JP2850866B2 - Magnetoresistive sensor - Google Patents
Magnetoresistive sensorInfo
- Publication number
- JP2850866B2 JP2850866B2 JP20169296A JP20169296A JP2850866B2 JP 2850866 B2 JP2850866 B2 JP 2850866B2 JP 20169296 A JP20169296 A JP 20169296A JP 20169296 A JP20169296 A JP 20169296A JP 2850866 B2 JP2850866 B2 JP 2850866B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetoresistive sensor
- ferromagnetic
- interface control
- control layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Magnetic Heads (AREA)
- Hall/Mr Elements (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は磁気的な情報を読み
取るための磁気抵抗センサに関する。The present invention relates to a magnetoresistive sensor for reading magnetic information.
【0002】[0002]
【従来の技術】従来、磁気抵抗センサ(「MRセンサ」
ともいう。)又は磁気抵抗ヘッドと呼ばれる磁気読み取
り変換器が知られており、これは大きな線形密度で磁性
表面からデータを読み取れることがわかっている。磁気
抵抗センサは、読み取り素子によって感知される磁束の
強さと、方向の関数としての抵抗変化とを介して磁界信
号を検出する。こうした従来の磁気抵抗センサは、読み
取り素子の抵抗の1成分が磁化方向と素子中を流れる感
知電流の方向との間の角度の余弦の2乗に比例して変化
する、異方性磁気抵抗(AMR)効果に基づいて動作す
る。AMR効果のより詳しい説明は、D.A.トムソン (Th
omson)等の論文”Memory,Storage,and Related Applica
tions"IEEE Trans.on Mag.MAG-11,p.1039(1975) に記載
されているる。2. Description of the Related Art Conventionally, magnetoresistive sensors ("MR sensors")
Also called. ) Or magneto-resistive heads, which are known to read data from magnetic surfaces with a large linear density. Magnetoresistance sensors detect magnetic field signals via the strength of the magnetic flux sensed by the reading element and the change in resistance as a function of direction. Such a conventional magnetoresistive sensor has an anisotropic magnetoresistance (1) in which one component of the resistance of the reading element changes in proportion to the square of the cosine of the angle between the magnetization direction and the direction of the sense current flowing through the element. It operates based on the (AMR) effect. A more detailed description of the AMR effect can be found in DA Thomson (Th
omson) et al. “Memory, Storage, and Related Applica
tions "IEEE Trans.on Mag.MAG-11, p.1039 (1975).
【0003】さらに最近の論文には、積層磁気センサの
抵抗変化が、非磁性層を介する磁性層間での伝導電子の
スピン依存性伝導、及びそれに付随する層界面でのスピ
ン依存性散乱に帰される、より顕著な磁気抵抗効果が記
載されている。この磁気抵抗効果は、「巨大磁気抵抗効
果」や「スピン・バルブ効果」など様々な名称で呼ばれ
ている。このような磁気抵抗センサは適当な材料で構成
されており、AMR効果を利用するセンサで観察される
よりも、感度が改善され、抵抗変化が大きい。この種の
磁気抵抗センサでは、非磁性層で分離された一対の強磁
性体層の間の平面内抵抗が、二つの層の磁化方向間の角
度の余弦に比例して変化する。[0003] In a more recent paper, the resistance change of a laminated magnetic sensor is attributable to the spin-dependent conduction of conduction electrons between the magnetic layers through the non-magnetic layer and the associated spin-dependent scattering at the layer interface. , A more pronounced magnetoresistance effect is described. This magnetoresistance effect is called by various names such as “giant magnetoresistance effect” and “spin valve effect”. Such a magnetoresistive sensor is made of a suitable material, and has improved sensitivity and a large change in resistance as compared to a sensor using the AMR effect. In this type of magnetoresistive sensor, the in-plane resistance between a pair of ferromagnetic layers separated by a nonmagnetic layer changes in proportion to the cosine of the angle between the magnetization directions of the two layers.
【0004】特開平2−61572号公報には、磁性層
内の磁化の反平行整列によって生じる高いMR変化をも
たらす積層磁性構造が記載されている。積層構造で使用
可能な材料として、上記公報には強磁性の遷移金属及び
合金が挙げられている。また、中間層により分離してい
る少なくとも二層の強磁性体層の一方に反強磁性体層を
付加した構造及び反強磁性体層としてFeMnが適当で
あることが開示されている。Japanese Unexamined Patent Publication No. 2-61572 describes a laminated magnetic structure which produces a high MR change caused by antiparallel alignment of magnetization in a magnetic layer. As the materials that can be used in the laminated structure, the above publication discloses ferromagnetic transition metals and alloys. It also discloses a structure in which an antiferromagnetic layer is added to one of at least two ferromagnetic layers separated by an intermediate layer, and FeMn is suitable as the antiferromagnetic layer.
【0005】特開平4−358310号公報には、非磁
性金属体の薄膜層によって仕切られた強磁性体の二層の
薄膜層を有し、印加磁界が零である場合に二つの強磁性
薄膜層の磁化方向が直交し、二つの非結合強磁性体層間
の抵抗が二つの層の磁化方向間の角度の余弦に比例して
変化し、センサ中を通る電流の方向とは独立な、磁気抵
抗センサが開示されている。Japanese Patent Application Laid-Open No. 4-358310 discloses a ferromagnetic thin film having two ferromagnetic thin film layers separated by a nonmagnetic metal thin film layer. The magnetization directions of the layers are orthogonal, the resistance between the two uncoupled ferromagnetic layers varies in proportion to the cosine of the angle between the magnetization directions of the two layers, and is independent of the direction of the current passing through the sensor. A resistance sensor is disclosed.
【0006】特開平6−203340号公報には、非磁
性金属材料の薄膜層で分離された二つの強磁性体薄膜層
を含み、外部印加磁界がゼロのとき、隣接する反強磁性
体層の磁化が他方の強磁性体層に対して垂直に保たれ
る、上記の効果に基づく磁気抵抗センサが開示されてい
る。Japanese Patent Application Laid-Open No. Hei 6-203340 discloses two ferromagnetic thin film layers separated by a nonmagnetic metal material thin film layer. When an externally applied magnetic field is zero, an adjacent antiferromagnetic material layer is formed. A magnetoresistive sensor based on the above effect is disclosed in which the magnetization is kept perpendicular to the other ferromagnetic layer.
【0007】図8に、従来の磁気抵抗センサの部分断面
図を示す。図8では、基板21上に下地層22を積層
し、磁気抵抗センサを形成する。すなわち、下地層22
の上に交換バイアス層としてのFeMn層23を積層
し、第二の強磁性体層24、非磁性体スペーサ層25、
第一の強磁性体層26の順次積層し磁気抵抗センサを形
成する。FIG. 8 shows a partial sectional view of a conventional magnetoresistive sensor. In FIG. 8, a base layer 22 is laminated on a substrate 21 to form a magnetoresistive sensor. That is, the underlayer 22
A FeMn layer 23 as an exchange bias layer is stacked on the second ferromagnetic layer 24, a non-magnetic spacer layer 25,
The first ferromagnetic layers 26 are sequentially laminated to form a magnetoresistive sensor.
【0008】[0008]
【発明が解決しようとする課題】反強磁性体の交換バイ
アス層には、従来FeMn膜、NiMn膜、NiO膜が
用いられていた。FeMn膜は作製が容易で広く交換バ
イアス層として用いられてきていたが、腐食しやすいと
いう欠点がある。NiMn膜は、強磁性体層の磁化方向
を固定する磁界である交換結合磁界が大きく耐食性も高
いが、高い合成温度を必要とするため磁気抵抗効果(M
R)比が低くなるという欠点がある。NiO、は耐食性
が高いこと及び絶縁体であることなどから、FeMnや
NiMnよりも有効であるが、強磁性体層と積層した場
合、強磁性体の保磁力が交換結合磁界よりも大きくな
り、磁気抵抗センサとして正常な動作を期待できないと
いう問題点がある。Conventionally, an FeMn film, a NiMn film, and a NiO film have been used for the anti-ferromagnetic exchange bias layer. The FeMn film is easy to manufacture and has been widely used as an exchange bias layer, but has a disadvantage that it is easily corroded. The NiMn film has a large exchange coupling magnetic field, which is a magnetic field for fixing the magnetization direction of the ferromagnetic layer, and has high corrosion resistance, but requires a high synthesis temperature, so that the magnetoresistance effect (M
R) The disadvantage is that the ratio is low. NiO is more effective than FeMn or NiMn because it has high corrosion resistance and is an insulator, but when laminated with a ferromagnetic layer, the coercive force of the ferromagnetic material becomes larger than the exchange coupling magnetic field, There is a problem that normal operation cannot be expected as a magnetoresistive sensor.
【0009】[0009]
【発明の目的】本発明は、このような問題点を解決すべ
くなされたもので、その目的は、耐食性が高く、合成温
度が低い反強磁性体の交換バイアス層を用いた磁気抵抗
センサを提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a magnetoresistive sensor using an antiferromagnetic exchange bias layer having high corrosion resistance and low synthesis temperature. To provide.
【0010】[0010]
【課題を解決するための手段】本発明に係る磁気抵抗セ
ンサは、非磁性体スペーサ層と、この非磁性体スペーサ
層によって互いに分離された第一の強磁性体層及び第二
の強磁性体層と、この第二の強磁性体層の磁化を所望の
方向に維持するための交換バイアス層とを備えている。
そして、交換バイアス層はニッケル酸化物と界面制御層
との積層膜からなり、なおかつ界面制御層は第二の強磁
性体層に接している。界面制御層としては、非磁性金
属、Cr若しくはMn又はその酸化物、鉄酸化物等を用
いる。非磁性金属は、Al,Ti,V,Cu,Zn,
Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag,H
f,Ta,W,Re,Pt,Au,Pb,Bi,La,
Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,H
o及びErの中から選ばれた一つの金属又は二つ以上の
金属からなる合金である。非磁性金属の厚さtは、0.
3nm≦t≦1.0nmの範囲である。界面制御層がC
r若しくはMn又はその酸化物、鉄酸化物等の場合は、
厚さtは0.3nm≦t≦2.0nmの範囲である。A magnetoresistive sensor according to the present invention comprises a non-magnetic spacer layer, a first ferromagnetic layer and a second ferromagnetic layer separated from each other by the non-magnetic spacer layer. And an exchange bias layer for maintaining the magnetization of the second ferromagnetic layer in a desired direction.
The exchange bias layer is composed of a laminated film of a nickel oxide and an interface control layer, and the interface control layer is in contact with the second ferromagnetic layer. As the interface control layer, a nonmagnetic metal, Cr or Mn or an oxide thereof, an iron oxide, or the like is used. Non-magnetic metals include Al, Ti, V, Cu, Zn,
Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, H
f, Ta, W, Re, Pt, Au, Pb, Bi, La,
Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, H
One metal selected from o and Er or an alloy composed of two or more metals. The thickness t of the nonmagnetic metal is 0.
The range is 3 nm ≦ t ≦ 1.0 nm. The interface control layer is C
In the case of r or Mn or its oxide, iron oxide, etc.,
The thickness t is in the range of 0.3 nm ≦ t ≦ 2.0 nm.
【0011】ニッケル酸化物層を交換バイアス層に用い
る場合、積層する強磁性体との間に非磁性金属又は反強
磁性からなる薄層(以下、「界面制御層」という。)を
積層することで、強磁性体の保磁力が低下することが、
今回本発明者によって明らかにされた。When a nickel oxide layer is used as the exchange bias layer, a thin layer made of a non-magnetic metal or antiferromagnetic (hereinafter, referred to as an “interface control layer”) is laminated between the ferromagnetic material to be laminated. Therefore, the coercive force of the ferromagnetic material is reduced,
This time, it was made clear by the present inventors.
【0012】図2は、界面制御層にCuを用いたガラス
基板/NiO(50nm)/Cu(0.5nm)/Ni
Fe(6nm)構成の試料の磁化曲線と、比較のための
NiO単層の磁化曲線である。NiO単層では保磁力が
大きく磁界ゼロで二値を取るため、スピンバルブ膜には
使用できない。これに対し、界面制御層としてCu
(0.5nm)層を用いることで、保磁力は1/3以下
に低減し、スピンバルブ動作が可能となる。FIG. 2 shows a glass substrate using Cu for the interface control layer / NiO (50 nm) / Cu (0.5 nm) / Ni
7 shows a magnetization curve of a sample having an Fe (6 nm) configuration and a magnetization curve of a NiO single layer for comparison. Since a single layer of NiO has a large coercive force and takes two values at zero magnetic field, it cannot be used for a spin valve film. In contrast, Cu as an interface control layer
By using the (0.5 nm) layer, the coercive force is reduced to 1/3 or less, and the spin valve operation becomes possible.
【0013】図3は、ガラス基板/NiO(50nm)
/界面制御層(tnm)/NiFe(6nm)という構
成の試料において、層厚tによる交換結合磁界及び保磁
力の変化を示し、界面制御層に非磁性金属としてCu又
はAgを用いた例である。41はCuを界面制御層にし
た試料の保磁力、42はAgを界面制御層にした試料の
保磁力、43はCuを界面制御層にした試料の交換結合
磁界、44はAgを界面制御層にした試料の交換結合磁
界である。界面制御層の厚さを増加すると、保磁力及び
交換結合磁界の値は減少するが、保磁力の低下量は交換
結合磁界の低下量よりも大きい。このため、界面制御層
の厚さを0.3nm以上、1.0nm以下に選ぶこと
で、交換結合磁界は保磁力よりも大きくなり、磁気抵抗
センサとして正常な動作が可能となる。適当な界面制御
層の厚さは、非磁性金属では0.3nm以上、1.0n
m以下であり、反強磁性体では0.3nm以上、2.0
nm以下の範囲である。FIG. 3 shows a glass substrate / NiO (50 nm).
In the sample having the structure of / interfacial control layer (tnm) / NiFe (6 nm), the change in the exchange coupling magnetic field and the coercive force depending on the layer thickness t is shown, and this is an example in which Cu or Ag is used as the nonmagnetic metal for the interface control layer. . 41 is the coercive force of the sample with Cu as the interface control layer, 42 is the coercive force of the sample with Ag as the interface control layer, 43 is the exchange coupling magnetic field of the sample with Cu as the interface control layer, 44 is the Ag 4 shows the exchange coupling magnetic field of the sample. As the thickness of the interface control layer increases, the values of the coercive force and the exchange coupling magnetic field decrease, but the coercive force decreases more than the exchange coupling magnetic field decreases. Therefore, by selecting the thickness of the interface control layer to be 0.3 nm or more and 1.0 nm or less, the exchange coupling magnetic field becomes larger than the coercive force, and normal operation as a magnetoresistive sensor becomes possible. A suitable thickness of the interface control layer is 0.3 nm or more and 1.0 n
m or less, and 0.3 nm or more and 2.0
nm or less.
【0014】[0014]
【発明の実施の形態】図1は、本発明に係る磁気抵抗セ
ンサの一実施形態を示す、一部をブロック化した断面図
である。以下、この図面に基づき説明する。FIG. 1 is a sectional view partially showing a block diagram of an embodiment of a magnetoresistive sensor according to the present invention. Hereinafter, description will be made based on this drawing.
【0015】基板11上に下地層12を積層し、磁気抵
抗センサを形成する。すなわち、下地層12の上に交換
バイアス層としてNiO層13と界面制御層14の二層
膜を積層し、第二の強磁性体層15、非磁性体スペーサ
層16、第一の強磁性体層17を順次積層し磁気抵抗セ
ンサを形成する。磁気抵抗センサはフォトリソグラフィ
工程により適当な大きさ形状にパターン化されており、
その端部に接するように電極層18a,18bが積層さ
れている。電極層18a,18bには電流源19及び感
知手段20が接続されており、外部磁界変化を抵抗率変
化として検知できる磁気検出装置が構成されている。An underlayer 12 is laminated on a substrate 11 to form a magnetoresistive sensor. That is, a two-layer film of the NiO layer 13 and the interface control layer 14 is laminated on the underlayer 12 as an exchange bias layer, and the second ferromagnetic layer 15, the non-magnetic spacer layer 16, the first ferromagnetic layer The layers 17 are sequentially laminated to form a magnetoresistive sensor. The magnetoresistive sensor is patterned into an appropriate size and shape by a photolithography process,
The electrode layers 18a and 18b are laminated so as to be in contact with the end. A current source 19 and a sensing means 20 are connected to the electrode layers 18a and 18b, and constitute a magnetic detector capable of detecting a change in an external magnetic field as a change in resistivity.
【0016】下地層12には、アルミナ、SiO2 、窒
化アルミニウム、窒化シリコン等の誘電体やZr,T
a,Hf,Mo等のfcc構造を有する材料が適当であ
る。界面制御層14には、非磁性金属、Cr若しくはM
n又はこれらの酸化物、鉄酸化物等が用いられる。非磁
性金属としては、Al,Ti,V,Cu,Zn,Y,Z
r,Nb,Mo,Ru,Rh,Pd,Ag,Hf,T
a,W,Re,Pt,Au,Pb,Bi,La,Ce,
Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,E
rの中から選ばれた一つの金属又は二つ以上の金属から
なる合金とするのが好ましい。非磁性金属とした場合の
厚さtは、0.3nm≦t≦1.0mの範囲が好まし
い。Cr若しくはMn又はこれらの酸化物、又は鉄酸化
物等とした場合の厚さtは、0.3nm≦t≦2.0n
mの範囲が好ましい。第一及び第二の強磁性体層15,
17としては、NiFe,NiFeCo,CoZr系材
料,FeCoB,センダスト,窒化鉄系材料,FeCo
等を用いることができる。第一及び第二の強磁性体層1
5,17の膜厚は1〜10nm程度が望ましい。第一及
び第二の強磁性体層15,17が、非磁性体スペーサ層
16に隣接する薄いCo膜を有することも可能である。
非磁性体スペーサ層16は、銀、金及び銅の中から選ば
れた一つの金属又は二つ以上の金属からなる合金を用い
ることができる。非磁性体スペーサ層16の膜厚は2〜
3nmが好ましい。ニッケル酸化物の組成比O/(Ni
+O)は、0.4≦O/(Ni+O)≦0.6の範囲と
することが好ましい。The underlayer 12 is made of a dielectric such as alumina, SiO 2 , aluminum nitride, silicon nitride or the like, or Zr, T
Materials having an fcc structure such as a, Hf, and Mo are suitable. Non-magnetic metal, Cr or M
n or their oxides, iron oxides and the like are used. Non-magnetic metals include Al, Ti, V, Cu, Zn, Y, Z
r, Nb, Mo, Ru, Rh, Pd, Ag, Hf, T
a, W, Re, Pt, Au, Pb, Bi, La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
It is preferable to use one metal selected from r or an alloy composed of two or more metals. The thickness t of the nonmagnetic metal is preferably in the range of 0.3 nm ≦ t ≦ 1.0 m. The thickness t when Cr or Mn or their oxides or iron oxides is 0.3 nm ≦ t ≦ 2.0 n
The range of m is preferred. The first and second ferromagnetic layers 15,
17 include NiFe, NiFeCo, CoZr-based materials, FeCoB, Sendust, iron nitride-based materials, FeCo
Etc. can be used. First and second ferromagnetic layers 1
The film thickness of 5, 17 is desirably about 1 to 10 nm. It is also possible that the first and second ferromagnetic layers 15 and 17 have a thin Co film adjacent to the nonmagnetic spacer layer 16.
The nonmagnetic spacer layer 16 can be made of one metal selected from silver, gold and copper, or an alloy composed of two or more metals. The thickness of the nonmagnetic spacer layer 16 is 2 to
3 nm is preferred. Nickel oxide composition ratio O / (Ni
+ O) is preferably in the range of 0.4 ≦ O / (Ni + O) ≦ 0.6.
【0017】図4は、界面制御層として非磁性金属であ
るCuを0.5nm用いたスピンバルブ膜のR−H曲線
である。構成はNiO(50nm)/Cu(0.5n
m)/NiFe(3nm)/Cu(2.5nm)/Ni
Fe(6nm)である。NiOの成膜には、焼結体ター
ゲットを用いたrfスパッタ法を用いた。スパッタガス
はArとし、ガス圧0.3Pa、投入パワー200Wで
行った。Cu,NiFeの成膜は、dcマグネトロンス
パッタ法で行った。スパッタガスはArとし、ガス圧
0.3Pa、投入パワーはCu7W、NiFe35Wで
行った。正常なMR動作をしており、MR比5.5%が
得られている。Cuの層厚が、0.3nm以下では、固
定層の保磁力が大きいため正常なスピンバルブ動作はし
なかった。1.0nm以上では、交換結合磁界が小さく
なるので磁気抵抗センサには適さない。一方、界面制御
層を用いないNiO(50nm)/NiFe(3nm)
/Cu(2.5nm)/NiFe(6nm)構成のスピ
ンバルブ膜では、固定層の保磁力が大きいため正常なス
ピンバルブ動作はしなかった。FIG. 4 is an RH curve of a spin valve film using 0.5 nm of Cu, which is a nonmagnetic metal, as an interface control layer. The structure is NiO (50 nm) / Cu (0.5 n
m) / NiFe (3 nm) / Cu (2.5 nm) / Ni
Fe (6 nm). For the NiO film formation, an rf sputtering method using a sintered target was used. The sputtering gas was Ar, the gas pressure was 0.3 Pa, and the input power was 200 W. Cu and NiFe were formed by dc magnetron sputtering. The sputtering gas was Ar, the gas pressure was 0.3 Pa, and the input power was Cu7W and NiFe35W. A normal MR operation is performed, and an MR ratio of 5.5% is obtained. When the Cu layer thickness was 0.3 nm or less, the spin valve did not operate normally because the coercive force of the fixed layer was large. If the thickness is 1.0 nm or more, the exchange coupling magnetic field becomes small, so that it is not suitable for a magnetoresistive sensor. On the other hand, NiO (50 nm) / NiFe (3 nm) without using the interface control layer
In the spin valve film having the structure of / Cu (2.5 nm) / NiFe (6 nm), a normal spin valve operation was not performed because the coercive force of the fixed layer was large.
【0018】図5は、界面制御層として非磁性金属であ
るAgを0.5nm用いたスピンバルブ膜のR−H曲線
である。構成はNiO(50nm)/Ag(0.5n
m)/NiFe(3nm)/Cu(2.5nm)/Ni
Fe(6nm)である。MR比5.5%で、正常なMR
動作をしていることが分かる。成膜条件はCuの場合と
同様である。Agの層厚が、0.3nm以下では、固定
層の保磁力が大きいため正常なスピンバルブ動作はしな
かった。1.0nm以上では、交換結合磁界が小さくな
るので磁気抵抗センサには適さない。界面制御層とし
て、他の非磁性金属すなわちAl,Ti,V,Zn,
Y,Zr,Nb,Mo,Ru,Rh,Pd,Hf,T
a,W,Re,Pt,Au,Pb,Bi,La,Ce,
Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho及び
Erの中から選ばれた一つの金属又は二以上の金属から
なる合金を用いた場合も、Cu又はAgを用いた場合と
同様の結果が得られた。FIG. 5 is an RH curve of a spin valve film using 0.5 nm of nonmagnetic metal Ag as an interface control layer. The composition is NiO (50 nm) / Ag (0.5 n
m) / NiFe (3 nm) / Cu (2.5 nm) / Ni
Fe (6 nm). Normal MR with an MR ratio of 5.5%
You can see that it is working. The film forming conditions are the same as those for Cu. When the thickness of the Ag layer was 0.3 nm or less, a normal spin valve operation was not performed because the coercive force of the fixed layer was large. If the thickness is 1.0 nm or more, the exchange coupling magnetic field becomes small, so that it is not suitable for a magnetoresistive sensor. As the interface control layer, other nonmagnetic metals, namely, Al, Ti, V, Zn,
Y, Zr, Nb, Mo, Ru, Rh, Pd, Hf, T
a, W, Re, Pt, Au, Pb, Bi, La, Ce,
When one metal selected from Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er or an alloy composed of two or more metals is used, the same as when Cu or Ag is used. The result was obtained.
【0019】図6は、ガラス基板/NiO(50nm)
/界面制御層(tnm)NiFe(6nm)という構成
の試料において、層厚tによる交換結合磁界Hexと保
磁力Hcの変化を示し、界面制御層に反強磁性金属のM
n又はCrを用いた結果である。71はMnを界面制御
層にした試料の保磁力、72はCrを界面制御層にした
試料の保磁力、73はMnを界面制御層にした試料の交
換結合磁界、74はCrを界面制御層にした試料の交換
結合磁界である。界面制御層の厚さを増加すると、保磁
力は単調に減少するが、交換結合磁界は一旦増加した
後、低下する。界面制御層の厚さを0.3nm以上に選
ぶことで、交換結合磁界は保磁力よりも大きくなり、磁
気抵抗センサとして正常な動作が可能となる。界面制御
層に反強磁性金属のCr又はMnを用いたNiO(50
nm)/Cr又はMn(0.5nm)/NiFe(3n
m)/Cu(2.5nm)/NiFe(6nm)構成の
試料を作製し、R−H曲線を測定したところ、MR比
5.5%で、正常なMR動作をした。Cr又はMnの層
厚が、0.3nm以下では、固定層の保磁力が大きいた
め正常なスピンバルブ動作をしなかった。2.0nm以
上では、交換結合磁界が小さくなるので磁気抵抗センサ
には適さない。界面制御層としてCr又はMnの酸化物
を用いた場合も、Cr又はMnの場合と同様の結果が得
られた。FIG. 6 shows a glass substrate / NiO (50 nm).
/ Interface control layer (tnm) In a sample having a structure of NiFe (6 nm), the change in the exchange coupling magnetic field Hex and the coercive force Hc depending on the layer thickness t is shown.
These are the results using n or Cr. 71 is the coercive force of the sample in which Mn is the interface control layer, 72 is the coercive force of the sample in which Cr is the interface control layer, 73 is the exchange coupling magnetic field of the sample in which Mn is the interface control layer, and 74 is Cr the interface control layer. 4 shows the exchange coupling magnetic field of the sample. As the thickness of the interface control layer increases, the coercive force monotonously decreases, but the exchange coupling magnetic field once increases and then decreases. When the thickness of the interface control layer is selected to be 0.3 nm or more, the exchange coupling magnetic field becomes larger than the coercive force, and normal operation as a magnetoresistive sensor becomes possible. NiO (50) using the antiferromagnetic metal Cr or Mn for the interface control layer
nm) / Cr or Mn (0.5 nm) / NiFe (3n
m) / Cu (2.5 nm) / NiFe (6 nm) sample was prepared, and the RH curve was measured. As a result, a normal MR operation was performed at an MR ratio of 5.5%. When the layer thickness of Cr or Mn is 0.3 nm or less, a normal spin valve operation was not performed because the coercive force of the fixed layer was large. If the thickness is 2.0 nm or more, the exchange coupling magnetic field becomes small, so that it is not suitable for a magnetic resistance sensor. When the oxide of Cr or Mn was used as the interface control layer, the same result as in the case of Cr or Mn was obtained.
【0020】図7は、ガラス基板/NiO(50nm)
/鉄酸化物(tnm)/NiFe(6nm)という構成
の試料における、層厚tによる交換結合磁界Hexと保
磁力Hcの変化を示す。81は保磁力、82は交換結合
磁界である。界面制御層の厚さを増加すると、保磁力は
単調に減少するが、交換結合磁界は一旦増加した後、低
下する。界面制御層の厚さを0.3nm以上に選ぶこと
で、交換結合磁界は保磁力より大きくなり、磁気抵抗セ
ンサとして正常な動作が可能となる。界面制御層に鉄酸
化物を用いたNiO(50nm)/鉄酸化物(0.5n
m)/NiFe(3nm)/Cu(2.5nm)/Ni
Fe(6nm)構成の試料を作製し、R−H曲線を測定
したところ、MR比5.5%で、正常なMR動作をし
た。鉄酸化物の層厚が、0.3nm以下では、固定層の
保磁力が大きいため正常なスピンバルブ動作はしなかっ
た。2.0nm以上では、交換結合磁界が小さくなるの
で磁気抵抗センサには適さない。FIG. 7 shows a glass substrate / NiO (50 nm).
6 shows changes in the exchange coupling magnetic field Hex and the coercive force Hc depending on the layer thickness t in a sample having a configuration of / FeO (tnm) / NiFe (6 nm). 81 is a coercive force and 82 is an exchange coupling magnetic field. As the thickness of the interface control layer increases, the coercive force monotonously decreases, but the exchange coupling magnetic field once increases and then decreases. By selecting the thickness of the interface control layer to be 0.3 nm or more, the exchange coupling magnetic field becomes larger than the coercive force, and normal operation as a magnetoresistive sensor becomes possible. NiO (50 nm) / iron oxide (0.5 n) using iron oxide for interface control layer
m) / NiFe (3 nm) / Cu (2.5 nm) / Ni
When a sample having an Fe (6 nm) configuration was prepared and an RH curve was measured, a normal MR operation was performed at an MR ratio of 5.5%. When the thickness of the iron oxide layer was 0.3 nm or less, the spin valve did not operate normally because the coercive force of the fixed layer was large. If the thickness is 2.0 nm or more, the exchange coupling magnetic field becomes small, so that it is not suitable for a magnetic resistance sensor.
【0021】なお、本発明に係る磁気抵抗センサ(請求
項1,2,3,4,5,6又は7記載の磁気抵抗セン
サ)を用い、基板上にシールド層、下ギャップ層、及び
当該磁気抵抗センサが積層されており、シールド層はパ
ターン化されており、磁気抵抗センサはパターン化され
ており、その端部に接するように縦バイアス層及び下電
極層が順次積層されており、その上にギャップ層、上シ
ールド層が順次積層されている、シールド型磁気抵抗セ
ンサを構成することもできる。In addition, using the magnetoresistive sensor according to the present invention (the magnetoresistive sensor according to claim 1, 2, 3, 4, 5, 6, or 7), a shield layer, a lower gap layer, A resistance sensor is stacked, a shield layer is patterned, a magnetoresistive sensor is patterned, a vertical bias layer and a lower electrode layer are sequentially stacked so as to be in contact with an end thereof, and , A shield type magnetoresistive sensor in which a gap layer and an upper shield layer are sequentially laminated.
【0022】また、本発明に係る磁気抵抗センサ(請求
項1,2,3,4,5,6又は7記載の磁気抵抗セン
サ)を用い、基板上にシールド層、下ギャップ層、及び
当該磁気抵抗センサが積層されており、シールド層はパ
ターン化されており、磁気抵抗センサはパターン化され
ており、その上部に一部重なるように縦バイアス層及び
下電極層が順次積層されており、その上に上ギャップ
層、上シールド層が順次積層されている、シールド型磁
気抵抗センサを構成することもできる。Further, using a magnetoresistive sensor according to the present invention (a magnetoresistive sensor according to claims 1, 2, 3, 4, 5, 6, or 7), a shield layer, a lower gap layer, The resistance sensor is stacked, the shield layer is patterned, the magnetoresistive sensor is patterned, the vertical bias layer and the lower electrode layer are sequentially stacked so as to partially overlap the upper part, A shield-type magnetoresistive sensor in which an upper gap layer and an upper shield layer are sequentially stacked on top of each other can also be configured.
【0023】さらに、上記の二つのシールド型磁気抵抗
センサのいずれかを用いて、当該シールド型磁気抵抗セ
ンサを通る電流を生じる手段と、検出される磁界の関数
として前記シールド型磁気抵抗センサの抵抗率変化を検
出する手段とを備えた磁気抵抗検出装置を構成すること
もできる。Further, means for generating a current through the shielded magnetoresistive sensor using one of the above two shielded magnetoresistive sensors, and a resistance of the shielded magnetoresistive sensor as a function of a magnetic field to be detected. It is also possible to configure a magnetoresistive detector including means for detecting a rate change.
【0024】さらにまた、この磁気抵抗検出装置を用い
て、データ記録のための複数個のトラックを有する磁気
記憶媒体と、この磁気記憶媒体上にデータを記憶させる
ための磁気記録装置と、この磁気記録装置及び当該磁気
抵抗検出装置を前記磁気記憶媒体の選択されたトラック
へ移動させるために、前記磁気記録装置及び磁気抵抗変
換装置に結合されたアクチュエータ手段とを備えた磁気
記憶システムを構成することもできる。Further, a magnetic storage medium having a plurality of tracks for recording data using the magnetoresistive detection device, a magnetic recording device for storing data on the magnetic storage medium, Configuring a magnetic storage system comprising: a magnetic recording device and actuator means coupled to the magnetoresistive transducer to move the recording device and the magnetoresistive detector to a selected track of the magnetic storage medium. Can also.
【0025】[0025]
【発明の効果】本発明にによれば、交換バイアス層をニ
ッケル酸化物と界面制御層との積層膜とし、かつ界面制
御層に非磁性金属、Cr若しくはMn又はその酸化物、
鉄酸化物等を用いたことにより、ニッケル酸化物を用い
ても強磁性体層の保持力を低く抑えることができるの
で、耐食性が高く、合成温度が低い反強磁性体の交換バ
イアス層を有する磁気抵抗センサを実現することができ
る。According to the present invention, the exchange bias layer is a laminated film of nickel oxide and an interface control layer, and the interface control layer is formed of a nonmagnetic metal, Cr or Mn, or an oxide thereof.
The use of iron oxide or the like enables the holding force of the ferromagnetic layer to be kept low even when nickel oxide is used, so that it has an anti-ferromagnetic exchange bias layer having high corrosion resistance and a low synthesis temperature. A magnetoresistive sensor can be realized.
【図1】本発明に係る磁気抵抗センサの一実施形態を示
す、一部をブロック化した断面図である。FIG. 1 is a cross-sectional view partially showing a block diagram of an embodiment of a magnetoresistive sensor according to the present invention.
【図2】本発明に係る磁気抵抗センサにおいて界面制御
層にCuを用いてガラス基板/NiO(50nm)/C
u(0.5nm)/NiFe(6nm)とした試料、及
び比較用として界面制御層にCuを用いないでガラス基
板/NiO(50nm)/NiFe(6nm)とした試
料における、それぞれの磁化曲線を示すグラフである。FIG. 2 shows a glass substrate / NiO (50 nm) / C using Cu for an interface control layer in a magnetoresistive sensor according to the present invention.
The magnetization curves of a sample of u (0.5 nm) / NiFe (6 nm) and a sample of glass substrate / NiO (50 nm) / NiFe (6 nm) without using Cu for the interface control layer for comparison are shown. It is a graph shown.
【図3】本発明に係る磁気抵抗センサにおいて界面制御
層にCu又はAgを用いガラス基板/NiO(50n
m)/Cu又はAg(tnm)/NiFe(6nm)と
した試料における、界面制御層の厚さと交換結合磁界及
び保磁力との関係を示すグラフである。FIG. 3 shows a magnetoresistive sensor according to the present invention, in which Cu or Ag is used for an interface control layer, and a glass substrate / NiO (50 n
7 is a graph showing the relationship between the thickness of the interface control layer, the exchange coupling magnetic field, and the coercive force in a sample of m) / Cu or Ag (tnm) / NiFe (6 nm).
【図4】本発明に係る磁気抵抗センサにおいて界面制御
層にCuを用いたスピンバルブ膜のR−H曲線を示すグ
ラフである。FIG. 4 is a graph showing an RH curve of a spin valve film using Cu for an interface control layer in the magnetoresistive sensor according to the present invention.
【図5】本発明に係る磁気抵抗センサにおいて界面制御
層にAgを用いたスピンバルブ膜のR−H曲線を示すグ
ラフである。FIG. 5 is a graph showing an RH curve of a spin valve film using Ag for the interface control layer in the magnetoresistive sensor according to the present invention.
【図6】本発明に係る磁気抵抗センサにおいて界面制御
層にMn又はCrを用いガラス基板/NiO(50n
m)/Mn又はCr(tnm)/NiFe(6nm)と
した試料における、界面制御層の厚さと交換結合磁界及
び保磁力との関係を示すグラフである。FIG. 6 is a diagram illustrating a glass substrate / NiO (50n) using Mn or Cr for the interface control layer in the magnetoresistive sensor according to the present invention.
10 is a graph showing the relationship between the thickness of the interface control layer, the exchange coupling magnetic field, and the coercive force in a sample of m) / Mn or Cr (tnm) / NiFe (6 nm).
【図7】本発明に係る磁気抵抗センサにおいて界面制御
層に鉄酸化物を用いガラス基板/NiO(50nm)/
鉄酸化物(tnm)/NiFe(6nm)とした試料に
おける、界面制御層の厚さと交換結合磁界及び保磁力と
の関係を示すグラフである。FIG. 7 shows a magnetoresistive sensor according to the present invention, in which an iron oxide is used for an interface control layer, and a glass substrate / NiO (50 nm) /
4 is a graph showing the relationship between the thickness of the interface control layer, the exchange coupling magnetic field, and the coercive force in a sample of iron oxide (tnm) / NiFe (6 nm).
【図8】従来の磁気抵抗センサを示す断面図である。FIG. 8 is a sectional view showing a conventional magnetoresistive sensor.
11 基板 12 下地層 13 NiO層 14 界面制御層 15 第二の強磁性体層 16 非磁性体スペーサ層 17 第一の強磁性体層 41 Cuを界面制御層にした試料の保磁力 42 Agを界面制御層にした試料の保磁力 43 Cuを界面制御層にした試料の交換結合磁界 44 Agを界面制御層にした試料の交換結合磁界 71 Mnを界面制御層にした試料の保磁力 72 Crを界面制御層にした試料の保磁力 73 Mnを界面制御層にした試料の交換結合磁界 74 Crを界面制御層にした試料の交換結合磁界 81 保磁力 82 交換結合磁界 DESCRIPTION OF SYMBOLS 11 Substrate 12 Underlayer 13 NiO layer 14 Interface control layer 15 Second ferromagnetic layer 16 Non-magnetic spacer layer 17 First ferromagnetic layer 41 Coercive force of sample using Cu as interface control layer 42 Ag as interface Coercive force of sample 43 used as control layer 43 Exchange coupling magnetic field of sample using Cu as interface control layer 44 Exchange coupling magnetic field of sample using Ag as interface control layer 71 Coercive force of sample using Mn as interface control layer 72 Cr at interface Coercive force of sample with control layer 73 Exchange coupling magnetic field of sample with Mn as interface control layer 74 Exchange coupling magnetic field of sample with Cr as interface control layer 81 Coercive force 82 Exchange coupling magnetic field
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 英文 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 石原 邦彦 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 平8−127864(JP,A) 特開 平7−202292(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 5/39────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hidefumi Yamamoto 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (72) Inventor Kunihiko Ishihara 5-7-1 Shiba, Minato-ku, Tokyo NEC (56) References JP-A-8-127864 (JP, A) JP-A-7-202292 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 5/39
Claims (11)
ペーサ層によって互いに分離された第一の強磁性体層及
び第二の強磁性体層と、この第二の強磁性体層の磁化を
所望の方向に維持するための交換バイアス層とを備えた
磁気抵抗センサにおいて、 前記交換バイアス層がニッケル酸化物と非磁性金属との
積層膜からなり、かつこの非磁性金属が前記第二の強磁
性体層と接することを特徴とする磁気抵抗センサ。1. A non-magnetic spacer layer, a first ferromagnetic layer and a second ferromagnetic layer separated from each other by the non-magnetic spacer layer, and a magnetization of the second ferromagnetic layer Wherein the exchange bias layer comprises a laminated film of nickel oxide and a non-magnetic metal, and the non-magnetic metal comprises the second A magnetoresistive sensor in contact with a ferromagnetic layer.
u,Zn,Y,Zr,Nb,Mo,Ru,Rh,Pd,
Ag,Hf,Ta,W,Re,Pt,Au,Pb,B
i,La,Ce,Pr,Nd,Sm,Eu,Gd,T
b,Dy,Ho及びErの中から選ばれた一つの金属又
は二つ以上の金属からなる合金である、請求項1記載の
磁気抵抗センサ。2. The method according to claim 1, wherein the non-magnetic metal is Al, Ti, V, C
u, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd,
Ag, Hf, Ta, W, Re, Pt, Au, Pb, B
i, La, Ce, Pr, Nd, Sm, Eu, Gd, T
The magnetoresistive sensor according to claim 1, wherein the magnetoresistive sensor is one metal selected from b, Dy, Ho, and Er or an alloy including two or more metals.
≦t≦1.0nmの範囲である、請求項1又は2記載の
磁気抵抗センサ。3. The thickness t of the non-magnetic metal is 0.3 nm.
The magnetoresistive sensor according to claim 1, wherein ≦ t ≦ 1.0 nm.
ペーサ層によって互いに分離された第一の強磁性体層及
び第二の強磁性体層と、この第二の強磁性体層の磁化を
所望の方向に維持するための交換バイアス層とを備えた
磁気抵抗センサにおいて、 前記交換バイアス層がニッケル酸化物とCr若しくはM
n又はその酸化物との積層膜からなり、かつこのCr若
しくはMn又はその酸化物が前記第二の強磁性体層と接
することを特徴とする磁気抵抗センサ。4. A nonmagnetic spacer layer, a first ferromagnetic layer and a second ferromagnetic layer separated from each other by the nonmagnetic spacer layer, and a magnetization of the second ferromagnetic layer. Wherein the exchange bias layer comprises nickel oxide and Cr or Mn.
A magnetoresistive sensor comprising a laminated film of n or its oxide, and wherein said Cr or Mn or its oxide is in contact with said second ferromagnetic layer.
厚さtが、0.3nm≦t≦2.0nmの範囲である、
請求項4記載の磁気抵抗センサ。5. The thickness t of Cr or Mn or an oxide thereof is in the range of 0.3 nm ≦ t ≦ 2.0 nm.
The magnetoresistive sensor according to claim 4.
ペーサ層によって互いに分離された第一の強磁性体層及
び第二の強磁性体層と、この第二の強磁性体層の磁化を
所望の方向に維持するための交換バイアス層とを備えた
磁気抵抗センサにおいて、 前記交換バイアス層がニッケル酸化物と鉄酸化物との積
層膜からなり、この鉄酸化物が前記第二の強磁性体層と
接することを特徴とする磁気抵抗センサ。6. A non-magnetic spacer layer, a first ferromagnetic layer and a second ferromagnetic layer separated from each other by the non-magnetic spacer layer, and a magnetization of the second ferromagnetic layer. Wherein the exchange bias layer comprises a laminated film of nickel oxide and iron oxide, and the iron oxide is A magnetoresistive sensor in contact with a magnetic layer.
t≦2.0nmの範囲である、請求項6に記載の磁気抵
抗センサ。7. The thickness t of the iron oxide is 0.3 nm ≦
7. The magnetoresistive sensor according to claim 6, wherein t ≦ 2.0 nm.
o,Fe及びNiの中から選ばれた一つの金属又は二つ
以上の金属からなる合金である、請求項1,2,3,
4,5,6又は7記載の磁気抵抗センサ。8. The method according to claim 1, wherein the first and second ferromagnetic layers are C
4. An alloy comprising one metal selected from the group consisting of o, Fe and Ni or an alloy comprising two or more metals.
8. The magnetoresistive sensor according to 4, 5, 6, or 7.
非磁性体スペーサ層に隣接する薄いCo膜を有する、請
求項1,2,3,4,5,6又は7記載の磁気抵抗セン
サ。9. The method according to claim 1, wherein the first and second ferromagnetic layers have a thin Co film adjacent to the non-magnetic spacer layer. Magnetoresistive sensor.
び銅の中から選ばれた一つの金属又は二つ以上の金属か
らなる合金を含む、請求項1,2,3,4,5,6又は
7記載の磁気抵抗センサ。10. The non-magnetic spacer layer includes one metal selected from gold, silver and copper, or an alloy composed of two or more metals. , 6 or 7.
i+O)が、0.4≦O/(Ni+O)≦0.6であ
る、請求項1,2,3,4,5,6又は7記載の磁気抵
抗センサ。11. The composition ratio of the nickel oxide, O / (N
The magnetoresistive sensor according to claim 1, 2, 3, 4, 5, 6, or 7, wherein (i + O) satisfies 0.4 ≦ O / (Ni + O) ≦ 0.6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20169296A JP2850866B2 (en) | 1996-07-31 | 1996-07-31 | Magnetoresistive sensor |
KR1019970037430A KR100293861B1 (en) | 1996-07-31 | 1997-07-31 | Magnetoresistive sensor using exchange bias giant magnetoresistive element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20169296A JP2850866B2 (en) | 1996-07-31 | 1996-07-31 | Magnetoresistive sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1049830A JPH1049830A (en) | 1998-02-20 |
JP2850866B2 true JP2850866B2 (en) | 1999-01-27 |
Family
ID=16445333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20169296A Expired - Fee Related JP2850866B2 (en) | 1996-07-31 | 1996-07-31 | Magnetoresistive sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2850866B2 (en) |
KR (1) | KR100293861B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6819532B2 (en) | 2001-10-12 | 2004-11-16 | Nec Corporation | Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69932701T2 (en) * | 1999-03-19 | 2007-09-13 | Hitachi Global Storage Technologies Netherlands B.V. | Pinning layer for magnetic arrangements |
US6867951B1 (en) | 2000-07-12 | 2005-03-15 | Hitachi Global Storage Technologies Netherlands B.V. | Spin valve magnetic properties with oxygen-rich NiO underlayer |
US7978439B2 (en) * | 2007-06-19 | 2011-07-12 | Headway Technologies, Inc. | TMR or CPP structure with improved exchange properties |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2738312B2 (en) * | 1994-09-08 | 1998-04-08 | 日本電気株式会社 | Magnetoresistive film and method of manufacturing the same |
JPH08129719A (en) * | 1994-10-31 | 1996-05-21 | Hitachi Ltd | Magnetoresistive head and magnetic recording device |
-
1996
- 1996-07-31 JP JP20169296A patent/JP2850866B2/en not_active Expired - Fee Related
-
1997
- 1997-07-31 KR KR1019970037430A patent/KR100293861B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6819532B2 (en) | 2001-10-12 | 2004-11-16 | Nec Corporation | Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer |
Also Published As
Publication number | Publication date |
---|---|
JPH1049830A (en) | 1998-02-20 |
KR100293861B1 (en) | 2001-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2778626B2 (en) | Magnetoresistance effect film, method of manufacturing the same, and magnetoresistance effect element | |
US5422571A (en) | Magnetoresistive spin valve sensor having a nonmagnetic back layer | |
JP3766565B2 (en) | Magnetoresistive film and magnetoresistive head | |
US6340520B1 (en) | Giant magnetoresistive material film, method of producing the same magnetic head using the same | |
JP2970590B2 (en) | Magnetoresistive element, magnetoresistive sensor using the same, magnetoresistive detection system and magnetic storage system | |
JP2914339B2 (en) | Magnetoresistive element, magnetoresistive sensor and magnetoresistive detection system using the same | |
JP2933056B2 (en) | Magnetoresistive element, magnetoresistive sensor using the same, magnetoresistive detection system and magnetic storage system | |
US6133732A (en) | Magnetoresistive effect element and shield magnetoresistive effect sensor | |
JPH11296823A (en) | Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system | |
CN1122498A (en) | Multilayer magnetoresistive detector | |
JPH0821166B2 (en) | Magnetoresistive sensor | |
US20010005300A1 (en) | Magneto-resistance effect head and magnetic storage device employing the head | |
JPH11134620A (en) | Ferromagnetic tunnel junction element sensor and its manufacture | |
JP2856165B2 (en) | Magnetoresistive element and method of manufacturing the same | |
JPH11213343A (en) | Magnetoresistive element and its production as well as magneto-resistive sensor using the magneto-resistive element, magnetoresistivity detection system and magnetic memory system using this magneto-resistive element | |
JPH10241123A (en) | Magnetoresistance effect head | |
JP3181525B2 (en) | Spin valve thin film element and thin film magnetic head using the spin valve thin film element | |
JP2001308413A (en) | Magneto-resistance effect thin film, magneto-resistance effect element and magneto-resistance effect type magnetic head | |
JPH11161921A (en) | Magneto-resistance effect element and its production | |
JPH1174121A (en) | Magneto-resistance effect film, and magneto-resistance effect sensor and magnetic storage device utilizing the same | |
JP2924825B2 (en) | Magnetoresistive element and magnetoresistive sensor using the same | |
JP2850866B2 (en) | Magnetoresistive sensor | |
JP3217625B2 (en) | Magnetoresistive head | |
JP2950284B2 (en) | Magnetoresistive element, magnetoresistive sensor using the same, magnetoresistive detection system and magnetic storage system | |
JPH0992904A (en) | Giant magnetoresistance material film, its manufacture, and magnetic head using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981013 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071113 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081113 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |