JP2844484B2 - Method for producing recombinant protein - Google Patents
Method for producing recombinant proteinInfo
- Publication number
- JP2844484B2 JP2844484B2 JP2041666A JP4166690A JP2844484B2 JP 2844484 B2 JP2844484 B2 JP 2844484B2 JP 2041666 A JP2041666 A JP 2041666A JP 4166690 A JP4166690 A JP 4166690A JP 2844484 B2 JP2844484 B2 JP 2844484B2
- Authority
- JP
- Japan
- Prior art keywords
- medium
- protein
- human
- useful
- escherichia coli
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、組換えDNA技術により形質転換された大腸
菌を用いて、効率よく有用蛋白質を生産する方法に関す
る。The present invention relates to a method for efficiently producing a useful protein using Escherichia coli transformed by recombinant DNA technology.
組換えDNA技術を用いて大腸菌により真核生物由来の
有用蛋白質、例えば、各種インターフェロン,インター
ロイキン,コロニー刺激因子,リンホトキシン,ヒト血
清アルブミン等を直接発現法により大量に生産させたい
場合、それらの発現プラスミド自体の改良の他、生産菌
の培養方法の改良による高生産法が考えられる。特に、
目的としている有用蛋白質を医薬品として使用する時な
どは、大腸菌での遺伝子翻訳開始コドンに対応するアミ
ノ末端メチオニン残基の付加した有用蛋白質は抗原性を
もたらす可能性もあり、この観点からメチオニン残基は
可能な限り除去しておく必要があること、さらに蛋白質
の分離精製段階でのコストダウンを図るためにも、生産
菌培養段階で、大量かつアミノ末端メチオニン低含有の
目的蛋白質を生産でき得る技術を確立しておく必要があ
ると考えられる。When it is desired to produce a large number of useful proteins derived from eukaryotes, such as various interferons, interleukins, colony stimulating factors, lymphotoxin, human serum albumin, etc. by a direct expression method using Escherichia coli using recombinant DNA technology, their expression is required. In addition to the improvement of the plasmid itself, a high production method can be considered by improving the culture method of the producing bacteria. In particular,
When the intended useful protein is used as a pharmaceutical, a useful protein having an amino-terminal methionine residue corresponding to the initiation codon for gene translation in Escherichia coli may provide antigenicity. Is a technology that can produce a large amount of the target protein with a low amino-terminal methionine in the culture stage of the production bacteria, in order to reduce the cost in the protein separation and purification steps, as well as to remove as much as possible. It is necessary to establish
一般に、組換え大腸菌の培養方法については従来、LB
(酵母エキス0.5%,バクトトリプトン1.0%,NaCl0.5
%,グルコース0.2%,pH6.5〜7.5)培地やM9(0.6%Na2
HPO4,0.3%KH2PO4,0.05%NaCl,0.1%NH4Cl,0.2%グルコ
ース,0.00147%CaCl2・2H2O,0.05%MgSO4・7H2O)培
地、さらにそれにカザミノ酸、酵母エキス等を加えた半
合成培地による培養が一般に知られている。Generally, the culture method of recombinant E. coli
(0.5% yeast extract, 1.0% bactotripton, 0.5% NaCl
%, Glucose 0.2%, pH 6.5-7.5) medium and M9 (0.6% Na 2
HPO 4, 0.3% KH 2 PO 4, 0.05% NaCl, 0.1% NH 4 Cl, 0.2% glucose, 0.00147% CaCl 2 · 2H 2 O, 0.05% MgSO 4 · 7H 2 O) media, further casamino acid thereto, the yeast Culture in a semi-synthetic medium containing an extract or the like is generally known.
しかしながら、これらの方法では取得目的の有用蛋白
質の生産性、及び生産蛋白質のアミノ末端メチオニン残
基除去の点で、まだ十分ではなく、さらなる培養条件の
改善が望まれていた。However, these methods are not yet sufficient in terms of productivity of the useful protein to be obtained and removal of the amino-terminal methionine residue of the produced protein, and further improvement in culture conditions has been desired.
本発明は、大腸菌を用いて有用蛋白質を生産するに際
し、培養方法による生産物の生産量向上と同時にアミノ
末端メチオニン残基の除去効率の向上化を目的とするも
のである。An object of the present invention is to improve the production amount of a product by a culturing method and to improve the efficiency of removing an amino-terminal methionine residue when producing a useful protein using Escherichia coli.
上記の目的は、以下の本発明により達成される。すな
わち、本発明は有用蛋白質を発現生産するように組換え
DNA技術により工夫された発現プラスミドにより形質転
換された大腸菌を培養して、有用目的蛋白質を生産する
に際し、主要栄養源として、大豆加水分解物を添加した
培地で培養することを特徴とする有用蛋白質の生産方法
である。The above object is achieved by the present invention described below. That is, the present invention is a recombinant
A useful protein characterized by culturing Escherichia coli transformed with an expression plasmid devised by DNA technology to produce a useful target protein, and culturing in a medium supplemented with soybean hydrolyzate as a main nutrient source. Production method.
本発明の有用蛋白質とは組換えDNA技術により生産で
きるものであれば、特に限定はなく、例えば、インター
ロイキン−2,ヒトB細胞分化因子(BCDFと略する)、ま
たα−,β−,γ−インターフェロン等のリンホカイン
類,成長ホルモン,インシュリン,ソマトスタチン等の
ホルモン,ヒト血清アルブミン等の血液関連蛋白質など
が挙げられる。尚、ヒトBCDFはヒトインターロイキン6
(IL−6)ともB細胞刺激因子(BSF−2)とも呼ばれ
るが、ここでは従来より用いられているヒトBCDFという
名称を用いる。The useful protein of the present invention is not particularly limited as long as it can be produced by recombinant DNA technology. For example, interleukin-2, human B cell differentiation factor (abbreviated as BCDF), α-, β-, Examples include lymphokines such as γ-interferon, hormones such as growth hormone, insulin and somatostatin, and blood-related proteins such as human serum albumin. In addition, human BCDF is human interleukin-6
Although it is also called (IL-6) or B cell stimulating factor (BSF-2), here, the conventionally used name of human BCDF is used.
本発明の発現プラスミドは、基本的には、有用蛋白質
が大腸菌体内で生産されるよう該蛋白質をコードするDN
A断片が翻訳開始信号とともに、プロモーター制御下に
組み込まれているプラスミドであり、さらには構造遺伝
子の下流にターミネーターが導入されていてもよい。こ
のプラスミドは公知の方法(例えば、Goeddel,D.V.et a
l.,Nucleic Acids Reserch,8,4057(1980))により作
成することができる。The expression plasmid of the present invention basically comprises a DN encoding the protein such that the useful protein is produced in E. coli.
The A fragment may be a plasmid integrated under the control of a promoter together with a translation initiation signal, and a terminator may be introduced downstream of the structural gene. This plasmid is prepared by a known method (for example, Goeddel, DVeta).
l., Nucleic Acids Research, 8, 4057 (1980)).
該発現プラスミドにより、大腸菌を形質転換する方法
としては、公知の方法(例えば、Mandel,M.& Maga,A.,
J.Mol.Biol.,53,154(1970))にて行なうことができ
る。As a method for transforming Escherichia coli with the expression plasmid, known methods (for example, Mandel, M. & Maga, A.,
J. Mol. Biol., 53, 154 (1970)).
宿主である大腸菌は特に種類は限定されないが、例え
ば、K−12系のC−600,HB101,JM105,W3110等が挙げら
れる。The type of Escherichia coli as the host is not particularly limited, and examples thereof include K-12 C-600, HB101, JM105, and W3110.
培地としてはグルコース,ラクトース,ソルビトール
等の炭素源、アンモニア,塩化アンモニウム,硝酸アン
モニウム等の窒素源、肉エキス,酵母エキス,カゼイン
分解物,及びペプトン等の有機栄養源,リン酸塩などの
無機塩、マグネシウム,カリウム,その他微量金属等を
適宜含有する産生培地が使用できる。しかしながら、本
発明者らは、種々の培地を検討した結果、大豆加水分解
物を上記M9培地(0.6%Na2HPO4,0.3%KH2PO4,0.05%NaC
l,0.1%NH4Cl,0.2%グルコース,0.00147%CaCl2・2H2O,
0.05%MgSO4・7H2Oの組成より構成される)に、カザミ
ノ酸の代わりに添加した培地を用いることにより、有用
蛋白質の生産性、及びそのアミノ末端に付加しているメ
チオニン残基の除去率が向上する事を見いだした。大豆
加水分解物とは例えば、総合アミノ酸(味の素株式会社
製、大豆の塩酸加水分解物)、味液、バクトソイトン
(DIFCO製)等である。大豆加水分解物の添加濃度は、
基本とする培地組成、培養条件、により多少異なるが、
通常培地あたり1%から10(重量)%、特に2%から4
(重量)%が好ましい。Examples of the medium include a carbon source such as glucose, lactose and sorbitol, a nitrogen source such as ammonia, ammonium chloride and ammonium nitrate, an organic nutrient such as meat extract, yeast extract, casein decomposition product, and peptone, and an inorganic salt such as phosphate. A production medium containing magnesium, potassium, other trace metals and the like as appropriate can be used. However, the present inventors examined various media and found that the soybean hydrolyzate was converted to the above M9 medium (0.6% Na 2 HPO 4 , 0.3% KH 2 PO 4 , 0.05% NaC
l, 0.1% NH 4 Cl, 0.2% glucose, 0.00147% CaCl 2 .2H 2 O,
0.05% MgSO 4 · 7H 2 O), and using a medium added in place of casamino acid, the productivity of useful proteins and the removal of methionine residues added to their amino termini Rate was found to improve. The soybean hydrolyzate includes, for example, synthetic amino acids (manufactured by Ajinomoto Co., Inc., soybean hydrochloride hydrolyzate), taste liquid, bactosoyton (manufactured by DIFCO), and the like. The concentration of soy hydrolyzate
Although it differs slightly depending on the basic medium composition and culture conditions,
Usually 1% to 10% (by weight) per medium, especially 2% to 4%
(% By weight) is preferred.
培養温度は20℃から45℃、好ましくは36℃から39℃で
あり、培養中の培地のpHは5から9、好ましくは6から
7である。培養期間は通常約6時間から約2日である。The cultivation temperature is from 20 ° C to 45 ° C, preferably from 36 ° C to 39 ° C, and the pH of the medium during culturing is from 5 to 9, preferably from 6 to 7. The culture period is usually from about 6 hours to about 2 days.
有用蛋白質をコードするDNA断片が組み込まれた発現
プラスミドにより形質転換された大腸菌を培養し、有用
組換え蛋白質を製造する方法に於て、当該大腸菌を大豆
加水分解物を添加した培地で培養することを特徴とす
る、N末端に翻訳開始コドンATGに対応するメチオニン
残基が効率よく除去された有用蛋白質の増収法を提供す
るものであり、本発明による培養方法は、有用蛋白質の
生産性を向上させると同時に、目的蛋白質のアミノ末端
に付加しているメチオニン残基の除去効率も向上させる
ことができる。Culturing Escherichia coli transformed with an expression plasmid into which a DNA fragment encoding a useful protein is incorporated, and culturing the Escherichia coli in a medium supplemented with soybean hydrolyzate in a method for producing a useful recombinant protein. The present invention provides a method for increasing the yield of a useful protein in which a methionine residue corresponding to the translation initiation codon ATG is efficiently removed at the N-terminus, and the culture method according to the present invention improves the productivity of the useful protein. At the same time, the efficiency of removing methionine residues added to the amino terminus of the target protein can be improved.
以下に、実施例を挙げて本発明を更に具体的に説明す
るが、これにより本発明の有用性が限定されるものでは
ない。Hereinafter, the present invention will be described more specifically with reference to examples, but the usefulness of the present invention is not limited thereto.
実施例1 ヒトBCDF発現プラスミドを保持する大腸菌HB101/pBSF
2−SD7を5L.容ミニジャーを用いて、従来のカザミノ酸
を主要栄養源とした培地と大豆加水分解物である総合ア
ミノ酸(味の素株式会社製)を主要栄養源とした培地で
比較培養した。なお、プラスミドpBSF2−SD7はプラスミ
ドpUC19(Yanisch−Perron,C.,Vieira,J.and Messing,
J.:Gene 33(1985)103−119に記載)上のEcoR I、Hind
IIIクローニング部位に、EcoR I側より、trpプロモー
ター、trpLのSD配列、合成SD配列、ヒトBCDF合成遺伝
子、trpAターミネーターが組み込まれた構造をしてい
る。(第1図)本プラスミドを大腸菌HB101株へ形質転
換する事により、ヒトBCDF生産菌を得た。大腸菌HB101/
pBSF2−SD7(AJ−12448)はFERM P−10758として、既に
寄託されている。(特願平1−189270に記載) M9カザミノ酸培地組成は、カザミノ酸1.0g/dl,酵母エ
キス0.2g/dl,塩化アンモニウム0.5/dl,硫酸マグネシウ
ム七水和物0.05g/dl,塩化カルシウム二水和物0.005g/d
l,L−ロイシン40mg/dl,L−プロリン40mg/dl,ビタミンB1
0.4mg/dl,グルコース2.0g/dl,リン酸一カリ0.1g/dl,で
あり、一方、M9総合アミノ酸培地組成は、上記組成のう
ちカザミノ酸,ロイシン,プロリンの代わりに総合アミ
ノ酸(味の素株式会社製)を用いた組成の培地となって
いる。また培養時には両培地に抗生物質であるアンピシ
リン100μg/ml,ストレプトマイシン25μg/mlを添加し
た。Example 1 Escherichia coli HB101 / pBSF carrying human BCDF expression plasmid
2-SD7 was compared and cultured using a 5 L. minijar in a conventional medium containing casamino acid as a main nutrient source and a medium containing soybean hydrolyzate, a synthetic amino acid (manufactured by Ajinomoto Co., Inc.) as a main nutrient source. In addition, plasmid pBSF2-SD7 was converted to plasmid pUC19 (Yanisch-Perron, C., Vieira, J. and Messing,
J .: Gene 33 (1985) 103-119) EcoRI, Hind.
It has a structure in which the trp promoter, the SD sequence of trpL, the synthetic SD sequence, the human BCDF synthetic gene, and the trpA terminator are incorporated into the III cloning site from the EcoRI side. (FIG. 1) By transforming this plasmid into Escherichia coli HB101, a human BCDF-producing bacterium was obtained. E. coli HB101 /
pBSF2-SD7 (AJ-12448) has already been deposited as FERM P-10758. (Described in Japanese Patent Application No. 1-189270) M9 casamino acid medium composition is casamino acid 1.0 g / dl, yeast extract 0.2 g / dl, ammonium chloride 0.5 / dl, magnesium sulfate heptahydrate 0.05 g / dl, calcium chloride 0.005g / d dihydrate
l, L-leucine 40mg / dl, L-proline 40mg / dl, vitamin B1
0.4 mg / dl, glucose 2.0 g / dl, and potassium phosphate 0.1 g / dl. On the other hand, the composition of M9 total amino acid medium is the same as that of casamino acid, leucine and proline except for the total amino acid (Ajinomoto Co.) (Manufactured by the company). During the culture, 100 μg / ml of ampicillin and 25 μg / ml of streptomycin were added to both media.
そして、両生産培地31.を51.容ミニジャーに仕込ん
だ。Lブロス(酵母エキス0.5%,バクトトリプトン1.0
%,NaCl0.5%,グルコース0.2%,pH6.5〜7.5)培地にて
一晩培養した大腸菌HB101/pBSF2−SD7(FERM P−1075
8)を150mlずつ上記の各々の培地を含むミニジャーに加
え、撹拌数700rpm,通気量0.5vvm,培養温度37℃,制御pH
6.7にて運転した。培養開始後、3〜5時間で培養液のO
D 660nmが4〜5に達したので、trpプロモーターの誘導
剤であるインドールアクリル酸、及びフィード培地を加
えた。フィード培地としてはM9カザミノ酸培地培養に
は、カザミノ酸1.0g/dl,L−ロイシン40mg/dl,L−プロリ
ン40mg/dl,ビタミンB1 0.4mg/dl,(pH6.7)の組成のも
のを、そして総合アミノ酸培地培養には総合アミノ酸1.
0g/dl,ビタミンB1 0.4mg/dl,(pH6.7)の組成のものを
用いた。Then, both production media 31. were charged into a 51.-volume mini jar. L broth (Yeast extract 0.5%, Bactotripton 1.0
%, NaCl 0.5%, glucose 0.2%, pH 6.5-7.5) E. coli HB101 / pBSF2-SD7 (FERM P-1075) cultured overnight
8) Add 150 ml to the mini-jar containing each of the above media, stirring at 700 rpm, aeration 0.5 vvm, culture temperature 37 ° C, control pH
Driven at 6.7. 3-5 hours after the start of the culture,
When D 660 nm reached 4-5, indoleacrylic acid, an inducer of the trp promoter, and feed medium were added. As a feed medium, for the culture of M9 casamino acid medium, casamino acid 1.0 g / dl, L-leucine 40 mg / dl, L-proline 40 mg / dl, vitamin B1 0.4 mg / dl, (pH 6.7) , And total amino acid 1.
A composition having a composition of 0 g / dl, vitamin B1 0.4 mg / dl, (pH 6.7) was used.
両培養は16時間行なった。各々の培養経過図を第2図
に示す。また、菌体濃度は最終的にOD660nmでM9−カザ
ミノ酸培地では16、M9−総合アミノ酸培地では21に達し
た。Both cultures were performed for 16 hours. FIG. 2 shows the progress of each culture. The cell concentration finally reached 16 at OD 660 nm in the M9-casamino acid medium and 21 in the M9-general amino acid medium.
次に、両培養液より菌体を遠心分離により集め、20mM
Tris−HCl(pH7.5),30mM NaClにて懸濁液、リゾチー
ム、EDTAをそれぞれ終濃度0.2mg/ml、0.1Mとなるよう添
加し、0℃で1時間処理した。その後、超音波破砕機に
て菌体液を70W,20minで破砕し、6000rpm,10minの低速遠
心にてヒトBCDFを含む菌体内封入体を回収した。その封
入体を上記緩衝液20mMTris−HCl(pH7.5),30mM NaClで
3回洗浄した後、10mM EDTA(pH6.0)にて懸濁し、ヒト
BCDF封入体懸濁液を得た。Next, the cells were collected from both cultures by centrifugation, and 20 mM
A suspension, lysozyme, and EDTA were added to a final concentration of 0.2 mg / ml and 0.1 M, respectively, in Tris-HCl (pH 7.5) and 30 mM NaCl, and the mixture was treated at 0 ° C. for 1 hour. Thereafter, the bacterial cell liquid was disrupted by an ultrasonic disrupter at 70 W for 20 minutes, and the inclusion bodies containing human BCDF were recovered by low-speed centrifugation at 6000 rpm for 10 minutes. The inclusion body was washed three times with the above buffer solution 20 mM Tris-HCl (pH 7.5) and 30 mM NaCl, and then suspended in 10 mM EDTA (pH 6.0).
A BCDF inclusion body suspension was obtained.
続いて、その封入体を20mM Tris−HCl(pH8.3),10mM
EDTA,6M塩酸グアニジン溶液にて室温1時間で可溶化
し、その可溶化溶液を逆相HPLC(YMC C8カラム4.6φmmX
250mm)にかけ、ヒトBCDF画分を単離精製した。Subsequently, the inclusion body was added to 20 mM Tris-HCl (pH 8.3), 10 mM
EDTA was solubilized with 6M guanidine hydrochloride solution at room temperature for 1 hour, and the solubilized solution was subjected to reverse phase HPLC (YMC C8 column 4.6φmmX
250 mm) to isolate and purify the human BCDF fraction.
両培養で得られたヒトBCDFの生産量はUV280nmの吸収
量により、算出した。またN末端アミノ酸配列は、上記
サンプルをプロテインシークエンサー(ABI社製470A)
にかけることにより検定した。結果を下記の第1表に示
した。The amount of human BCDF produced in both cultures was calculated from the absorption at UV280 nm. For the N-terminal amino acid sequence, the above sample was analyzed using a protein sequencer (470A manufactured by ABI).
And tested. The results are shown in Table 1 below.
以上のように、大豆加水分解物である総合アミノ酸を
主要栄養源として用いることで、従来のM9−カザミノ酸
培地に比べ、ヒトBCDFの生産量は約2倍に、またアミノ
末端のメチオニン除去率が85%から98%に向上した。こ
のように、総合アミノ酸培地による培養の結果、アミノ
末端メチオニンが効率よく除去できたヒトBCDFを大量に
取得することができた。As described above, by using soybean hydrolyzate, a synthetic amino acid as a main nutrient, the production of human BCDF is about twice that of the conventional M9-casamino acid medium, and the methionine removal rate at the amino terminus is reduced. Increased from 85% to 98%. As described above, as a result of culturing in a comprehensive amino acid medium, a large amount of human BCDF from which the amino-terminal methionine was efficiently removed could be obtained.
実施例2 ヒトインターロイキン2発現プラスミドを保持する大
腸菌HB101/pT13SNcoを3L.容ミニジャーを用いて実施例
1と同様に比較培養した。 Example 2 Escherichia coli HB101 / pT13SNco carrying a human interleukin-2 expression plasmid was subjected to comparative culturing in the same manner as in Example 1 using a 3 L. volume mini jar.
ヒトインターロイキン2生産用のプラスミドpT13SNco
(Tonouchiら.,J.Biochem.104,30−34(1988))はtrp
プロモーターの制御下にヒトインターロイキン2が発現
するように設計された発現プラスミドであり、本プラス
ミドを大腸菌HB101株に形質転換したヒトインターロイ
キン2生産菌HB101/pT13SNco(AJ−12447)FERM P−107
57として既に寄託されている 培地組成、培養条件は、実施例1と同じである。イン
ターロイキン2の場合もBCDFと同様に、大腸菌体内にイ
ンターロイキン2の封入体が形成されていた。生産量、
N末端アミノ酸配列を実施例1と同様に検定した結果、
下記の第2表に示したようにインターロイキン2の場合
も、M9−カザミノ酸培地を用いた培養に比べ、M9−総合
アミノ酸培地による培養により、ヒトインターロイキン
2の生産量は約1.5倍となり、N末端メチオニン除去率
も35%から78%に向上した。このように、アミノ末端メ
チオニンが効率よく除去できたヒトインターロイキン2
を大量に取得することができた。尚、第2表のヒトIL−
2はヒトインターロイキン2の略称である。Plasmid pT13SNco for human interleukin 2 production
(Tonouchi et al., J. Biochem. 104, 30-34 (1988))
An expression plasmid designed to express human interleukin 2 under the control of a promoter. This plasmid was transformed into Escherichia coli HB101 strain and produced a human interleukin 2 producing bacterium HB101 / pT13SNco (AJ-12447) FERM P-107.
The medium composition and culture conditions already deposited as 57 are the same as in Example 1. In the case of interleukin 2, similarly to BCDF, inclusion bodies of interleukin 2 were formed in Escherichia coli. Production volume,
As a result of testing the N-terminal amino acid sequence in the same manner as in Example 1,
As shown in Table 2 below, in the case of interleukin 2, the production amount of human interleukin 2 was increased by about 1.5 times by culturing in the M9-amino acid medium as compared with culturing in the M9-casamino acid medium. In addition, the N-terminal methionine removal rate was improved from 35% to 78%. Thus, human interleukin 2 from which the amino-terminal methionine could be removed efficiently.
Could be obtained in large quantities. In Table 2, human IL-
2 is an abbreviation for human interleukin 2.
第1図はヒトBCDFの生産プラスミドであるpBSF2−SD7の
構造を示す。 第2図は総合アミノ酸培地を用いた時とカザミノ酸培地
の時の、ヒトBCDF生産菌の培養経過を示す。FIG. 1 shows the structure of pBSF2-SD7, a plasmid for producing human BCDF. FIG. 2 shows the progress of culturing human BCDF-producing bacteria when using a total amino acid medium and when using a casamino acid medium.
Claims (4)
た発現プラスミドにより形質転換された大腸菌を培養し
て有用蛋白質を生産するに際し、大豆加水分解物を添加
した培地で培養することを特徴とする組換え蛋白質の生
産方法。1. A method for producing useful proteins by culturing Escherichia coli transformed with an expression plasmid into which DNA encoding a useful protein has been incorporated, wherein the cells are cultured in a medium containing soybean hydrolyzate. A method for producing a recombinant protein.
(重量)%の濃度範囲で添加されることを特徴とする請
求項(1)記載の生産方法。2. The soybean hydrolyzate is present in an amount of 1% to 10% per medium.
The production method according to claim 1, wherein the compound is added in a concentration range of (% by weight).
求項(1)記載の生産方法。3. The production method according to claim 1, wherein the useful protein is a human B cell differentiation factor.
る請求項(1)記載の生産方法。4. The production method according to claim 1, wherein the useful protein is human interleukin 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2041666A JP2844484B2 (en) | 1990-02-22 | 1990-02-22 | Method for producing recombinant protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2041666A JP2844484B2 (en) | 1990-02-22 | 1990-02-22 | Method for producing recombinant protein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03244391A JPH03244391A (en) | 1991-10-31 |
JP2844484B2 true JP2844484B2 (en) | 1999-01-06 |
Family
ID=12614712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2041666A Expired - Lifetime JP2844484B2 (en) | 1990-02-22 | 1990-02-22 | Method for producing recombinant protein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2844484B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015528301A (en) * | 2012-09-17 | 2015-09-28 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Method for fermentative production of L-cysteine and derivatives of said amino acids |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475725B1 (en) | 1997-06-20 | 2002-11-05 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
AT409379B (en) | 1999-06-02 | 2002-07-25 | Baxter Ag | MEDIUM FOR PROTEIN- AND SERUM-FREE CELL CULTURE |
NZ538094A (en) | 2002-07-09 | 2007-01-26 | Baxter Int | Serum free and animal protein free culture medium for cultivation of cells |
US20060094104A1 (en) | 2004-10-29 | 2006-05-04 | Leopold Grillberger | Animal protein-free media for cultivation of cells |
PT2522717E (en) | 2006-01-04 | 2014-05-15 | Baxter Healthcare Sa | Oligopeptide-free cell culture media |
EP3783010A1 (en) * | 2015-05-06 | 2021-02-24 | Wageningen Universiteit | Method of culturing akkermansia |
-
1990
- 1990-02-22 JP JP2041666A patent/JP2844484B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015528301A (en) * | 2012-09-17 | 2015-09-28 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Method for fermentative production of L-cysteine and derivatives of said amino acids |
Also Published As
Publication number | Publication date |
---|---|
JPH03244391A (en) | 1991-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2564506B2 (en) | Method for producing heterologous protein | |
US8298789B2 (en) | Orthogonal process for purification of recombinant human parathyroid hormone (rhPTH) (1-34) | |
NZ199391A (en) | Chimeric polypeptides comprising a proinsulin sequence,and preparation by recombinant dna technique;production of human insulin | |
US4656131A (en) | Method for producing interferons | |
JP2844484B2 (en) | Method for producing recombinant protein | |
US5496713A (en) | Process for producing 20 kD human growth hormone | |
WO2010062279A1 (en) | Method for producing human recombinant insulin | |
JP2001008697A (en) | Preparation of non-fusion protein with escherichia coli | |
CA2098639A1 (en) | Bone stimulating, non-vasoactive parathyroid hormone variants | |
EP1095055B1 (en) | Method for the production of recombinant peptides with a low amount of trisulfides | |
RU2144957C1 (en) | Recombinant plasmid dna ppins07 encoding fused polypeptide containing human proinsulin and strain of bacterium escherichia coli - producer of fused polypeptide containing human proinsulin | |
EP1656455B1 (en) | Process for the purification of recombinant polypeptides | |
EP2502633A1 (en) | Recombinant plasmid DNA pMSIN4, encoding a hybrid polypeptide comprising human insulin precursor, E. coli strain BL21 (DE3) / pMSIN4 - producer of recombinant human insulin, the method for the recombinant human insulin production | |
JPH0779701B2 (en) | Gene encoding a hybrid polypeptide containing growth hormone releasing factor | |
EP0264074B1 (en) | Expression vector for insulin-like growth factor i | |
AU603545B2 (en) | Media for increased yield of protein free of N-terminal methionine from recombinant escherichia coli | |
US7785830B2 (en) | Expression vectors, transformed host cells and fermentation process for the production of recombinant polypeptides | |
JP2013517788A (en) | Method for producing interferon alpha 5 | |
US5340725A (en) | Expression vector for insulin-like growth factor I and method of production | |
JPS6244198A (en) | Production of valuable protein | |
US5210029A (en) | Method of producing interleukin-2 | |
JP2844870B2 (en) | Method for producing polypeptide by recombinant DNA method | |
EP0226639B1 (en) | Process for preparing heterogenic protein | |
US5434245A (en) | Polypeptides and method for preparing the same | |
Zomorrodipour et al. | The over-expression of biologically active human growth hormone in a T5-based system in Escherichia coli, studying temperature effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101030 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101030 Year of fee payment: 12 |