amorphous silicon, for example, amorphous silicon compensated with hydrogen and / or halogen (eg, fluorine, chlorine, etc.) (hereinafter referred to as “A-Si (H, X)”) ) Have been proposed, and some of them have been put to practical use.

そして、こうした堆積膜は、プラズマCVD法、即ち、
原料ガスを直流、高周波、又はマイクロ波等の放電エネ
ルギーによって分解し、ガラス、石英、耐熱性合成樹脂
フィルム、ステンレス、アルミニウムなどの材質の基体
上に薄膜状の堆積膜を形成する方法により形成されるこ
とが知られており、そのための装置も各種提案されてい
る。
And such a deposited film is a plasma CVD method, that is,
It is formed by a method of decomposing a raw material gas by discharge energy such as direct current, high frequency, or microwave, and forming a thin film deposition film on a base material such as glass, quartz, a heat-resistant synthetic resin film, stainless steel, or aluminum. It has been known that various devices have been proposed.

ところで近年、マイクロ波グロー放電分解法によるプ
ラズマCVD法が注目され、工業的利用への研究がなされ
て来ている。
Meanwhile, in recent years, a plasma CVD method using a microwave glow discharge decomposition method has attracted attention, and research for industrial use has been made.

こうした代表的なマイクロ波グロー放電分解法による
CVD装置が特開昭59−078528号公報に開示されている。
そしてさらには特開昭61−283116号公報にはマイクロ波
CVD法による改良された装置の開示があり、該公報には
放電空間中に電極を設置し所望の電圧を印加して放電空
間のプラズマ電位を制御することにより、堆積種のイオ
ン衝撃を制御しながら膜堆積を行う方法が記載されてお
り、該方法によれば形成される膜の特性が実質的に向上
することが開示されている。
By such typical microwave glow discharge decomposition method
A CVD apparatus is disclosed in JP-A-59-078528.
Furthermore, JP-A-61-283116 discloses microwaves.
There is a disclosure of an improved apparatus by the CVD method, in which the electrode is installed in the discharge space and a desired voltage is applied to control the plasma potential in the discharge space, thereby controlling the ion bombardment of the deposited species. A method for performing film deposition is described, and it is disclosed that according to the method, the characteristics of a film formed are substantially improved.

こうした、従来のマイクロ波プラズマCVD法による堆
積膜形成装置は代表的には第4および第5図に示すもの
である。
Such a conventional apparatus for forming a deposited film by a microwave plasma CVD method is typically shown in FIGS. 4 and 5.

第4図は1つの基板を設置するタイプを示し、第5図
は複数の基板を同時に設置できるタイプを示している。
FIG. 4 shows a type in which one substrate is installed, and FIG. 5 shows a type in which a plurality of substrates can be installed simultaneously.

第4図において、401は反応容器であり、真空気密化
構造を成している。402はマイクロ波電力を反応容器内
に効率良く透過し、かつ真空気密を保持し得るような材
料、例えば、石英ガラス、アルミナセラミックス等で形
成された誘電体窓である。403はマイクロ波の伝送部で
主として金属性の導波管からなっており、整合器アイソ
レーターを介してマイクロ波電源(図示せず)に接続さ
れている。404は一端が真空容器401内に開口し、他端が
排気装置(図示せず)に連通している排気管である。40
5は堆積膜形成用の基体であり、406は放電空間を示す。
さらに、409,410はそれぞれプラズマ電位を制御するた
めの電源および電極を示している。
In FIG. 4, reference numeral 401 denotes a reaction vessel, which has a vacuum tight structure. Reference numeral 402 denotes a dielectric window formed of a material capable of efficiently transmitting microwave power into the reaction vessel and maintaining vacuum tightness, for example, quartz glass, alumina ceramics, or the like. Reference numeral 403 denotes a microwave transmission unit mainly composed of a metallic waveguide, which is connected to a microwave power supply (not shown) via a matching device isolator. An exhaust pipe 404 has one end opening into the vacuum vessel 401 and the other end communicating with an exhaust device (not shown). 40
Reference numeral 5 denotes a substrate for forming a deposited film, and reference numeral 406 denotes a discharge space.
Reference numerals 409 and 410 denote a power supply and electrodes for controlling the plasma potential, respectively.

第5図に示す装置の説明は概略第4図と同じであるが
ただ1つ異なるところは505で示す基体であり、電極510
の方向に沿って複数からなっている。
The description of the device shown in FIG. 5 is substantially the same as that of FIG.
Along the direction.

こうした従来の堆積膜形成装置による堆積膜形成は例
えば第4図の装置を用いたときには概略以下のように行
われる。
The formation of a deposited film by such a conventional deposited film forming apparatus is generally performed as follows when the apparatus shown in FIG. 4 is used, for example.

即ち、真空ポンプ(図示せず)により、反応容器401
内を脱気し、反応容器401内圧力を1×10-7Torr以下に
調整する。次いで基体ホルダー407に内蔵されたヒータ
ーに通電して基体405の温度を所望する膜堆積の形成に
好適な温度に加熱保持する。原料ガス導入パイプ408を
介して、例えばアモルファスシリコン堆積膜を形成する
場合であれば、シランガス(SiH4)等の原料ガスが反応
容器401内に導入される。それと同時併行的にマイクロ
波電源(図示せず)に通電して周波数500MHz以上の、好
ましくは2.45GHzのマイクロ波を発生させ、導波管403を
通じ、誘電体窓402を介して反応容器401内に導入され
る。
That is, the reaction vessel 401 is operated by a vacuum pump (not shown).
The inside is evacuated, and the pressure inside the reaction vessel 401 is adjusted to 1 × 10 −7 Torr or less. Next, a heater built in the substrate holder 407 is energized to heat and maintain the temperature of the substrate 405 at a temperature suitable for forming a desired film deposition. In the case of forming an amorphous silicon deposition film, for example, a source gas such as silane gas (SiH 4 ) is introduced into the reaction vessel 401 via the source gas introduction pipe 408. At the same time, power is supplied to a microwave power supply (not shown) to generate a microwave having a frequency of 500 MHz or more, preferably 2.45 GHz, and the inside of the reaction vessel 401 through the waveguide 403 and the dielectric window 402. Will be introduced.

かくして反応容器401内のガスは、マイクロ波のエネ
ルギーにより励起されて解離し、基体表面に堆積膜が形
成されるところとなる。
Thus, the gas in the reaction vessel 401 is excited and dissociated by the energy of the microwave, and a deposited film is formed on the substrate surface.

こうした従来の堆積膜形成装置を用いることにより比
較的厚い光導電性材料を高い堆積速度で形成することが
可能となった。
By using such a conventional deposited film forming apparatus, a relatively thick photoconductive material can be formed at a high deposition rate.

しかしながら、こうした従来の装置では、例えば電子
写真感光体のように大面積において均一の特性を要求さ
れる部材を作製する場合、その特性及び経済性で、まだ
不充分なものであった。
However, such a conventional apparatus is still inadequate in terms of characteristics and economy when producing a member requiring uniform characteristics over a large area such as an electrophotographic photosensitive member.

即ち、プラズマ空間の外部から原料ガス導入を行う場
合、原料ガスはプラズマに入ると分解、イオン化が次々
と起こる。このとき、プラズマ中での原料ガスの上流側
(原料ガス導入口側)と下流側(原料ガス排気手段側)
でのラジカル濃度及びイオン濃度が大きく変化する。
That is, when the source gas is introduced from outside the plasma space, the source gas decomposes and ionizes one after another when it enters the plasma. At this time, the upstream side (source gas inlet side) and the downstream side (source gas exhaust means side) of the source gas in the plasma.
Radical concentration and ion concentration at the time vary greatly.

このため、上流側と下流側で、基体上のイオン衝突の
量及び強度が変化し、堆積膜の膜厚と電気的特性の不均
一性が発生する。
For this reason, the amount and intensity of ion collision on the substrate change between the upstream side and the downstream side, resulting in non-uniformity of the deposited film thickness and electrical characteristics.

また原料ガスは、プラズマの外部からプラズマの内部
に入るため、プラズマ強度の強いプラズマ中心部を通過
せずに分解されないまま排気されてしまうものもあり、
原料ガス利用効率も今一歩のものとなってしまう。
In addition, since the raw material gas enters the plasma from the outside of the plasma, there is a case where the raw material gas is exhausted without being decomposed without passing through the plasma center having a strong plasma intensity.
The raw material gas utilization efficiency is now one step away.

さらに原料ガスは、プラズマ外部から、供給されるた
め、そのイオン化は、プラズマ内部に設けられたバイア
ス電極から遠い位置で大部分が行われる。このためイオ
ンのエネルギーは、基板に対して充分高くなく、基板へ
のボンバードは不充分なものとなる。このとき、充分な
ボンバードの効果を上げる目的でバイアス電極の電圧を
上げると、スパーク等バイアス電極からの異常放電が発
生してしまう。
Further, since the source gas is supplied from outside the plasma, the ionization is mostly performed at a position far from a bias electrode provided inside the plasma. Therefore, the energy of the ions is not sufficiently high with respect to the substrate, and the bombardment of the substrate becomes insufficient. At this time, if the voltage of the bias electrode is increased for the purpose of sufficiently enhancing the effect of the bombardment, abnormal discharge from the bias electrode such as spark occurs.

一方、原料ガス導入手段をプラズマの内部に設けた場
合、原料ガスは必ずプラズマの中心を通過するため、分
解な充分に行われるがプラズマ中に設けられた原料ガス
導入手段とその原料ガスの流れによりプラズマ中の電界
がみだされ、基板上の堆積膜の膜厚及び電気的特性の均
一性が充分でない。
On the other hand, when the source gas introducing means is provided inside the plasma, the source gas always passes through the center of the plasma, so that the decomposition is sufficiently performed, but the source gas introducing means provided in the plasma and the flow of the source gas are provided. As a result, an electric field in the plasma is generated, and the uniformity of the thickness and the electrical characteristics of the deposited film on the substrate is not sufficient.

特に原料ガス利用効率を上げるためプラズマを囲むよ
うに複数の基体を設置した場合、その影響は顕著なもの
となる。
In particular, when a plurality of substrates are provided so as to surround the plasma in order to increase the source gas use efficiency, the effect becomes remarkable.

この影響は原料ガス導入手段が導体の場合はもちろ
ん、絶縁体の場合も問題となり、原料ガス導入手段の表
面に堆積膜が形成されていくにつれ、さらにプラズマ中
の電界のみだれは大きくなっていく。
This effect is a problem not only in the case where the source gas introducing means is a conductor, but also in the case where the source gas introducing means is an insulator. As the deposited film is formed on the surface of the source gas introducing means, the electric field in the plasma further increases. .

〔発明の目的〕[Object of the invention]

本発明は、上述のごとき従来の装置における諸問題を
克服して、半導体デバイス、電子写真用感光体デバイ
ス、画像入力用ラインセンサー、撮像デバイス、光起電
力素子、その他の各種エレクトロニクス素子、光学素子
等に用いる素子部材をマイクロ波プラズマCVD法により
形成しうる装置にして、原料ガスの利用効率をより一層
向上させるとともに、均質な膜を高速度でかつ安定に形
成しうる装置に提供することを目的とするものである。
The present invention overcomes the problems of the conventional apparatus as described above, and provides a semiconductor device, an electrophotographic photoreceptor device, an image input line sensor, an imaging device, a photovoltaic element, various other electronic elements, and an optical element. To provide a device capable of forming a uniform film at a high speed and stably while further improving the utilization efficiency of the source gas by using a device capable of forming the element members used for the microwave plasma CVD method or the like. It is the purpose.

〔発明の構成・効果〕[Structure and effect of the invention]

本発明者は、従来のマイクロ波CVD法による堆積膜形
成装置における前述の問題点を克服すべく鋭意研究を続
けた結果、マイクロ波プラズマCVD装置で安定かつ良質
の堆積膜を高速に得るためには、原料ガスの導入手段
が、放電空間の内部に位置し、さらに該原料ガスの導入
手段と基体間に電界がかかるように該原料ガスの導入手
段に電圧をかけることにより、解決し得るという知見を
得た。
The inventor of the present invention has conducted intensive research to overcome the above-mentioned problems in the conventional deposition apparatus for forming a film by the microwave CVD method. As a result, in order to obtain a stable and high-quality deposition film with a microwave plasma CVD apparatus at a high speed. Can be solved by applying a voltage to the source gas introducing means such that the source gas introducing means is located inside the discharge space, and an electric field is applied between the source gas introducing means and the substrate. Obtained knowledge.

本発明は、上述した知見に基づいて完成したものであ
る。本発明のマイクロ波プラズマCVD装置は、真空気密
可能であって放電空間を有する反応容器と、堆積膜が形
成される基体を前記反応容器内に配置するための機構
と、前記放電空間内に原料ガスを導入する原料ガス導入
手段と、前記放電空間内にマイクロ波を導入するマイク
ロ波導入手段とから構成され、前記放電空間内に原料ガ
ス及びマイクロ波エネルギーを導入し、導入したマイク
ロ波エネルギーにより励起されるグロー放電により、前
記基体上に堆積膜を形成するマイクロ波CVD装置であっ
て、前記原料ガス導入手段は導電性材で形成された筒状
の形状を有し、該原料ガス導入手段の少なくとも一部分
が、前記放電空間内であって、前記反応容器内に配置さ
れる基体に沿って位置し、前記基体と前記原料ガス導入
手段との間に電界がかかるように、前記原料ガス導入手
段の該導電性材料部分に電源が接続されていることを特
徴とする。
The present invention has been completed based on the above findings. The microwave plasma CVD apparatus according to the present invention includes a reaction vessel capable of being vacuum-tight and having a discharge space, a mechanism for disposing a substrate on which a deposited film is formed in the reaction vessel, and a raw material in the discharge space. A source gas introducing means for introducing a gas, and a microwave introducing means for introducing a microwave into the discharge space; a source gas and microwave energy are introduced into the discharge space; A microwave CVD apparatus for forming a deposited film on the substrate by an excited glow discharge, wherein the source gas introducing unit has a cylindrical shape formed of a conductive material, At least a portion of the substrate is located in the discharge space and along a substrate disposed in the reaction vessel, and an electric field is applied between the substrate and the source gas introducing means. In, wherein the power supply to the conductive material portions of the material gas introduction means is connected.

以下、本発明のマイクロ波プラズマCVD装置の構成を
具体的に示す例を第1乃至3図に示す。
Hereinafter, examples specifically showing the configuration of the microwave plasma CVD apparatus of the present invention are shown in FIGS.

第1図は平板状基体上に膜堆積を行うものであり、第
2図は複数の平板状基体上に膜堆積を行うものである。
そして第3図は、複数の円筒状基体上に膜堆積を行うも
のであって、複数の円筒状基体で取り囲まれた放電空間
の中心に原料ガス導入手段が設置されていて、該原料ガ
ス導入手段と円筒状基体の間に電界がかかるようになっ
ている。ここで第3(A)図、第3(B)図はそれぞれ
縦断面図、および横断面図を示している。
FIG. 1 shows that a film is deposited on a flat substrate, and FIG. 2 shows that a film is deposited on a plurality of flat substrates.
FIG. 3 shows a case in which film deposition is performed on a plurality of cylindrical substrates, and a source gas introducing means is provided at the center of a discharge space surrounded by the plurality of cylindrical substrates. An electric field is applied between the means and the cylindrical substrate. Here, FIG. 3 (A) and FIG. 3 (B) show a longitudinal sectional view and a transverse sectional view, respectively.

第1図において101は反応容器、102はマイクロ波導入
窓、103は導波管、104は排気管、105は平板基体、106は
放電空間、107は基体ホルダー、108は原料ガス導入手
段、109は電源をそれぞれ示している。第2図において2
01は反応容器、202はマイクロ波導入窓、203は導波管、
204は排気管、205は複数の平板基体、206は放電空間、2
07は基体ホルダー、208は原料ガス導入手段、209は電源
をそれぞれ示している。第3図においては301は反応容
器、302はマイクロ波導入窓、303は導波管、405は排気
管、305は円筒状基体、306は放電空間、307はヒータ
ー、308は原料ガス導入手段、309は電源、311は回転機
構をそれぞれ示している。
In FIG. 1, 101 is a reaction vessel, 102 is a microwave introduction window, 103 is a waveguide, 104 is an exhaust pipe, 105 is a flat substrate, 106 is a discharge space, 107 is a substrate holder, 108 is source gas introducing means, 109 Indicates a power source. 2 in Fig. 2
01 is a reaction vessel, 202 is a microwave introduction window, 203 is a waveguide,
204 is an exhaust pipe, 205 is a plurality of flat substrates, 206 is a discharge space, 2
07 is a substrate holder, 208 is a raw material gas introducing means, and 209 is a power source. In FIG. 3, 301 is a reaction vessel, 302 is a microwave introduction window, 303 is a waveguide, 405 is an exhaust pipe, 305 is a cylindrical substrate, 306 is a discharge space, 307 is a heater, 308 is a source gas introduction means, Reference numeral 309 denotes a power supply, and reference numeral 311 denotes a rotation mechanism.

こうした本発明における装置による堆積膜形成方法は
例えば第3(A)図および第3(B)図においては概略
以下のように行う。
Such a method of forming a deposited film by the apparatus according to the present invention is performed, for example, in FIGS. 3A and 3B as follows.

まず、真空反応炉301の内部を排気管304を通じ真空ポ
ンプ(図示せず)にて真空排気する。次に、円筒状基体
305を加熱用ヒーター307に通電して所定の温度まで昇温
させ保持する。そして回転機構311により円筒状基体305
を回転し、原料ガス導入手段308からシランガス(Si
H4)、ジボラン(B2H6)等の原料ガスを反応容器301内
に供給する。次に原料ガス導入管308に所定の直流電圧
を電源309より印加し、その後マイクロ波発生装置(図
示せず)により発生させた2.45GHzのマイクロ波を整合
器(図示せず)、導波管103を通じマイクロ波導入用誘
電体窓302を介して放電空間306内に導入する。
First, the inside of the vacuum reactor 301 is evacuated by a vacuum pump (not shown) through an exhaust pipe 304. Next, the cylindrical substrate
The heater 305 is energized to a heater 307 to raise the temperature to a predetermined temperature and hold it. Then, the cylindrical body 305 is rotated by the rotation mechanism 311.
Is rotated, and silane gas (Si
A source gas such as H 4 ) or diborane (B 2 H 6 ) is supplied into the reaction vessel 301. Next, a predetermined DC voltage is applied to the source gas introduction pipe 308 from the power supply 309, and then a 2.45 GHz microwave generated by a microwave generator (not shown) is matched with a matching device (not shown) and a waveguide. It is introduced into the discharge space 306 through the microwave introduction dielectric window 302 through 103.

かくして、放電空間306内へ導入された原料ガスは、
マイクロ波エネルギーにより励起されて解離し、中性ラ
ジカル粒子、イオン粒子、電子等が生成され、それが相
互に反応して、回転している円筒状基体305の表面全域
に渡って堆積膜が形成されるところとなる。
Thus, the source gas introduced into the discharge space 306 is
Excited by microwave energy and dissociated, neutral radical particles, ionic particles, electrons, etc. are generated, which react with each other to form a deposited film over the entire surface of the rotating cylindrical substrate 305. It is where it is done.

本発明に用いる原料ガス導入手段の材質としては、導
電性の材質ならばいずれでも良く、例えば、ステンレ
ス、Al,Cr,Mo,Au,In,Nb,Ni,Te,V,Ti,Pt,Pd,Fe等の金
属、これらの合金、又は表面を導電処理したガラス、セ
ラミックス等が本発明では通常使用される。
The material of the raw material gas introduction means used in the present invention may be any conductive material, for example, stainless steel, Al, Cr, Mo, Au, In, Nb, Ni, Te, V, Ti, Pt, Pd In the present invention, metals such as Fe, Fe and the like, alloys thereof, and glass and ceramics whose surfaces are subjected to a conductive treatment are usually used.

また、原料ガス導入手段の形状としては、特に制限は
無いが、本発明では、円筒状のものが最適であり、断面
の直径は3mm以上で本発明は有効であり、特に5mm以上、
20mm以下に最適である。
Further, the shape of the raw material gas introducing means is not particularly limited, but in the present invention, a cylindrical shape is optimal, and the present invention is effective with a cross-sectional diameter of 3 mm or more, particularly 5 mm or more,
Ideal for 20mm or less.

更に、原料ガス導入手段の長さは、該原料ガス導入手
段に電圧を印加した時、基体に電界が均一にかかり、か
つ、基体のプラズマにさらされた面に均一に原料ガスの
分布があるならばいずれの長さでも良いが、通常基体の
長さ又はそれより0.1〜50mm程度長いものが使用され
る。
Further, the length of the source gas introducing means is such that when a voltage is applied to the source gas introducing means, an electric field is uniformly applied to the substrate, and the source gas is uniformly distributed on the surface of the substrate exposed to plasma. Any length may be used, but usually the length of the base or about 0.1 to 50 mm longer than that is used.

また更に、原料ガス導入手段に設けられるガス放出孔
の放出の方向としては、複数の方向を持っているものが
良く、好ましくは基体の方向に向き、又は放電空間全体
に広がる方向が適している。又或いは、材質自体ポーラ
スなもので全方向に均一にガスを導入するものでもよ
い。
Further, as the direction of release of the gas release holes provided in the raw material gas introduction means, one having a plurality of directions is preferable, and preferably the direction of the base or the direction of spreading over the entire discharge space is suitable. . Alternatively, the material itself may be porous and can uniformly introduce gas in all directions.

本発明の装置において、原料ガス導入手段と基体間に
発生させる電界は直流電界が好ましく、また電界の向き
は原料ガス導入手段から基体に向けるのがより好まし
い。また、原料ガス導入手段と基体間に直流電界を発生
させる為に原料ガス導入手段に印加する直流電圧の大き
さは、15V以上300V以下、好ましくは30V以上200V以下が
適する。更に、直流電界発生のため原料ガス導入手段に
印加する直流電圧波形としては、特に制限はない。すな
わち、時間によって電圧の向きが変化しなげればいずれ
の場合でもよく例えば、時間に対して大きさの変化しな
い定電圧はもちろん、パネル状の電圧及び整流器によっ
て整流された時間によって大きさが変化する。脈動電圧
でも本発明は有効である。
In the apparatus of the present invention, the electric field generated between the source gas introducing means and the substrate is preferably a DC electric field, and the direction of the electric field is more preferably directed from the source gas introducing means to the substrate. Further, the magnitude of the DC voltage applied to the source gas introducing means for generating a DC electric field between the source gas introducing means and the substrate is suitably 15 V or more and 300 V or less, preferably 30 V or more and 200 V or less. Further, there is no particular limitation on the DC voltage waveform applied to the source gas introducing means for generating a DC electric field. In other words, as long as the direction of the voltage does not change with time, it may be any case.For example, not only a constant voltage whose magnitude does not change with time, but also a magnitude changes with a panel-like voltage and time rectified by a rectifier. I do. The present invention is also effective with a pulsating voltage.

また、交流電圧をかけることも本発明では有効であ
る。その場合、交流の周波数はいずれの周波数でも問題
はなく、好ましくは20Hz以上が良く、実質的には低周波
では50Hz又は60Hz、高周波では13.56MHzが適する。交流
の波形としてはサイン波でも矩形波でも、他のいずれの
波形でも良いが、実用的には、サイン波が適する。但し
このとき電圧は、いずれの場合も実効値を言う。
Applying an AC voltage is also effective in the present invention. In this case, there is no problem with the AC frequency, and it is preferable that the frequency be 20 Hz or more. In practice, 50 Hz or 60 Hz for a low frequency and 13.56 MHz for a high frequency are suitable. The AC waveform may be a sine wave, a rectangular wave, or any other waveform, but a sine wave is suitable for practical use. However, at this time, the voltage refers to an effective value in any case.

こうした本発明の装置により、以下の効果が明らかに
なった。
The following effects have been clarified by such a device of the present invention.

上記構成の本発明の装置では、原料ガスの導入手段が
放電空間内にあるため、導入された原料ガスは、基板に
達するまでにマイクロ波電力により励起、分解等が行わ
れ、さらに放電空間全域に渡り、電界により、加速され
たエネルギーの大きな電子が、ガス導入手段を中心に存
在することにより、励起、分解等が円滑かつ充分に行わ
れる。このため、原料ガスの利用効率が大幅に向上す
る。
In the apparatus of the present invention having the above configuration, since the source gas introduction means is in the discharge space, the introduced source gas is excited, decomposed, and the like by microwave power until it reaches the substrate. In this way, electrons having a large energy accelerated by the electric field are present mainly in the gas introducing means, so that excitation, decomposition and the like are performed smoothly and sufficiently. For this reason, the utilization efficiency of the source gas is greatly improved.

一方、基体に達した時の原料ガスは、充分分解された
前駆体となっており、エネルギーが高く、基体上でのサ
ーフェイス・モビリティーも高いため、内部ストレスの
低い堆積膜が形成される。
On the other hand, when the source gas reaches the substrate, it is a sufficiently decomposed precursor, has high energy, and has high surface mobility on the substrate, so that a deposited film with low internal stress is formed.

さらに、原料ガス導入手段自身に電圧をかけることに
より原料ガス導入後、プラズマによりイオン化されたイ
オンは充分に電界により加速され、大きな運動エネルギ
ーをもって基体上にボンバードを起こす。このため、比
較的低い原料ガス導入手段上の電圧でも充分に堆積膜に
局部的なアニールを行うことができ、膜中のストレスを
緩和し、欠陥を減少させるため、特性のよい堆積膜を形
成することができる。
Furthermore, after the source gas is introduced by applying a voltage to the source gas introducing means itself, the ions ionized by the plasma are sufficiently accelerated by the electric field, and bombard the substrate with a large kinetic energy. For this reason, even if the voltage on the source gas introducing means is relatively low, the deposited film can be sufficiently annealed locally, and the stress in the film can be reduced and defects can be reduced. can do.

本発明の装置を用いて膜堆積を行う場合、反応容器の
内圧は100mTorr以下、さらに好ましくは50mTorr以下で
より顕著な効果が得られた。
When film deposition was performed using the apparatus of the present invention, a more remarkable effect was obtained when the internal pressure of the reaction vessel was 100 mTorr or less, more preferably 50 mTorr or less.

本発明の装置に用いる堆積膜の原料ガスとしては、例
えばシラン(SiH4),ジシラン(Si2H6)等のアモルフ
ァスシリコン形成原料ガス、ゲルマン(GeH4)等の他の
機能性堆積膜形成原料ガス又は、それらの混合ガスが挙
げられる。
As the material gas for the deposited film used in the apparatus of the present invention, for example, a material gas for forming an amorphous silicon such as silane (SiH 4 ) or disilane (Si 2 H 6 ), or a gas for forming another functional deposited film such as germane (GeH 4 ) A raw material gas or a mixed gas thereof is used.

希釈ガスとしては水素(H2),アルゴン(Ar),ヘリ
ウム(He)等が挙げられる。
Examples of the dilution gas include hydrogen (H 2 ), argon (Ar), helium (He), and the like.

また、堆積膜のバンドギャップ巾を変化させる等の特
性改善ガスとして、窒素(N2),アンモニア(NH3)等
の窒素原子を含む元素、酸素(O2),酸化窒素(NO),
酸化二窒素(N2O)等酸素原子を含む元素、メタン(C
H4),エタン(C2H6),エチレン(C2H4),アセチレン
(C2H2),プロパン(C3H8)等の炭化水素、四フッ化ケ
イ素(SiF4),六フッ化二ケイ素(Si2F6),四フッ化
ゲルマニウム(GeF4)等のフッ素化物又はこれらの混合
ガスが挙げられる。
Elements that include nitrogen atoms such as nitrogen (N 2 ) and ammonia (NH 3 ), oxygen (O 2 ), nitrogen oxide (NO),
An element containing an oxygen atom such as nitrous oxide (N 2 O), methane (C
H 4), ethane (C 2 H 6), ethylene (C 2 H 4), acetylene (C 2 H 2), hydrocarbons such as propane (C 3 H 8), silicon tetrafluoride (SiF 4), six Examples include fluorinated compounds such as disilicon fluoride (Si 2 F 6 ) and germanium tetrafluoride (GeF 4 ), or a mixed gas thereof.

又、ドーピングを目的としてジボラン(B2H6),弗化
硼素(BF3),ホスフィン(PH3)等のドーパントガスを
同時に放電空間に導入しても本発明は同様に有効であ
る。
The present invention is similarly effective when dopant gases such as diborane (B 2 H 6 ), boron fluoride (BF 3 ), and phosphine (PH 3 ) are simultaneously introduced into the discharge space for doping.

基体材質としては、例えば、ステンレス、Al,Cr,Mo,A
u,In,Nb,Te,V,Ti,Pt,Pd,Fe等の金属、これらの合金又は
表面を導電処理したポリカーボネート等の合成樹脂、ガ
ラス、セラミックス、紙等が本発明では通常使用され
る。
As the base material, for example, stainless steel, Al, Cr, Mo, A
Metals such as u, In, Nb, Te, V, Ti, Pt, Pd, Fe, alloys of these, or synthetic resins such as polycarbonates whose surfaces are conductively treated, glass, ceramics, paper, and the like are commonly used in the present invention. .

本発明の装置を用いた堆積膜形成時の基体温度はいず
れの温度でも有効だが、特に20℃以上500℃以下、好ま
しくは50℃以上450℃以下が良好な効果を示すため望ま
しい。
Although any substrate temperature is effective when forming a deposited film using the apparatus of the present invention, a temperature of 20 ° C. or more and 500 ° C. or less, preferably 50 ° C. or more and 450 ° C. or less is desirable because a good effect is exhibited.

また、本発明の装置のマイクロ波の応答容器までの導
入方法として導波管又は同軸ケーブルによる方法が挙げ
られ、反応容器内への導入は、1つ又は複数の誘電体窓
からの導入、又は炉内へアンテナを設置する方法が挙げ
られる。このとき、反応容器内へのマイクロ波の導入窓
の材質としては、アルミナ、窒化アルミニウム、窒化ホ
ウ素、窒化ケイ素、炭化ケイ素、酸化ケイ素、酸化ベリ
リウム、テフロン、ポリスチレン等マイクロ波の損出の
少ない材料が通常使用される。
Further, as a method for introducing the microwave of the apparatus of the present invention to the response container, a method using a waveguide or a coaxial cable may be mentioned, and the introduction into the reaction container may be performed through one or a plurality of dielectric windows, or There is a method of installing an antenna in a furnace. At this time, the material of the microwave introduction window into the reaction vessel may be a material with less microwave loss, such as alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, silicon oxide, beryllium oxide, Teflon, and polystyrene. Is usually used.

さらに本発明は、阻止型アモルファスシリコン感光
体、高抵抗型アモルファスシリコン感光体等複写機又は
プリンター用感光体の他、いずれのデバイスの作製にも
応用が可能である。
Further, the present invention can be applied to the manufacture of any device other than a photoconductor for a copying machine or a printer such as a blocking type amorphous silicon photoconductor and a high resistance type amorphous silicon photoconductor.

〔実施例〕〔Example〕

以下、図面を用いて本発明を更に詳細に説明するが本
発明はこれによって限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited thereto.

実施例1,比較例1 第1図に示す本発明のマイクロ波プラズマCVD装置及
び第4図に示す従来のマイクロ波CVD装置を用い、前記
記載の手順に従い電荷注入阻止層、感光層、表面層の3
層からなる電子写真感光体を作製した。電子写真感光体
の作製条件は、感光層の印加直流電圧を−300Vから+30
0Vまで変化させ、その他の条件は第1表に示す条件で行
った。電圧は、第1図に示す装置を用いる実施例におい
ては原料ガス導入手段に印加し、第4図に示す装置を用
いる比較例では電極に印加する。
Example 1, Comparative Example 1 Using the microwave plasma CVD apparatus of the present invention shown in FIG. 1 and the conventional microwave CVD apparatus shown in FIG. 3
An electrophotographic photosensitive member composed of the layers was prepared. The conditions for producing the electrophotographic photoreceptor are as follows: the applied DC voltage of the photosensitive layer is from -300 V to +30.
The voltage was changed to 0 V, and the other conditions were the same as those shown in Table 1. The voltage is applied to the source gas introducing means in the embodiment using the apparatus shown in FIG. 1, and is applied to the electrodes in the comparative example using the apparatus shown in FIG.

このようにして作製した電子写真感光体を、以下に示
す方法で帯電能、感度及び堆積速度の測定を行った。
The charging ability, sensitivity and deposition rate of the electrophotographic photoreceptor thus manufactured were measured by the following methods.

(1) 帯電能Vd 堆積膜を帯電露光実験装置に設置し、6.3KVで0.2se
c間コロナ帯電を行う。この時表面電位計により堆積膜
の暗部表面電位を測定する。
(1) established the chargeability V d deposited film charging exposure experimental apparatus, 0.2Se at 6.3KV
Perform corona charging during c. At this time, the surface potential of the dark portion of the deposited film is measured by a surface voltmeter.

(2) 残留電位VR 堆積膜を一定の暗部表面電位に帯電させ、直ちに光像
を対照する。光像はキセノンランプ光源を用い、フィル
ターを用いて550nm以下の波長域の光を除いた光を一定
量照射した。この時表面電位計により、堆積膜の明部表
面電位を測定する。
(2) the residual potential V R deposited film is charged to a certain dark portion surface potential, and immediately controls the optical image. The light image was irradiated with a fixed amount of light excluding light in the wavelength range of 550 nm or less using a filter using a xenon lamp light source. At this time, the bright portion surface potential of the deposited film is measured by a surface voltmeter.

(3) 堆積速度DR 膜厚測定器により堆積膜の膜厚を測定し、堆積速度DR
を求める。
(3) Deposition rate D R The thickness of the deposited film is measured with a film thickness measuring device, and the deposition rate D R is measured.
Ask for.

このような測定方法により得た結果を、電子写真感光
体の表面電位特性として、帯電能を第6図、残留電位を
第7図、及び堆積速度を第8図に示す。
The results obtained by such a measurement method are shown as the surface potential characteristics of the electrophotographic photoreceptor. FIG. 6 shows the charging ability, FIG. 7 shows the residual potential, and FIG. 8 shows the deposition rate.

図中、横軸は電子写真感光体を作製した際の感光層に
印加した電圧を示し、縦軸はそれぞれ比較例で作製した
電子写真感光体の測定値に対する実施例で作製した電子
写真感光体の測定値を相対値で表している。
In the figure, the abscissa indicates the voltage applied to the photosensitive layer when the electrophotographic photosensitive member was manufactured, and the ordinate indicates the measured values of the electrophotographic photosensitive member manufactured in the comparative example and the electrophotographic photosensitive member manufactured in the example. Are expressed as relative values.

また、実施例及び比較例共に、直流電圧を正負とも30
0Vより大きな値を印加するとスパーク等の異常放電が発
生し、膜質の低下及び再現性の著しい低下が認められ
た。
In both the examples and comparative examples, the DC voltage was 30
When a value larger than 0 V was applied, abnormal discharge such as sparks occurred, and deterioration of the film quality and remarkable decrease in reproducibility were observed.

さらに本実施例1及び比較例1より得た結果に対して
次のような評価を行った。
Further, the following evaluation was performed on the results obtained from Example 1 and Comparative Example 1.

本実施例1で印加直流電圧が20V及び100Vの時に得る
帯電能、残留電位、堆積速度の値と同等の値を得ること
のできる比較例1での直流印加電圧Vを求める。その結
果を第2表に示す。
The DC applied voltage V in Comparative Example 1, which can obtain values equivalent to the values of the charging ability, residual potential, and deposition rate obtained when the applied DC voltage is 20 V and 100 V in Example 1, is obtained. Table 2 shows the results.

本発明の装置で20Vの印加直流電圧の時と同等の電気
特性を得る為には、従来の装置において直流電圧を約25
0V印加しなくてはならない。一方堆積速度に関しては、
電圧を300V以上印加する必要があり、本発明の装置と従
来の装置との差が、より明確にあらわれた。
In order to obtain the same electrical characteristics as in the case of the applied DC voltage of 20 V in the apparatus of the present invention, the DC voltage is reduced by about 25
0V must be applied. On the other hand, regarding the deposition rate,
It is necessary to apply a voltage of 300 V or more, and the difference between the device of the present invention and the conventional device has become more apparent.

また、本発明の装置で100V電圧を印加した時の値に対
しては、電気特性及び堆積速度共に300V以上を必要であ
った。しかし300Vよりも電圧を印加するとスパーク等の
異常放電が発生し、膜特性を大幅に劣化させるなど再現
性が著しく低下するため、正確な値を得ることができな
かった。
Further, with respect to the value when a voltage of 100 V was applied in the apparatus of the present invention, 300 V or more was required for both the electrical characteristics and the deposition rate. However, when a voltage higher than 300 V was applied, abnormal discharge such as sparks occurred, and the reproducibility was remarkably deteriorated, for example, the film characteristics were significantly degraded, so that accurate values could not be obtained.

これらの結果より、本発明のマイクロ波プラズマCVD
装置はいずれの印加直流電圧においても、従来のマイク
ロ波プラズマCVD装置に比べ、帯電能、残留電位及び堆
積速度の向上に顕著な効果があることが確認された。
From these results, the microwave plasma CVD of the present invention
It was confirmed that the apparatus had a remarkable effect on the improvement of the charging ability, the residual potential and the deposition rate as compared with the conventional microwave plasma CVD apparatus at any applied DC voltage.

特に、ガス導入手段に正の直流電圧を印加したとき、
従来の装置で作製した堆積膜に比べ、諸特性の大幅な向
上がみられた。さらに正の印加直流電圧の値が、15V以
上、さらには30V以上で顕著な効果が確認された。
In particular, when a positive DC voltage is applied to the gas introduction means,
Compared with the deposited film produced by the conventional apparatus, the characteristics were greatly improved. Furthermore, a remarkable effect was confirmed when the value of the positive applied DC voltage was 15 V or more, and more preferably 30 V or more.

比較例2 第5図による従来のマイクロ波プラズマCVD装置を用
いて、比較例1、実施例1と同様に第1表に示す条件
で、堆積膜を作製した。この時複数の基体を真空反応炉
内に設置し基体間の距離を最大300mmとした。また、作
製した堆積膜について、比較例1、実施例2と同様に、
帯電能、残留電位及び堆積速度を測定したところ帯電
能、残留電位及び堆積速度に不均一性が生じた。つま
り、原料ガスの上流側(原料ガス導入口側)と下流側
(原料ガス排気手段側)で特性の不均一が認められた。
Comparative Example 2 A deposited film was formed using the conventional microwave plasma CVD apparatus shown in FIG. 5 under the conditions shown in Table 1 in the same manner as in Comparative Example 1 and Example 1. At this time, a plurality of substrates were placed in a vacuum reactor, and the distance between the substrates was set to a maximum of 300 mm. In addition, about the produced deposited film, similarly to Comparative Example 1 and Example 2,
When the charging ability, the residual potential and the deposition rate were measured, non-uniformity occurred in the charging ability, the residual potential and the deposition rate. That is, non-uniformity of the characteristics was observed on the upstream side (source gas inlet side) and downstream side (source gas exhaust means side) of the source gas.

実施例2 第2図による本発明による堆積膜形成装置を用いて、
比較例と同様に第1表に示す条件で、堆積膜を作製し
た。また作製した堆積膜について比較例と同様に帯電
能、感度及び堆積速度を測定し、次のような評価を行っ
た。
Example 2 Using the deposited film forming apparatus according to the present invention shown in FIG.
A deposited film was produced under the conditions shown in Table 1 as in the comparative example. The charging ability, sensitivity and deposition rate of the produced deposited film were measured in the same manner as in the comparative example, and the following evaluation was performed.

(1) 不均一性 1−a帯電能 ΔVd=Vd max(堆積膜中、最大の帯電能の値) −VMIN(堆積膜中、最小の帯電能の値) 1−b感 度 ΔVL=VL max(堆積膜中、最大の明部表面電 位の値)−VMIN(堆積膜中、最小の明 部表面電位) 1−c堆積速度 ΔDR=DR max(堆積膜中、最大の堆積速度) −DR min(堆積膜中、最小の堆積速度) その結果を第3表に示す。(1) Non-uniformity 1-a Charging power ΔV d = V d max (maximum charging power in deposited film) −V MIN (minimum charging power in deposited film) 1-b sensitivity ΔV (in the deposited film, the value of the maximum of the light portion surface conductive position) L = V L max -V MIN ( in the deposited film, the minimum light portion surface potential) 1-c deposition rate ΔD R = D R max (deposited film shows in the maximum rate of deposition) -D R min (deposited film, a minimum deposition rate) the results in table 3.

なお、第3表においては、比較の為、比較例で得た値
を100としたときの実施例の値を百分率で示す。つま
り、 実施例で得た値/比較例で得た値×100(%) これらの結果より本発明によるマイクロ波プラズマCV
D装置は、従来のマイクロ波プラズマCVD装置に比べて、
例えば電子写真用感光体のように、大面積を必要とする
デバイスの作製において膜厚及び膜質の均一性を得るの
に、顕著な効果があることが確認された。
In addition, in Table 3, for comparison, the value of the example when the value obtained in the comparative example is set to 100 is shown in percentage. That is, the value obtained in the example / the value obtained in the comparative example × 100 (%) From these results, the microwave plasma CV according to the present invention was obtained.
The D device is compared to the conventional microwave plasma CVD device,
For example, it has been confirmed that there is a remarkable effect in obtaining uniformity of film thickness and film quality in manufacturing a device requiring a large area such as an electrophotographic photoreceptor.

実施例3 第4図に示す従来のマイクロ波プラズマCVD装置と第
1図に示す本発明によるマイクロ波プラズマCVD装置を
用い、原料ガス流量を変化させて堆積膜を作製した。
Example 3 Using the conventional microwave plasma CVD apparatus shown in FIG. 4 and the microwave plasma CVD apparatus according to the present invention shown in FIG. 1, a deposition film was produced by changing the flow rate of source gas.

このとき、電荷注入阻止層及び表面保護層は第1表に
示す成膜条件で作製し、感光層の原料ガス流量を変化さ
せ作製した。
At this time, the charge injection blocking layer and the surface protective layer were manufactured under the film forming conditions shown in Table 1, and were manufactured by changing the flow rate of the raw material gas for the photosensitive layer.

作製した堆積膜の帯電能、残留電位及び堆積速度の評
価を行ったところ第9図、第10図、第11図の結果を得
た。
When the charging ability, the residual potential and the deposition rate of the deposited film thus produced were evaluated, the results shown in FIGS. 9, 10 and 11 were obtained.

第9図において、横軸は感光層成膜時のシランガス
(SiH4)流量、縦軸は第1図の本発明の装置使用時に作
製した堆積膜を帯電露光装置に入れ、一定の一次電流で
帯電したときの現像位置での暗部表面電位を帯電能とし
たときの値を示す。この時、縦軸の100%は第4図の従
来装置使用時に同一のシランガス流量で作製した堆積膜
の帯電能を示す。
In FIG. 9, the abscissa represents the flow rate of silane gas (SiH 4 ) at the time of forming the photosensitive layer, and the ordinate represents the deposited film produced by using the apparatus of the present invention shown in FIG. It shows the value when the potential of the dark area surface at the developing position when charged is defined as the charging ability. At this time, 100% on the vertical axis indicates the charging ability of the deposited film produced at the same flow rate of the silane gas when the conventional apparatus of FIG. 4 was used.

第10図において、横軸は感光層成膜時のシランガス流
量、縦軸は第1図の本発明の装置使用時に作製した堆積
膜に一定の暗部表面電位を与え、一定強度の露光を与え
た時の表面電位を残留電位としたときの値を示す。この
時縦軸の100%は第4図の従来装置使用時に同一のシラ
ンガス流量で作製した堆積膜の残留電位を示す。
In FIG. 10, the horizontal axis represents the flow rate of the silane gas at the time of forming the photosensitive layer, and the vertical axis represents the constant dark area surface potential applied to the deposited film produced by using the apparatus of the present invention shown in FIG. The value when the surface potential at this time is taken as the residual potential is shown. At this time, 100% on the vertical axis indicates the residual potential of the deposited film produced at the same silane gas flow rate when the conventional apparatus of FIG. 4 was used.

第11図において、横軸は感光層成膜時のシランガス流
量、縦軸は第1図の本発明の装置使用時に作製した堆積
膜の堆積速度を示す。この時、縦軸の100%は第4図の
従来装置使用時に同一のシランガス流量で作製した堆積
膜の堆積速度を示す。
In FIG. 11, the horizontal axis represents the flow rate of the silane gas during the formation of the photosensitive layer, and the vertical axis represents the deposition rate of the deposited film produced using the apparatus of the present invention shown in FIG. At this time, 100% on the vertical axis indicates the deposition rate of the deposited film produced at the same silane gas flow rate when the conventional apparatus of FIG. 4 was used.

これらの結果よりいずれの原料ガス流量でも帯電能、
残留電位等の特性の向上に本発明の堆積膜形成装置は同
様に効果が確認された。又、特に400sccm以上の原料ガ
ス流量では、堆積速度の向上に顕著な効果が認められ
た。
From these results, charging ability,
It was confirmed that the deposited film forming apparatus of the present invention was similarly effective in improving characteristics such as residual potential. In particular, when the flow rate of the source gas was 400 sccm or more, a remarkable effect was observed in improving the deposition rate.

実施例4 第4図に示す従来のマイクロ波プラズマCVD装置と第
1図に示す本発明によるマイクロ波プラズマCVD装置を
用い、内圧を変化させて堆積膜を作製した。
Example 4 A deposited film was produced using the conventional microwave plasma CVD apparatus shown in FIG. 4 and the microwave plasma CVD apparatus according to the present invention shown in FIG. 1 while changing the internal pressure.

このとき、電荷注入阻止層及び表面保護層は第1表に
示す成膜条件で作製し、感光層での内圧を変化させ作製
した。
At this time, the charge injection blocking layer and the surface protective layer were manufactured under the film forming conditions shown in Table 1, and were manufactured by changing the internal pressure in the photosensitive layer.

作製した堆積膜の帯電能、残留電位及び堆積速度の評
価を行ったところ、第12図、第13図、第14図の結果を得
た。
When the charging ability, residual potential and deposition rate of the deposited film thus produced were evaluated, the results shown in FIGS. 12, 13 and 14 were obtained.

第12図において、横軸は感光層成膜時の内圧、縦軸は
第1図の本発明の装置使用時に作製した堆積膜を帯電露
光実験装置に入れ、一定の一次電流で帯電したときの暗
部表面電位を帯電能としたときの値を示す。この時、縦
軸の100%は第4図の従来装置使用時に同一の内圧、電
圧で作製した堆積膜の帯電能を示す。
In FIG. 12, the horizontal axis represents the internal pressure at the time of forming the photosensitive layer, and the vertical axis represents the value obtained when the deposited film produced during use of the apparatus of the present invention shown in FIG. The value when the surface potential of the dark part is defined as the charging ability is shown. At this time, 100% on the vertical axis indicates the charging ability of the deposited film formed at the same internal pressure and voltage when the conventional apparatus of FIG. 4 was used.

第13図において、横軸は感光層成膜時の内圧、縦軸は
第1図の本発明の装置使用時に作製した堆積膜に一定の
暗部表面電位を与え、一定強度の露光を与えた時の表面
電位を残留電位としたときの値を示す。この時、縦軸の
100%は第4図の従来装置使用時に同一の内圧、電圧で
作製した堆積膜の残留電位を示す。
In FIG. 13, the horizontal axis indicates the internal pressure during the formation of the photosensitive layer, and the vertical axis indicates the case where a constant dark area surface potential is applied to the deposited film produced using the apparatus of the present invention shown in FIG. Are shown when the surface potential of the sample is regarded as the residual potential. At this time, the vertical axis
100% indicates the residual potential of the deposited film produced at the same internal pressure and voltage when using the conventional apparatus shown in FIG.

第14図において、横軸は感光層成膜時の内圧、縦軸は
第1図の本発明の装置使用時に作製した堆積膜の堆積速
度を示す。この時、縦軸の100%は第4図の従来装置使
用時に同一の内圧で作製した堆積膜の堆積速度を示す。
In FIG. 14, the horizontal axis represents the internal pressure during the formation of the photosensitive layer, and the vertical axis represents the deposition rate of the deposited film produced when using the apparatus of the present invention shown in FIG. At this time, 100% on the vertical axis indicates the deposition rate of the deposited film produced at the same internal pressure when using the conventional apparatus of FIG.

これらの結果より、本発明の堆積膜形成装置は内圧が
低いほど従来の装置に比べ効果が顕著であることが確認
された。
From these results, it was confirmed that the effect of the deposited film forming apparatus of the present invention was more remarkable as the internal pressure was lower than that of the conventional apparatus.

特に感光層成膜時の内圧が、100mTorr以下では本発明
の装置で作製した堆積膜は帯電能及び残留電位等、電子
写真特性に従来の装置で作製した堆積膜に比べ大きな向
上が見られ、また堆積速度の向上も見られた。
In particular, when the internal pressure at the time of forming the photosensitive layer is 100 mTorr or less, the deposited film produced by the apparatus of the present invention has a large improvement in electrophotographic characteristics, such as charging ability and residual potential, as compared with the deposited film produced by the conventional apparatus. The deposition rate was also improved.

さらに内圧が50mTorr以下では、特性の向上、堆積速
度の向上は顕著なものとなり、それ以下の圧力でも、そ
のまま一定の効果が認められた。
Further, when the internal pressure was 50 mTorr or less, the improvement of the characteristics and the improvement of the deposition rate became remarkable, and even at a pressure lower than that, a certain effect was recognized as it was.

〔発明の効果の概要〕 放電空間内に電極を兼ねたガス導入手段を設け、この
電極と基体間に電界がかかるように設置したマイクロ波
プラズマCVD装置により形成される堆積膜は、従来のマ
イクロ波プラズマCVD装置に比べ、基体上のいずれの位
置で形成されたものも良好な特性のものとなる。この要
因としては、電極を兼ねたガス導入手段である為導入さ
れた原料ガスは基体に達するまでプラズマにより充分励
起、分解等が行われ、又原料ガス導入と同時に、電界が
かかっている為、電荷が原料ガス導入手段のまわりに集
まり励磁速度が速くなり、充分分解された前駆体となっ
ており、エネルギーも高く基体上でのサーフェイスモビ
リティも高いため、内部ストレスの低い特性のよい堆積
膜が形成されると考えられる。
[Summary of Effect of the Invention] A gas introduction means also serving as an electrode is provided in a discharge space, and a deposited film formed by a microwave plasma CVD apparatus installed so as to apply an electric field between the electrode and a substrate is formed by a conventional microwave. As compared with the microwave plasma CVD apparatus, those formed at any position on the substrate have better characteristics. The reason for this is that the introduced source gas is sufficiently excited and decomposed by plasma until it reaches the substrate because it is a gas introduction means also serving as an electrode, and an electric field is applied simultaneously with the introduction of the source gas. Charges are gathered around the source gas introduction means, the excitation speed is high, the precursor is sufficiently decomposed, the energy is high and the surface mobility on the substrate is high, so a deposited film with low internal stress and good characteristics can be obtained. It is thought to be formed.

このため、本発明のマイクロ波プラズマCVD装置で
は、基体上に堆積膜を原料ガスの利用効率良く、高速に
均一に作製できるだけではなく、本発明のマイクロ波プ
ラズマCVD装置で作製したアモルファスシリコンを主体
とした感光体による感光ドラムは従来のマイクロ波プラ
ズマCVD装置に比べ帯電能の大巾な向上と残留電位の大
巾な減少が達成できた。
For this reason, the microwave plasma CVD apparatus of the present invention can not only produce a deposited film on a substrate with high efficiency and high uniformity of use of the source gas, but also mainly use amorphous silicon produced by the microwave plasma CVD apparatus of the present invention. The photosensitive drum using the photoreceptor achieved a great improvement in the charging ability and a great decrease in the residual potential as compared with the conventional microwave plasma CVD apparatus.

さらに本発明は、第5図に示すような円筒状基体にて
囲まれたマイクロ波プラズマCVD装置においてもより有
効な効果が得られ、複写機の高速化、感光体の小型化の
対応にも優れ、帯電器、現像器位置設定のラチチュード
も広く非常に使いやすい感光体ドラムを低コストで高速
に大量に量産することを達成することができた。
Further, the present invention can provide more effective effects even in a microwave plasma CVD apparatus surrounded by a cylindrical substrate as shown in FIG. 5, and can cope with high-speed copying machines and downsizing of photoconductors. It was possible to mass-produce photosensitive drums at a high speed and at a low cost, which is excellent, has a wide latitude in setting the position of the charger and the developing device, and is very easy to use.

【図面の簡単な説明】[Brief description of the drawings]

第1、2、3図は、本発明によるマイクロ波プラズマCV
D法による堆積膜形成装置、第4、5図は従来のマイク
ロ波プラズマCVD法による堆積膜形成装置。 第3図において(A)、(B)は同一の装置を2つの断
面でみたものであり、それぞれ縦断面図及び横断面図を
示す。 第6図、第7図及び第8図は、それぞれ実施例及び比較
例1における、印加直流電圧(V)と堆積膜の帯電能
(Vd)との関係を示すグラフ(第6図)、印加直流電圧
(V)と堆積膜の残留電位(VR)との関係を示すグラフ
(第7図)そして印加直流電圧(V)と堆積膜の膜堆積
速度との関係を示すグラフ(第8図)である。 第9図、第10図及び第11図は、それぞれ実施例3におけ
る、堆積膜の帯電能とSiH4ガス流量の関係を示すグラフ
(第9図)、堆積膜の残留電位とSiH4ガス流量の関係を
示すグラフ(第10図)、そして堆積膜の膜堆積速度との
関係を示すグラフ(第11図)である。 第12図、第13図及び第14図は、それぞれ実施例4におけ
る堆積膜の帯電能と成膜時の内圧との関係を示すグラフ
(第12図)、堆積膜の残留電位と成膜時の内圧との関係
を示すグラフ(第13図)、そして堆積膜の膜堆積速度と
成膜時の内圧との関係を示すグラフ(第14図)である。 図において、101,201,301,401,501……反応容器、102,2
02,302,402,502……マイクロ波導入窓、103,203,303,40
3,503……導波管、104,204,304,404,504……排気管、10
5,205,405,505……基体、305……円筒状基体、106,206,
306,406,506……放電空間、107,207,407,507……基体ホ
ルダー、307……ヒーター、108,208,308,408,508……ガ
ス導入手段、109,209,309,409,509……電源、410,510…
…電極、311……回転機構。
1, 2 and 3 show a microwave plasma CV according to the present invention.
Figures 4 and 5 show a conventional apparatus for forming a deposited film by a microwave plasma CVD method. 3 (A) and 3 (B) show the same device in two cross sections, and show a longitudinal sectional view and a transverse sectional view, respectively. FIGS. 6, 7 and 8 are graphs (FIG. 6) showing the relationship between the applied DC voltage (V) and the charging ability (V d ) of the deposited film in Example and Comparative Example 1, respectively. applying a direct current voltage (V) and the deposited film residual potential (V R) and a graph showing the relationship of (Figure 7) and a graph showing the relationship between an applied DC voltage (V) and film deposition rate of the deposited film (8 Figure). FIGS. 9, 10 and 11 are graphs (FIG. 9) showing the relationship between the charging ability of the deposited film and the flow rate of the SiH 4 gas in Example 3, respectively, and the residual potential of the deposited film and the flow rate of the SiH 4 gas. (FIG. 10) and a graph (FIG. 11) showing the relationship with the film deposition rate of the deposited film. 12, 13 and 14 are graphs (FIG. 12) showing the relationship between the charging ability of the deposited film and the internal pressure during film formation in Example 4, respectively, and the residual potential of the deposited film and the time during film formation. 13 is a graph showing the relationship between the internal pressure of the deposited film (FIG. 13) and the graph showing the relationship between the film deposition rate of the deposited film and the internal pressure during film formation (FIG. 14). In the figure, 101, 201, 301, 401, 501...
02,302,402,502 …… Microwave introduction window, 103,203,303,40
3,503 ... waveguide, 104, 204, 304, 404, 504 ... exhaust pipe, 10
5,205,405,505 …… base, 305 …… cylindrical base, 106,206,
306, 406, 506 ... discharge space, 107, 207, 407, 507 ... substrate holder, 307 ... heater, 108, 208, 308, 408, 508 ... gas introduction means, 109, 209, 309, 409, 509 ... power supply, 410, 510 ...
... electrodes, 311 ... rotation mechanism.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23C 16/50──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C23C 16/50

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空気密可能であって放電空間を有する反
応容器と、堆積膜が形成される基体を前記反応容器内に
配置するための機構と、前記放電空間内に原料ガスを導
入する原料ガス導入手段と、前記放電空間内にマイクロ
波を導入するマイクロ波導入手段とから構成され、前記
放電空間内に原料ガス及びマイクロ波エネルギーを導入
し、導入したマイクロ波エネルギーにより励起されるグ
ロー放電により、前記基体上に堆積膜を形成するマイク
ロ波プラズマCVD装置であって、前記原料ガス導入手段
は導電性材料で形成された筒状の形状を有し、該原料ガ
ス導入手段の少なくとも一部分が、前記放電空間内であ
って、前記反応容器内に配置される基体に沿って位置
し、前記基体と前記原料ガス導入手段との間に電界がか
かるように、前記原料ガス導入手段の該導電性材料部分
に電源が接続されていることを特徴とするマイクロ波プ
ラズマCVD装置。
1. A reaction vessel having a discharge space capable of being vacuum-tight and having a discharge space, a mechanism for disposing a substrate on which a deposited film is formed in the reaction vessel, and a raw material for introducing a raw material gas into the discharge space. A glow discharge configured by gas introduction means and microwave introduction means for introducing microwaves into the discharge space, introducing a raw material gas and microwave energy into the discharge space, and being excited by the introduced microwave energy. According to the microwave plasma CVD apparatus for forming a deposited film on the substrate, the source gas introduction means has a cylindrical shape formed of a conductive material, at least a part of the source gas introduction means The source material is located in the discharge space along a substrate disposed in the reaction vessel, and an electric field is applied between the substrate and the source gas introducing means. The power on the conductive material portions of the scan introducing means is connected a microwave plasma CVD apparatus according to claim.
【請求項2】前記原料ガス導入手段は前記基体の長さ又
はそれより0.1から50mm長い長さを有する請求項1に記
載のマイクロ波プラズマCVD装置。
2. The microwave plasma CVD apparatus according to claim 1, wherein said source gas introducing means has a length equal to or longer than the length of said base by 0.1 to 50 mm.
【請求項3】前記原料ガス導入手段は多数のガス導出口
を有する請求項1または2に記載のマイクロ波プラズマ
CVD装置。
3. The microwave plasma according to claim 1, wherein said source gas introducing means has a large number of gas outlets.
CVD equipment.
【請求項4】前記原料ガス導入手段は円筒形状を有する
請求項1乃至3のいずれか1項に記載のマイクロ波プラ
ズマCVD装置。
4. The microwave plasma CVD apparatus according to claim 1, wherein said source gas introducing means has a cylindrical shape.
JP1266308A 1988-11-15 1989-10-16 Microwave plasma CVD equipment Expired - Fee Related JP2867150B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1266308A JP2867150B2 (en) 1988-11-15 1989-10-16 Microwave plasma CVD equipment
US07/549,243 US5129359A (en) 1988-11-15 1990-07-09 Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28673488 1988-11-15
JP63-286734 1988-11-15
JP1266308A JP2867150B2 (en) 1988-11-15 1989-10-16 Microwave plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH03219081A JPH03219081A (en) 1991-09-26
JP2867150B2 true JP2867150B2 (en) 1999-03-08

Family

ID=26547381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266308A Expired - Fee Related JP2867150B2 (en) 1988-11-15 1989-10-16 Microwave plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP2867150B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE149700T1 (en) * 1992-06-18 1997-03-15 Canon Kk IMAGE RECEIVING LAYER CONSISTING OF NON-MONOCRYTALLINE SILICON AND COLUMN-SHAPED STRUCTURAL AREAS AND ITS PROCESS FOR PRODUCTION

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763291B2 (en) * 1987-07-20 1998-06-11 株式会社日立製作所 Plasma processing method and processing apparatus

Also Published As

Publication number Publication date
JPH03219081A (en) 1991-09-26

Similar Documents

Publication Publication Date Title
US5129359A (en) Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate
US4532199A (en) Method of forming amorphous silicon film
US5534070A (en) Plasma CVD process using a very-high-frequency and plasma CVD apparatus
US6152071A (en) High-frequency introducing means, plasma treatment apparatus, and plasma treatment method
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
US4569719A (en) Glow discharge method and apparatus and photoreceptor devices made therewith
US6435130B1 (en) Plasma CVD apparatus and plasma processing method
JP2841243B2 (en) Deposition film forming apparatus by microwave plasma CVD method
JP2867150B2 (en) Microwave plasma CVD equipment
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP3102725B2 (en) Light receiving member and method of manufacturing the same
JP2768539B2 (en) Deposition film forming equipment
JP2925310B2 (en) Deposition film formation method
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JPH1060653A (en) Formation of deposited film by high frequency plasma cvd process
JP2784784B2 (en) Method and apparatus for forming functional deposited film by microwave plasma CVD
JP2753084B2 (en) Deposition film formation method
JPH04247877A (en) Deposited film forming device
JP3402952B2 (en) Method and apparatus for forming deposited film
JP2925291B2 (en) Deposition film forming equipment
JPH02138475A (en) Microwave plasma cvd device
JPH07288233A (en) Film forming apparatus
JPH0647738B2 (en) Method for forming deposited film by plasma CVD method
JPH0897161A (en) Method and system for forming deposition film by rf plasma cvd
JPH11131244A (en) High-frequency electrode for plasma generation, plasma cvd device composed by the electrode, and plasma cvd method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees