JP2844616B2 - Induction heating device - Google Patents
Induction heating deviceInfo
- Publication number
- JP2844616B2 JP2844616B2 JP63270422A JP27042288A JP2844616B2 JP 2844616 B2 JP2844616 B2 JP 2844616B2 JP 63270422 A JP63270422 A JP 63270422A JP 27042288 A JP27042288 A JP 27042288A JP 2844616 B2 JP2844616 B2 JP 2844616B2
- Authority
- JP
- Japan
- Prior art keywords
- heated
- coil
- width
- magnetic flux
- induction heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- General Induction Heating (AREA)
Description
【発明の詳細な説明】 A.産業上の利用分野 この発明は搬送される被加熱物の誘導加熱装置に関す
る。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating device for a conveyed object to be heated.
B.発明の概要 この発明は搬送される金属の被加熱物の誘導加熱装置
において、 横断磁束コイルをE字形状の鉄心に巻回して鉄心の外
壁を循環磁路とし、鉄心内を被加熱物が搬送可能な空間
部に形成するとともにコイル幅及びコイルと被加熱物間
のギャップも考慮し、しかも鉄心の中央の磁気通路幅を
最適となるように設定したことにより、 被加熱物への単位面積当たりの熱の投入を大きくで
き、かつ被加熱物が非磁性材であっても、高い加熱物で
迅速な昇温を行うことができるようにしたものである。B. Summary of the Invention The present invention relates to an induction heating apparatus for a conveyed metal object to be heated, wherein a transverse magnetic flux coil is wound around an E-shaped iron core, an outer wall of the iron core is used as a circulating magnetic path, and the inside of the iron core is heated. Is formed in a space that can be conveyed, the coil width and the gap between the coil and the object to be heated are taken into consideration, and the width of the magnetic path at the center of the iron core is set to be optimal. The heat input per area can be increased, and even if the object to be heated is a non-magnetic material, the temperature can be quickly raised with a high heating object.
C.従来の技術 一般に金属材からなる搬送される被加熱物を加熱する
場合、燃焼炉(ガス炉など)であると、被加熱物の表面
からの熱の吸収(授受)が単位表面積当たり、例えば5.
3W/cm2程度と低いため、例えば搬送方向に直交する断面
が厚さ12mm、幅60mmの矩形形状のステンレス鋼の被加熱
物を12m/minの搬送速度のラインで1200℃まで昇温度さ
せようとすると、昇温時間に約12分を要し144mもの炉長
が必要となる。このように被加熱物のなかでも断面の幅
が比較的狭い(つまり表面積の小さい)被加熱物程、加
熱昇温に時間と長い炉長を必要とし、このため、連続処
理ラインに組み込むことができないので問題となってい
た。C. Prior Art In general, when heating a conveyed object made of a metal material, in a combustion furnace (such as a gas furnace), heat absorption (transfer) from the surface of the object is per unit surface area. For example 5.
3W / cm 2 degree and for low, for example, the conveying direction to the orthogonal cross-section thickness 12 mm, attempts to elevated temperature an object to be heated stainless steel rectangular to 1200 ° C. at a conveying speed of the line of 12m / min Width 60mm Then, it takes about 12 minutes to raise the temperature, and a furnace length of 144 m is required. As described above, among the objects to be heated, an object having a relatively narrow cross section (that is, a small surface area) requires a longer time and a longer furnace length for heating and heating. It was a problem because I could not do it.
上記のような問題を改善するために、誘導加熱装置が
考えられた。この誘導加熱装置は被加熱物に直接誘導電
流を発生せしめて、ジュール加熱を行う方法であるの
で、単位表面積当たりの熱の投入は燃焼炉や電気ヒータ
炉に比較して格段に向上させることができる。In order to improve the above problems, an induction heating device has been considered. This induction heating device is a method of generating Joule heating by directly generating an induction current in the object to be heated, so that the heat input per unit surface area can be significantly improved compared to combustion furnaces and electric heater furnaces. it can.
D.発明が解決しようとする課題 しかし、被加熱物の金属材が非磁性材や非磁性領域の
加熱であると、誘導加熱での加熱効率が低く、例えば従
来一般に用いられている平行磁束加熱(縦断磁束加熱)
で加熱を行う場合のコイル効率(誘導加熱コイルと被加
熱物との間での電力効率)が次に示すように極めて低
い。D. Problems to be Solved by the Invention However, if the metal material to be heated is a non-magnetic material or a non-magnetic region, the heating efficiency in induction heating is low. (Vertical magnetic flux heating)
The coil efficiency (the power efficiency between the induction heating coil and the object to be heated) when the heating is performed at a low temperature is extremely low as shown below.
被加熱物が銅,アルミの場合:10〜25% また、それが鉄,ステンレスの場合:20〜35% 上記のようにコイル効率が極めて低いため、電力効率
が悪くなる。このため、被加熱物に加熱のための必要電
力を供給するにはコイルを大形にしなければならず、こ
れに伴って誘導加熱設備の構成も大形になって占有スペ
ースを要する問題がある。When the object to be heated is copper or aluminum: 10 to 25% When the object to be heated is iron or stainless steel: 20 to 35% Since the coil efficiency is extremely low as described above, the power efficiency deteriorates. For this reason, in order to supply necessary power for heating to the object to be heated, the coil must be large, and the configuration of the induction heating equipment is accordingly large, which requires a large space. .
この結果、燃焼炉にしてもまたは誘導加熱装置を用い
るにしても非磁性材や非磁性領域の加熱を行う場合、次
の(1),(2)の問題がある。As a result, there are the following problems (1) and (2) when heating a non-magnetic material or a non-magnetic region using a combustion furnace or an induction heating device.
(1)加熱工程や熱処理を本来の生産ライン内に組み込
むことができず、別ライン(またはバッチ処理)として
実施しなければならなくなる。(1) The heating step and the heat treatment cannot be incorporated into the original production line, and must be performed as a separate line (or batch processing).
(2)生産ライン速度が速くできず、低速として加熱工
程を組み込まねばならない。(2) The production line speed cannot be increased, and the heating process must be incorporated at a lower speed.
この発明は上記の事情に鑑みてなされたもので、被加
熱物が比較的幅の狭い断面形状の非磁性材や非磁性領域
であってもコイル効率を高くして、被加熱物への単位面
積当たりの熱の投入量を多くして、高い加熱効率で迅速
な昇温ができるようにした誘導加熱装置を提供すること
を目的とする。The present invention has been made in view of the above circumstances, and increases the coil efficiency even when the object to be heated is a non-magnetic material or a non-magnetic region having a relatively narrow cross-sectional shape. It is an object of the present invention to provide an induction heating device in which the amount of heat input per area is increased to enable rapid heating with high heating efficiency.
E.課題を解決するための手段 この発明は搬送される金属の被加熱物を横断磁束コイ
ルにより加熱する誘導加熱装置において、 被加熱物の両面に配設される横断磁束コイルを鉄心に
設け、その鉄心を狭幅の被加熱物の両側で接触させるよ
うにして循環磁路を形成し、鉄心の中央の磁気通路部間
のギャップS、鉄心の中央の磁気通路部の幅Wc、コイル
幅W、コイルと被加熱物間のギャップGとしたとき次式
が成立するようにする。E. Means for Solving the Problems The present invention relates to an induction heating apparatus for heating a metal object to be conveyed by a transverse magnetic flux coil, wherein a transverse magnetic flux coil disposed on both surfaces of the object to be heated is provided on an iron core, A circulating magnetic path is formed by contacting the core on both sides of a narrow object to be heated, a gap S between the magnetic paths at the center of the core, a width Wc of the magnetic path at the center of the core, and a coil width W. When the gap G between the coil and the object to be heated is set, the following equation is satisfied.
(S/2/Wc)×1.5≦W/G また、被加熱物の断面における長辺の幅Ww、電流の浸
透深さΔwとしたとき次式が成立するようにする。(S / 2 / Wc) × 1.5 ≦ W / G Also, when the width Ww of the long side in the cross section of the object to be heated and the current penetration depth Δw are set, the following expression is satisfied.
Ww/3≧Wc≧2.5×Δw F.作用 鉄心に循環磁路を形成して、被加熱物に鎖交する磁束
量を多くする。また、鉄心の中央の磁気通路部間のギャ
ップとその通路部の幅を前記式のように設定して鎖交す
る磁束量を多くする。さらに、被加熱物の長辺面内にで
きるだけ広く、有効電流が流れる部位を確保して全体の
均熱化を計るとともに発生した誘導電流を互いに妨げる
ことなく有効に循環させるようにする。Ww / 3 ≧ Wc ≧ 2.5 × Δw F. Action A circulating magnetic path is formed in the iron core to increase the amount of magnetic flux linked to the object to be heated. Further, the gap between the magnetic passage portions at the center of the iron core and the width of the passage portion are set as in the above equation to increase the amount of magnetic flux interlinked. Further, a portion where the effective current flows as large as possible within the long side surface of the object to be heated is secured, and the entire temperature is equalized, and the generated induced currents are effectively circulated without hindering each other.
G.実施例 以下この発明の一実施例を図面に基づいて説明する。G. Embodiment An embodiment of the present invention will be described below with reference to the drawings.
第1図から第3図において、11は搬送される被加熱物
で、この被加熱物11は金属からなるものである。被加熱
物11は搬送途中に配設された横断磁束コイル12内を通過
するように構成され、このコイル12内を通過する間に所
定の温度まで昇温されて誘導加熱される。横断磁束コイ
ル12は被加熱物11を挟んで被加熱物11の両面に対向して
夫々配置されているコイル部12aおよび12bより構成され
る。このコイル部12aおよび12bには電源13から加熱のた
めの交流電力が供給される。前記横断磁束コイル12のコ
イル部12aおよび12bは磁束の漏洩を減らして加熱効率を
高めるために鉄心14aおよび14b内に渦巻状に巻回されて
収納される。In FIGS. 1 to 3, reference numeral 11 denotes a conveyed object to be heated, and the object to be heated 11 is made of metal. The object to be heated 11 is configured to pass through a transverse magnetic flux coil 12 arranged in the middle of conveyance, and is heated to a predetermined temperature while passing through the coil 12 and is induction-heated. The transverse magnetic flux coil 12 is composed of coil portions 12a and 12b that are respectively disposed opposite to both surfaces of the object to be heated 11 with the object to be heated 11 interposed therebetween. AC power for heating is supplied from the power supply 13 to the coil units 12a and 12b. The coil portions 12a and 12b of the transverse magnetic flux coil 12 are spirally wound and housed in the iron cores 14a and 14b in order to reduce leakage of magnetic flux and increase heating efficiency.
鉄心14aおよび14bは被加熱物11の搬送方向と直交する
断面の形状がほぼ凹字形の部材15aおよび15bから形成さ
れるとともにその部材15aおよび15bの中央部にコイルを
巻き付ける中央磁気通路部となる突条体16aおよび16bが
部材の長手方向に形成されて構成されている。突条体16
aおよび16bは部材の両外壁よりは高さを低く形成され
る。このように形成された鉄心14aおよび14b内にはコイ
ル部12a,12bを収納して鉄心14aおよび14bの両方の外壁
の端面を第3図に示すように被加熱物の幅方向の両方の
外側で突き合わせて、循環磁路が形成されるようにす
る。The iron cores 14a and 14b are formed of members 15a and 15b having a substantially concave cross section perpendicular to the conveying direction of the article 11 to be heated, and serve as a central magnetic path for winding a coil around the center of the members 15a and 15b. Protrusions 16a and 16b are formed in the longitudinal direction of the member. Ridge 16
a and 16b are formed lower than both outer walls of the member. The coil portions 12a and 12b are accommodated in the iron cores 14a and 14b thus formed, and the end faces of the outer walls of both the iron cores 14a and 14b are arranged on both outer sides in the width direction of the object to be heated as shown in FIG. To form a circulating magnetic path.
次に上記実施例の動作を述べる。 Next, the operation of the above embodiment will be described.
電源13から横断磁束コイル12のコイル部12aおよび12b
に交流電力を供給すると、第3図に示すように磁束φ1,
φ2が発生する。例えば、図示矢印のように発生した磁
束φ1は被加熱物11と鎖交して被加熱物11に誘導電流が
流れて、これが加熱される。なお、磁束φ2は被加熱物
11とは鎖交しないので、誘導加熱には寄与しない。Coil sections 12a and 12b of transverse flux coil 12 from power supply 13
Is supplied with AC power, the magnetic flux φ 1 ,
φ 2 occurs. For example, the magnetic flux phi 1 generated as shown by the arrow is the induced current flows in the object to be heated 11 interlinked object to be heated 11 and chains, which are heated. Note that the magnetic flux φ 2 is
Since it does not link with 11, it does not contribute to induction heating.
前記被加熱物11に流れる誘導電流は、第4図に示すよ
うに被加熱物11の長辺面内にできるだけ広く流れる部位
となるようにして、全体が均熱化されるようにするとと
もに発生した誘導電流が互いに干渉し、妨げ合うことな
く有効に循環せしめるには次式が満足するようにする。As shown in FIG. 4, the induced current flowing through the object to be heated 11 is formed as a portion that flows as widely as possible within the long side surface of the object to be heated 11 so that the entire body is evenly heated. In order that the induced currents interfere with each other and circulate effectively without interfering with each other, the following expression is satisfied.
Ww/3≧Wc≧2.5×Δw ……(1) (1)式において、 Wwは被加熱物11の搬送方向と直交する断面における長
辺の幅、 Wcは鉄心の中央の磁気通路部となる突条体16a,16bの
幅(第5図に示す)、 Δwは被加熱物における電流の浸透深さ(第5図に示
す)。Ww / 3 ≧ Wc ≧ 2.5 × Δw (1) In the expression (1), Ww is the width of a long side in a cross section orthogonal to the transport direction of the object 11 to be heated, and Wc is a magnetic path in the center of the iron core. The width of the ridges 16a and 16b (shown in FIG. 5), and Δw is the penetration depth of the current in the object to be heated (shown in FIG. 5).
なおΔwは次式で示されることがよく知られている。 It is well known that Δw is expressed by the following equation.
Δw:(cm) ρ :固有抵抗率(μΩ−cm) f :周波数(Hz) μ :比透磁率(非磁性材および非磁性領域ではμ=
1) 上記(1)式の左辺Ww/3≧Wcは被加熱物11の長辺面内
になるべく広く、有効に誘導電流が流れる部位を確保
し、且つ全体の均熱化を図るもので、第5図においてWc
が広すぎると誘導電流の流れる部位が少なくなるから、
少なくともWwの2/3以上(両側夫々1/3以上づつ)を確保
する。また、被加熱物11に誘導電流が流れない部位はな
るべく狭い方がよく、ほぼその幅はWc−2Δwの範囲が
よい。 Δw: (cm) ρ: intrinsic resistivity (μΩ-cm) f: frequency (Hz) μ: relative magnetic permeability (μ = non-magnetic material and non-magnetic region
1) The left side Ww / 3 ≧ Wc in the above equation (1) is as wide as possible within the long side surface of the object to be heated 11 to secure a portion where an induced current flows effectively, and to achieve a uniform temperature distribution of the whole. In FIG. 5, Wc
If the width is too wide, the part where the induced current flows will decrease,
Secure at least 2/3 or more of Ww (1/3 or more each side). Further, the portion where the induced current does not flow through the object to be heated 11 is preferably as narrow as possible, and its width is preferably in the range of Wc−2Δw.
前記(1)式の右辺Wc≧2.5×Δwは発生した誘導電
流を互いに干渉し、妨げ合うことなく内側で有効に循環
せしめることを示すもので、次に第6図,第7図につい
てこのことを述べる。The right side Wc ≧ 2.5 × Δw of the above equation (1) indicates that the generated induced currents interfere with each other and are effectively circulated inside without obstructing each other. Next, this will be described with reference to FIGS. 6 and 7. State.
第6図,第7図において、Wcが狭すぎると(2.5×Δ
wより狭くなると)反対方向の誘導電流同志が長辺の中
央部分で干渉し合ってうまく流れない部位が生じ、効率
を低下させるので、前記(1)式の右辺を満足させるよ
うにする。6 and 7, when Wc is too narrow (2.5 × Δ
When the currents become narrower than w, the induced currents in opposite directions interfere with each other at the center of the long side, causing a portion that does not flow well, thereby lowering the efficiency. Therefore, the right side of the above equation (1) is satisfied.
なお、被加熱物11の長辺の幅Wwが狭すぎて、(1)式
が成立しない場合はWcの左辺の値と右辺の値の間で決定
する。この場合には加熱効率がやや低下する。If the width Ww of the long side of the object to be heated 11 is too narrow to satisfy the expression (1), the value of Wc is determined between the value on the left side and the value on the right side. In this case, the heating efficiency is slightly reduced.
次に、鉄心の中央の磁気通路部となる突条体16a,16b
間のギャップSと鉄心の中央の磁気通路部の幅Wc、コイ
ル幅Wとコイル−被加熱物間のギャップGの関係につい
て第8図により述べる。Next, the ridges 16a, 16b, which are the magnetic passages in the center of the iron core
The relationship between the gap S between the core and the width Wc of the magnetic path in the center of the iron core, and the relationship between the coil width W and the gap G between the coil and the object to be heated will be described with reference to FIG.
前記のようにコイル部12aおよび12b交流電力を供給す
ると、第3図に示すように有効磁束φ1と無効磁束φ2
が発生する。そして、被加熱物と鎖交する有効磁束φ1
と、鎖空しない無効磁束φ2との間をφ1≧1.5×φ2
としてコイル効率を高める条件として次の(2)式が満
足するようにする。Supplying coil portions 12a and 12b AC power as described above, effective as shown in Figure 3 the magnetic flux phi 1 ineffective magnetic flux phi 2
Occurs. And the effective magnetic flux φ 1 linked to the object to be heated
And the ineffective magnetic flux φ 2 that is not chained is φ 1 ≧ 1.5 × φ 2
As a condition for increasing the coil efficiency, the following equation (2) should be satisfied.
(S/2/Wc)×1.5≦W/G ……(2) (2)式の右辺において、Wが大きく、Gが小さい
程、即ちW/Gの値が大きい程、鎖交する有効磁束量は多
くなる。そして、第9図および第10図に対比して示すよ
うに被加熱物の板厚tが厚くなる程、ギャップSも大き
くなり、高い加熱効率を維持するには(2)式に従って
右辺のW/Gの値を大きくすることが必要である。(S / 2 / Wc) × 1.5 ≦ W / G (2) In the right side of the equation (2), the larger the W and the smaller the G, that is, the larger the value of W / G, the more effective magnetic flux that links. The amount is large. Then, as shown in comparison with FIGS. 9 and 10, as the plate thickness t of the object to be heated increases, the gap S also increases, and in order to maintain high heating efficiency, W on the right side is maintained according to the equation (2). It is necessary to increase the value of / G.
第11図は鉄心の中央の磁気通路部の先端とコイルは同
一レベルとしてよいことを示す図である。FIG. 11 is a diagram showing that the tip of the magnetic path portion at the center of the iron core and the coil may be at the same level.
上記の実施例ではコイル3はターンの場合を示した
が、第12図はコイルを4ターンとした場合の実施例で、
この実施例では最外側の1ターンのコイル12aa,12bbは
図示両側面に配置した例を示す。この第12図のようにす
ることによりコイル幅Wを大きくすることができる。In the above embodiment, the case where the coil 3 has a turn is shown. FIG. 12 shows an embodiment in which the coil has 4 turns.
This embodiment shows an example in which the outermost one-turn coils 12aa and 12bb are arranged on both sides in the drawing. 12, the coil width W can be increased.
上記実施例のように構成することにより、次のような
効果が得られる。With the configuration as in the above embodiment, the following effects can be obtained.
非磁性材の被加熱物11を1200℃まで昇温する場合、加
熱時間を厚み1mm当たり5秒以下が実現でき、例えば前
記の断面サイズが12×60mmの被加熱物11は約1分で1200
℃まで加熱昇温することができ、従来の燃焼炉の1/10以
下の炉長を可能とすることができ、また、コイル効率は
次のようになった。When the temperature of the non-magnetic material 11 to be heated is increased to 1200 ° C., the heating time can be reduced to 5 seconds or less per 1 mm in thickness.
The temperature can be raised to ℃, the furnace length can be reduced to 1/10 or less of that of the conventional combustion furnace, and the coil efficiency is as follows.
銅,アルミ系統で 30〜60% 鉄,ステンレス系統で 45〜75% H.発明の効果 以上述べたように、この発明によれば、被加熱物への
単位面積当たりの熱の投入を大きくでき、且つ被加熱物
が非磁性材(非磁性領域)であっても、高いコイル効率
を実現し、高い加熱効率で迅速な昇温を行うことができ
る。このことから、例えば、搬送速度12m/min程度のラ
インであっても、ライン内に加熱や熱処理等の工程を組
み込んで効率的な生産を行うことができる利点がある。30 to 60% for copper and aluminum systems, 45 to 75% for iron systems and stainless steel systems H. Effects of the Invention As described above, according to the present invention, the heat input per unit area to the object to be heated can be increased. In addition, even if the object to be heated is a non-magnetic material (non-magnetic region), high coil efficiency can be realized, and rapid heating can be performed with high heating efficiency. For this reason, for example, even if the line has a transfer speed of about 12 m / min, there is an advantage that efficient production can be performed by incorporating steps such as heating and heat treatment in the line.
第1図から第3図はこの発明の一実施例を示すもので、
第1図は鉄心の一部を取り除いたときの平面図、第2図
は側面図、第3図は第1図のX−X線断面図、第4図か
ら第11図はこの発明の実施例の動作を述べるための説明
図、第12図はこの発明の他の実施例を示す断面図であ
る。 11……被加熱物、12……横断磁束コイル、12a,12b……
コイル部、14a,14b……鉄心、15a,15b……部材、16a,16
b……突条体。1 to 3 show one embodiment of the present invention.
FIG. 1 is a plan view when a part of an iron core is removed, FIG. 2 is a side view, FIG. 3 is a sectional view taken along line XX of FIG. 1, and FIGS. 4 to 11 are embodiments of the present invention. FIG. 12 is an explanatory view for explaining the operation of the example, and FIG. 12 is a sectional view showing another embodiment of the present invention. 11: Heated object, 12: Transverse magnetic flux coil, 12a, 12b ...
Coil part, 14a, 14b ... iron core, 15a, 15b ... member, 16a, 16
b ... a ridge.
Claims (2)
ルにより加熱する誘導加熱装置において、 被加熱物の両面に対向して配設される横断磁束コイルを
夫々の鉄心に設け、その鉄心同志を狭幅の被加熱物の両
側で接触させるようにして循環磁路を形成し、 前記被加熱物の断面における長辺の幅をWw、夫々の前記
鉄心の内部の中央に形成される磁気通路部の幅をWc、前
記被加熱物における電流の浸透深さをΔwとしたとき、
Ww/3≧Wc≧2.5×Δwが成立するようにしたことを特徴
とする誘導加熱装置。1. An induction heating apparatus for heating a metal object to be conveyed by a transverse magnetic flux coil, wherein a transverse magnetic flux coil disposed opposite to both surfaces of the object to be heated is provided on each of the iron cores. A circulating magnetic path is formed by contacting both sides of a narrow object to be heated, and a width of a long side in a cross section of the object to be heated is set to Ww, and a magnetic field is formed in the center of each of the cores. When the width of the passage portion is Wc and the penetration depth of the current in the object to be heated is Δw,
An induction heating apparatus, wherein Ww / 3 ≧ Wc ≧ 2.5 × Δw is satisfied.
ルにより加熱する誘導加熱装置において、 被加熱物の両面に対向して配設される横断磁束コイルを
夫々の鉄心に設け、その鉄心同志を狭幅の被加熱物の両
側で接触させるようにして循環磁路を形成し、 夫々の前記鉄心の内部の中央に形成される磁気通路部の
幅をWc、磁気通路部間のギャップをS、及びコイル幅を
W、コイルと被加熱物間のギャップをGとしたとき、
(S/2/Wc)×1.5≦W/Gが成立するようにしたことを特徴
とする誘導加熱装置。2. An induction heating apparatus for heating a metal object to be conveyed by means of a transverse magnetic flux coil, wherein a transverse magnetic flux coil disposed opposite to both surfaces of the object to be heated is provided on each of the iron cores. A circulating magnetic path is formed by contacting both sides of the narrow object to be heated, and the width of the magnetic path formed in the center of each of the iron cores is defined as Wc, and the gap between the magnetic paths is defined as Wc. S, and the coil width is W, and the gap between the coil and the object to be heated is G,
(S / 2 / Wc) × 1.5 ≦ W / G is satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63270422A JP2844616B2 (en) | 1988-10-26 | 1988-10-26 | Induction heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63270422A JP2844616B2 (en) | 1988-10-26 | 1988-10-26 | Induction heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02117087A JPH02117087A (en) | 1990-05-01 |
JP2844616B2 true JP2844616B2 (en) | 1999-01-06 |
Family
ID=17486051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63270422A Expired - Fee Related JP2844616B2 (en) | 1988-10-26 | 1988-10-26 | Induction heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2844616B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2693696B2 (en) * | 1992-04-03 | 1997-12-24 | 富士電機株式会社 | Induction heating device for long objects |
JP5971839B2 (en) * | 2011-02-15 | 2016-08-17 | トクデン株式会社 | Induction heating device |
KR101983388B1 (en) * | 2012-02-14 | 2019-05-28 | 토쿠덴 가부시기가이샤 | Induction heating apparatus |
JP5985919B2 (en) * | 2012-07-27 | 2016-09-06 | トクデン株式会社 | Induction heating device |
US9474109B2 (en) * | 2012-08-13 | 2016-10-18 | Tokuden Co., Ltd. | Induction heating apparatus |
JP5751453B2 (en) * | 2012-10-04 | 2015-07-22 | 株式会社デンソー | Induction heating device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55166095U (en) * | 1979-05-16 | 1980-11-29 |
-
1988
- 1988-10-26 JP JP63270422A patent/JP2844616B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02117087A (en) | 1990-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2902572A (en) | Induction heating of metal strip | |
JP2844616B2 (en) | Induction heating device | |
RU2105434C1 (en) | Induction furnace | |
JP2964351B2 (en) | Induction heating method for sheet metal | |
JP2004303575A (en) | Transverse type induction heating device | |
JP3045007B2 (en) | Method and apparatus for induction heating of metal plate | |
JPH07101633B2 (en) | Flat plate induction heating device | |
JP3581974B2 (en) | Induction heating device | |
JPH07169561A (en) | Induction heating device | |
JP2007324009A (en) | Metal strip heating device with excellent temperature uniformity in the plate width direction | |
JPS63279592A (en) | Induction heating device | |
JPH054712Y2 (en) | ||
US2417029A (en) | Electric induction heating apparatus for continuously heating a plurality of metal strips | |
JP4369332B2 (en) | Transverse induction heating apparatus and transverse induction heating system | |
JPS58158890A (en) | Induction heating coil | |
JP2002075628A (en) | Single turn induction heating coil | |
JP5298576B2 (en) | Heat treatment method for steel | |
JP3707724B2 (en) | Induction heating device | |
SU851792A1 (en) | Inductor for heating billets | |
JPH0616470Y2 (en) | Flat plate induction heating coil device | |
JPH0334895Y2 (en) | ||
JP4548997B2 (en) | Induction heating device | |
JP4160649B2 (en) | Electric heating device for sheet metal material | |
JPH04362143A (en) | Continuous heater for metallic strip | |
JPH067193U (en) | Induction heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |