JP2848520B2 - Abnormal inspection method for object surface shape - Google Patents
Abnormal inspection method for object surface shapeInfo
- Publication number
- JP2848520B2 JP2848520B2 JP6228216A JP22821694A JP2848520B2 JP 2848520 B2 JP2848520 B2 JP 2848520B2 JP 6228216 A JP6228216 A JP 6228216A JP 22821694 A JP22821694 A JP 22821694A JP 2848520 B2 JP2848520 B2 JP 2848520B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- light source
- camera
- reflected
- slit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 31
- 230000002159 abnormal effect Effects 0.000 title claims description 19
- 238000007689 inspection Methods 0.000 title claims description 10
- 238000012545 processing Methods 0.000 claims description 23
- 230000005856 abnormality Effects 0.000 claims description 12
- 238000005259 measurement Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、たとえばプラスチック
成形品の平滑表面に部分的に生じる微小な凹凸やうねり
などの異常状態を測定し評価する物体表面形状の異常検
査方法に係り、特に動画像計測処理技術を用いて物体表
面全域に亘り連続的に、かつ、効率的に異常状態を検査
する検査方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting an abnormal state of a surface of an object for measuring and evaluating an abnormal state such as minute irregularities or undulations partially occurring on a smooth surface of a plastic molded product, and more particularly to a moving image. The present invention relates to an inspection method for continuously and efficiently inspecting an abnormal state over the entire surface of an object using a measurement processing technique.
【0002】[0002]
【従来の技術】工業用プラスチック製品は成形時に種々
の形状異常が不可避的に発生する。特に代表的な表面形
状異常として、微小な凹凸、うねり、ウエルドライン、
ひけ、そり、フローマークなどが知られている。従来、
これらの表面形状異常は人間の眼により識別され、その
程度が判定されていた。しかしながら、検査技術の向上
や検査自動化技術の発展に伴ない、最近では、画像処理
技術が検査分野へ応用されるようになった。従来の画像
処理による表面形状異常の評価方法として、たとえば、
特開平2−285208号公報では、被検体となる物体
に複数本のスリット光像を投影し、ビデオカメラを通し
て画像入力して各々のスリット光像の縁の線のゆがみ
(歪み)を周波数分析して物体表面の平滑性を評価する
技術が開示されている。この場合、複数本のスリット光
像より得られる縁線は高々20本程度であり、物体表面
は本来二次元的な広がりを持っていて表面全体の平滑性
を評価するには多数回の測定が必要となる。また、一本
の縁線について、ゆがみをフーリェ変換の手法によって
算出するには数万回にも及ぶ数値演算が必要であり、小
型コンピュータで短時間内に表面全体の形状を測定する
ことは困難である。2. Description of the Related Art Various abnormalities in shape are inevitably generated during molding of industrial plastic products. Particularly typical surface irregularities include minute irregularities, undulations, weld lines,
The sink, the sled, the flow mark and the like are known. Conventionally,
These surface shape abnormalities have been identified by the human eye, and the extent has been determined. However, with the improvement of inspection techniques and development of inspection automation techniques, image processing techniques have recently been applied to the inspection field. As a method of evaluating surface shape abnormality by conventional image processing, for example,
In Japanese Patent Application Laid-Open No. 2-285208, a plurality of slit light images are projected onto an object to be inspected, and images are input through a video camera to analyze the distortion (distortion) of the edge line of each slit light image. There is disclosed a technique for evaluating the smoothness of the surface of an object by using the technique. In this case, the edge lines obtained from a plurality of slit light images are at most about 20 lines, and the object surface originally has a two-dimensional spread, and a large number of measurements are required to evaluate the smoothness of the entire surface. Required. Calculating the distortion of a single edge line using the Fourier transform method requires tens of thousands of numerical operations, making it difficult to measure the shape of the entire surface in a short time with a small computer. It is.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法は、格子パターンやグリッドパターンの
光源による投影反射像を対象に静止画像処理が行われて
おり、格子パターンやグリッドパターンの存在部分のみ
の歪みが検出可能であった。そして、対象領域全体を静
止画像として捉えているので画像の空間分解能に自から
限界があった。すなわち、物体表面全体を同時に見られ
ないという問題があり、かつ、走査が一次元的であり隣
接区域との相関を把握するのに不適当で、全面をすべて
検証するのに多くの時間と手間を要するという難点があ
った。However, in such a conventional method, still image processing is performed on a reflection image projected by a light source of a grid pattern or a grid pattern, and a portion where the grid pattern or the grid pattern exists is processed. Only distortion was detectable. In addition, since the entire target area is captured as a still image, the spatial resolution of the image has its own limit. That is, there is a problem that the entire object surface cannot be viewed at the same time, and the scanning is one-dimensional, which is inappropriate for grasping the correlation with the adjacent area, and it takes much time and labor to verify the entire surface. Was required.
【0004】[0004]
【課題を解決するための手段】以上の課題を解決して、
物体表面全体を短時間で効率よく検証するために、本発
明においては、物体の表面に点光源またはスリット光源
を投射してその反射像をカメラで撮影して画像処理する
装置において、該物体を該光源や該カメラに対して相対
運動させるとともに、該相対運動中得られた反射像を連
続的に前記画像処理装置に入力して動画像処理し、該物
体表面に存在する凹凸やうねりに起因する異常状態を該
物体表面における入射光の反射角度の正常値に対する偏
差として捕捉する構成とした。また、第2の発明では、
さらに、反射光を撮影して得られた二次元画像をあらか
じめ格子状に区画された微小矩形の集合体として設定
し、該微小矩形領域毎に反射角度を演算出力するように
した。そして、第3の発明では、さらに、物体の表面に
点光源またはスリット光源を投射してその反射像をカメ
ラで撮影して画像処理する装置において、該物体を該光
源や該カメラに対して相対運動させるとともに、該物体
の表面をあらかじめ格子状に区画された微小矩形領域の
集合体として設定し、該相対運動中に該物体の表面に照
射した光の反射像の位置と物体表面が理想平面と想定し
たときの反射像の結像位置との偏差を該微小矩形領域毎
に順次測定し、該偏差の各々から該微小矩形領域の各々
の理想平面に対する傾斜角度を算出し、該物体表面に存
在する凹凸やうねりに起因する異常状態を評価する構成
とした。[Means for Solving the Problems] By solving the above problems,
In order to efficiently verify the entire surface of an object in a short time, in the present invention, in a device that projects a point light source or a slit light source on the surface of the object, captures the reflected image with a camera, and processes the image, While moving relative to the light source and the camera, the reflected image obtained during the relative movement is continuously input to the image processing device to perform moving image processing, and the reflected image is caused by unevenness and undulation existing on the surface of the object. The abnormal state that occurs is captured as a deviation from the normal value of the reflection angle of the incident light on the object surface. In the second invention,
Further, a two-dimensional image obtained by imaging the reflected light is set as a collection of minute rectangles previously partitioned in a grid, and the reflection angle is calculated and output for each minute rectangle region. According to a third aspect of the present invention, there is further provided an apparatus for projecting a point light source or a slit light source on the surface of an object, photographing a reflected image of the object with a camera, and performing image processing, wherein the object is positioned relative to the light source or the camera. While moving, the surface of the object is set in advance as a set of small rectangular regions partitioned in a grid shape, and the position of the reflection image of the light illuminated on the surface of the object during the relative movement and the object surface are in an ideal plane. The deviation from the imaging position of the reflection image when it is assumed is sequentially measured for each of the small rectangular areas, and the inclination angle with respect to each ideal plane of the small rectangular area is calculated from each of the deviations. The configuration was such that an abnormal state caused by existing irregularities and undulations was evaluated.
【0005】[0005]
【作用】本発明においては、物体表面にスリット光源や
点光源による光を当て、あらかじめ区画分割された微小
領域毎に、その反射された光像の理想平面としたときの
反射光像位置との偏差を測定したうえ、該偏差より換算
された物体表面の微小領域毎の傾斜角度の分布を算定
し、情報処理して物体表面傾斜角度の分布図や物体表面
のうねり状況図を作成表示して物体表面形状の異常状態
を検査する。According to the present invention, light from a slit light source or a point light source is applied to the surface of an object, and for each minute area divided in advance, the position of the reflected light image as an ideal plane of the reflected light image is defined. After measuring the deviation, calculate the distribution of the inclination angle of each minute area of the object surface converted from the deviation, create and display the distribution map of the object surface inclination angle and the undulation diagram of the object surface by processing the information Inspect the surface for abnormal conditions.
【0006】[0006]
【実施例】以下図面に基づいて本発明の実施例の詳細に
ついて説明する。図1〜図9は本発明の実施例に係り、
図1は物体表面形状の異常検査方法における測定機器の
概略構成図、図2は異常状態検知の原理を示す説明図、
図3は異常検査方法のフローチャート、図4は正常な測
定結果を示す影像図、図5〜図7は種々の異常状態の測
定結果を示す影像図、図8は積算された測定結果を示す
データ線図、図9は物体表面の凹凸線図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 9 relate to an embodiment of the present invention,
FIG. 1 is a schematic configuration diagram of a measuring device in an abnormality inspection method of an object surface shape, FIG. 2 is an explanatory diagram showing a principle of abnormal state detection,
3 is a flowchart of the abnormality inspection method, FIG. 4 is an image diagram showing a normal measurement result, FIGS. 5 to 7 are image diagrams showing various abnormal state measurement results, and FIG. 8 is data showing integrated measurement results. FIG. 9 is a diagram showing an uneven surface of the object.
【0007】図1において、1は光源、2はスリット
板、3は物体表面の異常を測定する被検体、4(4a、
4b、…、4f)は光像、5はカメラ、6はモニターテ
レビ、7は画像処理装置、8はコンピュータである。光
源1からの光をスリット板2を介して被検体3の表面に
照射し、反射される光像4をカメラ(CCDカメラ)5
で撮影して画像処理装置7へ撮影した二次元画像Pを入
力する。二次元画像Pは、たとえば、各々のスリット光
像4a、4b、…、4fなどを縦方向(スリットの長手
方向)に512等分分割され、横方向(被検体3の移動
方向)に等分分割された微小な矩形(長方形または正方
形)の画素の集合体の一部として構成される。画像処理
装置7では入力された二次元画像Pの各々の画素の濃淡
データを256階調の数値にデジタル化する。被検体3
の表面で反射されたスリット光像4a、…は周辺部に比
べて格段に明るく、たとえば二値化処理のように画像処
理の手法を適用して、取り出すことができる。もし被検
体3の表面が完璧な水平面であれば、図4のようにスリ
ット光像4a、…は決められた位置で完全な長方形(ま
たは正方形)となり、スリット光像4a、…は真直な状
態を呈する。しかし、通常の物体表面は完全に鏡面状態
となる平面にはなっておらず、なにがしかの凹凸やうね
りがあり、そのため、たとえば、図5〜図8に示すよう
なスリット光像となり異常状態を呈することになる。す
なわち、スリット光像は図4のように真直状態とはなら
ず本来の真直の位置からその程度に応じて少しずれた所
に観測される。In FIG. 1, 1 is a light source, 2 is a slit plate, 3 is an object for measuring an abnormality on the surface of an object, and 4 (4a,
4f) is an optical image, 5 is a camera, 6 is a monitor television, 7 is an image processing device, and 8 is a computer. The light from the light source 1 is applied to the surface of the subject 3 through the slit plate 2, and the reflected light image 4 is converted into a camera (CCD camera) 5.
Then, the photographed two-dimensional image P is input to the image processing device 7. The two-dimensional image P is, for example, equally divided into 512 in the vertical direction (longitudinal direction of the slit), and equally in the horizontal direction (moving direction of the subject 3). It is configured as a part of an aggregate of divided fine rectangular (rectangular or square) pixels. The image processing device 7 digitizes the grayscale data of each pixel of the input two-dimensional image P into a numerical value of 256 gradations. Subject 3
Are much brighter than the peripheral portions, and can be extracted by applying an image processing method such as a binarization process. If the surface of the subject 3 is a perfect horizontal plane, the slit light images 4a,... Become perfect rectangles (or squares) at predetermined positions as shown in FIG. 4, and the slit light images 4a,. Present. However, the normal object surface is not completely a mirror-finished plane, but has some irregularities and undulations. Therefore, for example, a slit light image as shown in FIGS. Will be presented. That is, the slit light image is not in the straight state as shown in FIG. 4 but is observed at a position slightly shifted from the original straight position according to the degree.
【0008】次に、このような異常状態を定量的に把握
する測定原理について説明する。本発明では、異常状態
の定量化に反射角度の偏差を利用している。前述したよ
うに、プラスチック成形品を含む一般物体の表面は、平
面に製作したとしても実際には前述した複数個に分割さ
れた微小領域毎に小さな凹凸やうねりが存在して完璧な
水平面でなく僅かに理想平面に対して傾斜している。す
なわち、図2に示すように、この微小領域の傾斜角度β
を順次求めていけば、物体表面の全体に亘り、微小領域
の傾斜角βの分布を測定することができる。Next, a measurement principle for quantitatively grasping such an abnormal state will be described. In the present invention, the deviation of the reflection angle is used to quantify the abnormal state. As described above, the surface of a general object including a plastic molded product is not a perfect horizontal surface due to the presence of small irregularities and undulations in each of the plurality of divided small regions described above, even if the surface is manufactured in a plane. It is slightly inclined with respect to the ideal plane. That is, as shown in FIG.
Are sequentially obtained, the distribution of the inclination angle β of the minute region can be measured over the entire surface of the object.
【0009】具体的に言えば、正常平面3aでは光源1
より発せられた光はスリット板2を通過して正常平面3
aで反射角αで反射してカメラ5に結像する。一方、正
常平面3aと傾斜角βで傾斜した傾斜平面3bでは反射
角αとは異なる反射角α′で反射し、カメラ5の焦点距
離5aでは正常平面3aにおける結像と偏差δだけずれ
たところに結像をする。一方、この偏差δと傾斜角βと
は、幾何学的な関係により、More specifically, the light source 1 is located on the normal plane 3a.
The emitted light passes through the slit plate 2 and passes through the normal plane 3
The light is reflected at the reflection angle α at a to form an image on the camera 5. On the other hand, in the inclined plane 3b inclined at an inclination angle β with respect to the normal plane 3a, the light is reflected at a reflection angle α ′ different from the reflection angle α. Image. On the other hand, the deviation δ and the inclination angle β are
【0010】δ≒f・βΔ ≒ f · β
【0011】で与えられる。ここで、fは、カメラ5の
焦点距離5a、カメラ5と被検体3との距離、光源1と
被検体3との距離によって定まる定数であり、あらかじ
め設定することができる。以上のような測定原理を使用
して、スリット光像4a、4b、…を順次スリット幅に
相当する分だけ順次被検体3を移動していくことによ
り、反射像の偏差δを測定し、微小領域の傾斜角βを上
述した式により演算して求めて行けば、物体表面全体に
亘り微小領域の傾斜角β分布を得ることができる。図8
はスリット光像4a、…毎の傾斜角βの分布変化を示
し、図9は表面の凹凸状態に変換して示した状態を示す
ものである。Is given by Here, f is a constant determined by the focal length 5a of the camera 5, the distance between the camera 5 and the subject 3, and the distance between the light source 1 and the subject 3, and can be set in advance. By sequentially moving the slit light images 4a, 4b,... By the subject 3 by an amount corresponding to the slit width using the measurement principle as described above, the deviation δ of the reflected image is measured. If the inclination angle β of the area is calculated and calculated according to the above equation, the distribution of the inclination angle β of the minute area can be obtained over the entire surface of the object. FIG.
Shows the distribution change of the inclination angle β for each slit light image 4a,... FIG. 9 shows the state converted into the unevenness of the surface.
【0012】次に、本発明における物体表面形状の異常
測定評価方法の操作手順について説明する。図3は操作
手順のフローチャートを示すもので、まず、被検体3の
タテ、ヨコ寸法などの被検体情報や測定距離などの情報
(光源〜被検体、被検体〜カメラの距離や焦点距離)や
被検体3の移動速度などをあらかじめ設定し入力した
後、光源を設定し、スリット光像位置に鏡面を置いてス
リット光像を反射させ物体平面が理想平面となる場合の
影像をカメラ5で撮影し、画像処理装置7を介してコン
ピュータ8にその基準像位置を記憶させる(これらの操
作を「基準像位置入力」「初期画像」という)。次に、
試料となる被検体3を、たとえば、図1の端部のスリッ
ト光像4aが測定の開始位置で反射されるように設定し
た後(「画像入力開始位置」)、被検体3を設定した移
動速度で横移動させる。この被検体3の移動中に、カメ
ラ5、画像処理装置7、コンピュータ8は互いに連動し
て、図3に示す2つのループ内の処理を高速演算し順次
実施していく。まず、スリット光像4aをカメラ5で撮
影し画像処理装置を経由してコンピュータに入力すると
ともに(「光像撮影」)前述したスリット縦方向に分割
された微小領域(たとえば512等分分割)毎に、スリ
ット幅方向に分割された微小矩形の区画のうち最大の輝
度を示す微小矩形区画の中心の座標位置(図1のx方
向、y方向の座標位置)を検出し、y方向の座標毎に順
次配列しコンピュータ8へ記憶させる(「スリット幅方
向中央位置検出」)。輝度の判定には前述したディジタ
ル化されたそれぞれ256階調に仕分けされた濃度デ−
タを大小比較することで容易にコンピュータ8内で演算
処理される。「スリット幅方向中央位置検出」には、前
述の最大輝度を示す微小矩形区画を検出する方法のほか
に、ディジタル化された256階調の濃度データをあら
かじめ設定された数値以上の微小矩形区画を図領域とし
て選び出し(いわゆる二値化処理をして)、横方向で連
続した図領域の中央の微小矩形区画を検出する方法もあ
る。次に、これらの得られた一連の指定座標位置におけ
る理想平面3aの反射角度αによる影像と反射角度α’
を持つ異常平面3bによる焦点距離5aに結像した影像
との偏差δから、前述した演算式により異常平面3bの
傾斜角度βをコンピュータ8で演算処理(「傾斜角算
出」)し、y方向最下端までの処理のループと次画像で
あるスリット光像4bやそれ以下のスリット光像のルー
プを完了して測定は完了するとともに、図8や図9に示
すデータを演算処理作成して結果をモニターテレビ6や
図示しないプリンタによってプリントアウトして出力す
る。本実施例では、スリット光源を用いた例を述べた
が、点光源による光を物体表面にy方向にハイスピード
で走査して上述した手順と同様に画像処理してもよい。
また、本実施例では光源1やカメラ5に対して被検体3
を移動したが、被検体3を静止し、光源1やカメラ5を
単独あるいは同時に移動して測定することもできる。ま
た、本文実施例では理想的な鏡面を被検体としたときに
得られる反射像の位置を基準像位置としたが、この基準
像位置入力の処理を行わずに、光線の入力画像毎に前述
の方法でスリット幅方向中央位置を検出した後、y方向
の上端より下端までの範囲でスリット幅方向中央位置の
平均値を算出し、この平均値を該入力画像での基準像位
置とすることもできる。Next, an operation procedure of the method for measuring and evaluating an abnormality in the surface shape of an object according to the present invention will be described. FIG. 3 shows a flowchart of the operation procedure. First, object information such as the vertical and horizontal dimensions of the object 3 and information such as a measurement distance (light source to object, object to camera distance and focal length) and After setting and inputting the moving speed of the subject 3 and the like in advance, the light source is set, the mirror surface is placed at the slit light image position, the slit light image is reflected, and a shadow image when the object plane becomes an ideal plane is photographed by the camera 5. Then, the reference image position is stored in the computer 8 via the image processing device 7 (these operations are referred to as “reference image position input” and “initial image”). next,
After setting the subject 3 as a sample, for example, so that the slit light image 4a at the end in FIG. 1 is reflected at the measurement start position (“image input start position”), the movement of the subject 3 is set. Move laterally at speed. While the subject 3 is moving, the camera 5, the image processing device 7, and the computer 8 operate at high speed and sequentially execute the processes in the two loops shown in FIG. First, the slit light image 4a is photographed by the camera 5 and input to the computer via the image processing device (“light image photographing”), and for each of the minute regions (for example, 512 equally divided) divided in the slit longitudinal direction described above. The coordinate position (the coordinate position in the x direction and the y direction in FIG. 1) of the center of the minute rectangular section showing the maximum luminance among the minute rectangular sections divided in the slit width direction is detected, and each coordinate in the y direction is detected. And sequentially stored in the computer 8 (“detection of the center position in the slit width direction”). In order to determine the luminance, the above-mentioned digital density data classified into 256 gradations are used.
The data is easily processed in the computer 8 by comparing the data sizes. The “detection of the center position in the slit width direction” includes, in addition to the above-described method of detecting the minute rectangular section showing the maximum luminance, digitizing the 256-gradation density data into a minute rectangular section of a predetermined value or more. There is also a method of selecting a figure area (by performing a so-called binarization process) and detecting a small rectangular section at the center of the figure area that is continuous in the horizontal direction. Next, the image based on the reflection angle α of the ideal plane 3a and the reflection angle α ′ at the obtained series of designated coordinate positions are obtained.
The inclination angle β of the abnormal plane 3b is calculated by the computer 8 from the deviation δ from the image formed at the focal length 5a by the abnormal plane 3b having the above (the inclination angle is calculated) by the above-mentioned arithmetic expression, and the maximum in the y direction is calculated. The measurement is completed by completing the loop of the processing up to the lower end and the loop of the slit light image 4b which is the next image and the slit light image below it, and creates the data shown in FIGS. It is printed out and output by the monitor television 6 or a printer (not shown). In this embodiment, an example using a slit light source has been described. However, light from a point light source may be scanned on the surface of an object at a high speed in the y direction, and image processing may be performed in the same manner as described above.
In this embodiment, the light source 1 and the camera 5 are
However, the measurement can also be performed by stopping the subject 3 and moving the light source 1 and the camera 5 individually or simultaneously. In the present embodiment, the position of the reflected image obtained when the ideal mirror surface is set as the subject is set as the reference image position. However, the processing of inputting the reference image position is not performed. After detecting the center position in the slit width direction by the method described above, calculate the average value of the center position in the slit width direction in the range from the upper end to the lower end in the y direction, and use this average value as the reference image position in the input image. Can also.
【0013】以上述べたように、本発明では、スリット
光像や点光源による光像の幅の中心点を選び、この中心
点の座標位置と微小領域の矩形区画が水平面(理想平
面)であるときに光像があるべき位置との横ブレ量、す
なわち、偏差δを求め、微小領域の傾斜角度βを求める
ものである(正常平面3aでは傾斜角度βは0とな
る)。そして、これらの演算結果を物体表面全体に亘っ
て拡大して編集し、物体表面全体のうねり状況を測定結
果の分布として把握することができるものである。As described above, in the present invention, the center point of the width of the slit light image or the light image by the point light source is selected, and the coordinate position of this center point and the rectangular section of the minute area are the horizontal plane (ideal plane). The amount of lateral blur from the position where the light image should be located, that is, the deviation δ, is obtained, and the inclination angle β of the minute area is obtained (the inclination angle β is 0 on the normal plane 3a). Then, these calculation results can be enlarged and edited over the entire surface of the object, and the undulation state of the entire surface of the object can be grasped as a distribution of the measurement results.
【0014】[0014]
【発明の効果】以上説明したように、本発明の方法にお
いては、たとえば、プラスチック成型品の表面形状の測
定を自動化でき、短時間内に精度良く測定することがで
きる。また、この評価方法に必要な装置は通常の光源、
スリット、CCDカメラ、物体移動機器および画像処理
用のパソコンにより構成され、成形加工機械の側に容易
に設置し運用することができる。したがって連続的な自
動計測と定量化された評価が実施され、成形品を製造
後、即時に表面形状を測定し、その結果を製造工程にフ
ィードバックすれば、成型品の品質を安定化し向上させ
ることができる。As described above, in the method of the present invention, for example, the measurement of the surface shape of a plastic molded product can be automated, and can be accurately performed within a short time. The equipment required for this evaluation method is a normal light source,
It is composed of a slit, a CCD camera, an object moving device and a personal computer for image processing, and can be easily installed and operated on the side of a molding machine. Therefore, continuous automatic measurement and quantified evaluation are performed, and after manufacturing a molded product, the surface shape is measured immediately, and the results are fed back to the manufacturing process to stabilize and improve the quality of the molded product. Can be.
【図1】本発明の実施例に係る物体表面形状の異常検査
方法における測定機器の概略構成図である。FIG. 1 is a schematic configuration diagram of a measuring device in a method for inspecting an abnormality of an object surface shape according to an embodiment of the present invention.
【図2】本発明の実施例に係る物体表面形状の異常検査
方法の原理を示す説明図である。FIG. 2 is an explanatory view showing the principle of a method for inspecting an abnormality of an object surface shape according to an embodiment of the present invention.
【図3】本発明の実施例に係る物体表面形状の異常検査
方法のフローチャートである。FIG. 3 is a flowchart of a method for inspecting an abnormality of an object surface shape according to an embodiment of the present invention.
【図4】本発明の実施例に係る正常な測定結果を示す影
像図である。FIG. 4 is an image diagram showing a normal measurement result according to the example of the present invention.
【図5】本発明の実施例に係る異常状態の1例を示す影
像図である。FIG. 5 is an image diagram showing an example of an abnormal state according to the embodiment of the present invention.
【図6】本発明の実施例に係る異常状態の1例を示す影
像図である。FIG. 6 is an image diagram showing an example of an abnormal state according to the embodiment of the present invention.
【図7】本発明の実施例に係る異常状態の1例を示す影
像図である。FIG. 7 is an image diagram showing an example of an abnormal state according to the embodiment of the present invention.
【図8】本発明の実施例に係る積算された傾斜角度の測
定結果を示すデータ線図である。FIG. 8 is a data diagram showing measurement results of integrated tilt angles according to the embodiment of the present invention.
【図9】本発明の実施例に係る物体表面の凹凸線図であ
る。FIG. 9 is a concavo-convex diagram of an object surface according to the example of the present invention.
1 光源 2 スリット板 3 被検体 3a 正常平面(理想平面) 3b 異常平面(傾斜平面) 4 光像 4a、4b、4c、…、4f スリット光像 5 カメラ(CCDカメラ) 5a 焦点距離 6 モニターテレビ 7 画像処理装置(画像入力ボード) 8 コンピュータ(パソコン) α 反射角度 α′ 反射角度 β 傾斜角度 δ 偏差 P 二次元画像 Q 画素 Reference Signs List 1 light source 2 slit plate 3 subject 3a normal plane (ideal plane) 3b abnormal plane (inclined plane) 4 optical image 4a, 4b, 4c,..., 4f slit optical image 5 camera (CCD camera) 5a focal length 6 monitor television 7 Image processing device (image input board) 8 Computer (PC) α Reflection angle α 'Reflection angle β Tilt angle δ Deviation P Two-dimensional image Q pixel
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−220808(JP,A) 特開 昭59−203906(JP,A) 特開 平8−21711(JP,A) 特開 平4−15505(JP,A) 特開 平4−50606(JP,A) 特開 平2−285208(JP,A) 特開 昭62−277508(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 102 G01N 21/84 - 21/91 G06T 1/00 - 7/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-220808 (JP, A) JP-A-59-203906 (JP, A) JP-A-8-21711 (JP, A) JP-A-4- 15505 (JP, A) JP-A-4-50606 (JP, A) JP-A-2-285208 (JP, A) JP-A-62-277508 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 11/00-11/30 102 G01N 21/84-21/91 G06T 1/00-7/00
Claims (3)
を投射してその反射像をカメラで撮影して映像処理する
装置において、該物体を該光源や該カメラに対して相対
運動させるとともに、該相対運動中得られた反射像を連
続的に前記画像処理装置に入力して動画像処理し、該物
体表面に存在する凹凸やうねりに起因する異常状態を該
物体表面における入射光の反射角度の正常値に対する偏
差として捕捉することを特徴とする物体表面形状の異常
検査方法。1. An apparatus for projecting a point light source or a slit light source on the surface of an object, photographing a reflected image of the object with a camera, and processing the image, wherein the object is relatively moved with respect to the light source or the camera. The reflected image obtained during the relative motion is continuously input to the image processing device and subjected to moving image processing, and an abnormal state caused by unevenness or undulation existing on the surface of the object is represented by the reflection angle of incident light on the surface of the object. An abnormality inspection method for an object surface shape characterized by capturing as a deviation from a normal value.
あらかじめ格子状に区画された微小矩形の集合体として
設定し、該微小矩形領域毎に反射角度を演算出力する請
求項1記載の物体表面形状の異常検査方法。2. The method according to claim 1, wherein a two-dimensional image obtained by photographing the reflected light is set in advance as a set of minute rectangles partitioned in a grid, and the reflection angle is calculated and output for each minute rectangle area. Inspection method for the surface shape of an object.
を投射してその反射像をカメラで撮影して画像処理する
装置において、該物体を該光源や該カメラに対して相対
運動させるとともに、該物体の表面をあらかじめ格子状
に区画された微小矩形領域の集合体として設定し、該相
対運動中に該物体の表面に照射した光の反射像の位置と
物体表面が理想平面と想定したときの反射像の結像位置
との偏差を該微小矩形領域毎に順次測定し、該偏差の各
々から該微小矩形領域の各々の理想平面に対する傾斜角
度を算出し、該物体表面に存在する凹凸やうねりに起因
する異常状態を評価することを特徴とする物体表面形状
の異常検査方法。3. An apparatus for projecting a point light source or a slit light source on the surface of an object, taking a reflected image of the object with a camera, and performing image processing, wherein the object is moved relative to the light source or the camera, and When the surface of the object is set in advance as a set of small rectangular areas partitioned in a grid, the position of the reflected image of light illuminated on the surface of the object during the relative movement and the object surface are assumed to be an ideal plane The deviation from the image forming position of the reflection image is sequentially measured for each of the small rectangular areas, and the inclination angle of each of the small rectangular areas with respect to the ideal plane is calculated from each of the deviations. An abnormality inspection method for an object surface shape, characterized by evaluating an abnormal state caused by an object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6228216A JP2848520B2 (en) | 1994-09-22 | 1994-09-22 | Abnormal inspection method for object surface shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6228216A JP2848520B2 (en) | 1994-09-22 | 1994-09-22 | Abnormal inspection method for object surface shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0894339A JPH0894339A (en) | 1996-04-12 |
JP2848520B2 true JP2848520B2 (en) | 1999-01-20 |
Family
ID=16873006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6228216A Expired - Fee Related JP2848520B2 (en) | 1994-09-22 | 1994-09-22 | Abnormal inspection method for object surface shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2848520B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4543355B2 (en) * | 2000-10-25 | 2010-09-15 | 大宏電機株式会社 | Molded part inspection method, inspection device, and terminal height inspection device |
JP5078583B2 (en) * | 2007-12-10 | 2012-11-21 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Macro inspection device and macro inspection method |
JP6532158B2 (en) * | 2015-04-07 | 2019-06-19 | 八光オートメーション株式会社 | Surface shape strain measuring apparatus and method of measuring surface shape strain |
-
1994
- 1994-09-22 JP JP6228216A patent/JP2848520B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0894339A (en) | 1996-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3411829B2 (en) | Method and apparatus for evaluating surface shape | |
KR101146081B1 (en) | Detection of macro-defects using micro-inspection inputs | |
JP5385703B2 (en) | Inspection device, inspection method, and inspection program | |
JPH07260701A (en) | Inspection range recognition method | |
JP2004191112A (en) | Defect examining method | |
JP5347661B2 (en) | Belt surface inspection apparatus, surface inspection method, and program | |
JP5136108B2 (en) | 3D shape measuring method and 3D shape measuring apparatus | |
JP2848520B2 (en) | Abnormal inspection method for object surface shape | |
JP4108829B2 (en) | Thickness defect inspection apparatus and inspection method thereof | |
JP2001281166A (en) | Method and device for inspecting defect in cyclic pattern | |
JPH08505478A (en) | Method and associated apparatus for controlling the surface condition of one side of a solid | |
JP2897912B2 (en) | Evaluation method of object surface shape | |
JPH08304054A (en) | Abnormal condition evaluation method of object surface | |
JP2001280939A (en) | Evaluation method of abnormal state of object surface | |
JPH09229651A (en) | Evaluation method of object surface shape | |
JPH11279936A (en) | Creping capability measurement system for creped woven fabric and creping capability measurement | |
JPH09218023A (en) | Evaluation method of object surface shape | |
JP2638121B2 (en) | Surface defect inspection equipment | |
JP2021139816A (en) | Workpiece surface inspection device, surface inspection system, surface inspection method, and program | |
TWI585547B (en) | Optical property acquisition apparatus, position measuring apparatus, data amending apparatus, optical property acquisition method, position measuring method and data amending method | |
JPH10170246A (en) | Method and apparatus for evaluating surface shape of annular laminated film | |
JP3618599B2 (en) | Concavity and convexity detection apparatus and method | |
JPH07234116A (en) | Method of measuring warpage of plate | |
JP3618742B2 (en) | Fringe detector | |
JP2005030848A (en) | Simulation method and surface inspection apparatus for surface inspection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |