[go: up one dir, main page]

JP2843331B2 - Exposure method of resist film - Google Patents

Exposure method of resist film

Info

Publication number
JP2843331B2
JP2843331B2 JP63069764A JP6976488A JP2843331B2 JP 2843331 B2 JP2843331 B2 JP 2843331B2 JP 63069764 A JP63069764 A JP 63069764A JP 6976488 A JP6976488 A JP 6976488A JP 2843331 B2 JP2843331 B2 JP 2843331B2
Authority
JP
Japan
Prior art keywords
film
resist film
reflectance
resist
exposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63069764A
Other languages
Japanese (ja)
Other versions
JPH01243521A (en
Inventor
隆 野口
久晴 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63069764A priority Critical patent/JP2843331B2/en
Publication of JPH01243521A publication Critical patent/JPH01243521A/en
Application granted granted Critical
Publication of JP2843331B2 publication Critical patent/JP2843331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被処理膜上に形成されたレジスト膜を選択
的に露光するためのレジスト膜の露光方法に関し、特に
被処理膜上に反射防止膜を形成するレジスト膜の露光方
法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of exposing a resist film for selectively exposing a resist film formed on the film to be processed, and more particularly, to a method of exposing a resist film to a film to be processed. The present invention relates to a method for exposing a resist film for forming a protective film.

〔従来の技術〕[Conventional technology]

従来、半導体装置の製造分野において、微細なパター
ンでレジスト膜を選択的に露光する場合に、反射防止膜
を被処理膜上に形成する技術が知られている。
2. Description of the Related Art Conventionally, in a semiconductor device manufacturing field, a technique of forming an antireflection film on a film to be processed when selectively exposing a resist film with a fine pattern is known.

この反射防止膜としては、例えば非晶質シリコン膜
(a−Si)を用いる方法が知られており、このような非
晶質シリコン膜を用いて導電層をパターニングする技術
としては、特開昭61−171131号公報に記載されるような
スパッタされたシリコン膜を用いるものが知られてい
る。
As this antireflection film, for example, a method using an amorphous silicon film (a-Si) is known. As a technique for patterning a conductive layer using such an amorphous silicon film, Japanese Patent Laid-Open Publication No. One using a sputtered silicon film as described in JP-A-61-171131 is known.

また、本願発明に関連する技術として、遮光膜に関す
るもの(特願昭62−71230号明細書及び図面参照)や、
窒素とチタンを含む膜を形成したもの(特願昭62−6740
4号明細書及び図面参照)等が存在する。
Further, as a technique related to the present invention, a technique relating to a light-shielding film (see Japanese Patent Application No. 62-71230 and drawings),
Forming a film containing nitrogen and titanium (Japanese Patent Application No. 62-6740)
No. 4 specification and drawings).

〔発明が解決しようとする課題〕 ところで、被処理膜上に形成する反射防止膜は、その
膜厚が薄い方が好ましい。
[Problems to be Solved by the Invention] Incidentally, the antireflection film formed on the film to be processed preferably has a small thickness.

すなわち、被処理膜上に形成される反射防止膜は被処
理膜と共にエッチングから除去されるため、その膜厚が
薄い方がエッチングし易い。また、膜厚が厚い場合に
は、多量の水素が反射防止膜に含有されることになる
が、多量の水素によっては、ボイドが発生し、水分の発
生や結晶性の劣化等の悪影響がある。
That is, since the antireflection film formed on the film to be processed is removed together with the film to be processed from the etching, the thinner the film, the easier the etching. Further, when the film thickness is large, a large amount of hydrogen is contained in the antireflection film. However, the large amount of hydrogen causes voids and has adverse effects such as generation of moisture and deterioration of crystallinity. .

そこで、本発明は、薄い膜厚での十分な反射防止効果
を得るようなレジスト膜の露光方法を提供することを目
的とする。
Accordingly, an object of the present invention is to provide a method of exposing a resist film to obtain a sufficient antireflection effect with a small film thickness.

〔課題を解決するための手段〕[Means for solving the problem]

上述の目的を達成するため、本発明のレジスト膜の露
光方法は、基体上にシリサイド膜を形成し、上記シリサ
イド膜上にGe(ゲルマニウム)を含有する非晶質シリコ
ン膜を形成し、さらに上記非晶質シリコン膜上にレジス
ト膜を形成し、その後上記レジスト膜を露光するように
したものである。
In order to achieve the above object, a method of exposing a resist film according to the present invention includes forming a silicide film on a substrate, forming an amorphous silicon film containing Ge (germanium) on the silicide film, A resist film is formed on an amorphous silicon film, and then the resist film is exposed.

ここで、シリサイド膜は、レジスト膜をマスクとして
パターニングされる膜であって、その表面での反射率の
低減が求められる性質を有し、その導電性を問わない。
例えば、高融点金属膜、タングステンシリサイド膜、モ
リブデンシリサイド膜等の高融点金属珪化物膜などの種
々の材料からなる膜若しくはその組合せからなる膜が例
示的に挙げられる。また、レジスト膜は、ネガ型、ポジ
型などの種類を問わない。そして、Geを含有するシリコ
ン膜は、アモルファス構造とされ、a−Si1-XGeX:H膜
(0<X<1)が用いられる。ここで、Geの組成比は、
ガス流量比で制御できるものとされ、その組成比をもっ
て膜の屈折率を制御させることができる。また、Geを含
有する非晶質シリコン膜は、Geに限定されず同時に他の
元素を含有するような構造にすることも可能である。
Here, the silicide film is a film that is patterned using a resist film as a mask, has a property required to reduce the reflectance on the surface thereof, and does not matter its conductivity.
For example, a film made of various materials such as a high melting point metal silicide film such as a high melting point metal film, a tungsten silicide film, a molybdenum silicide film, or a film made of a combination thereof is exemplified. The resist film may be of any type, such as a negative type and a positive type. The silicon film containing Ge has an amorphous structure, and an a-Si 1-X Ge X : H film (0 <X <1) is used. Here, the composition ratio of Ge is
It can be controlled by the gas flow ratio, and the refractive index of the film can be controlled by the composition ratio. Further, the amorphous silicon film containing Ge is not limited to Ge, and may have a structure containing other elements at the same time.

〔作用〕[Action]

一般に、原子番号が大きいイオンを高密度に含有する
物質ほどその屈折率が高くなる。ここで、Geは、シリコ
ンよりも原子番号が大きく、シリコンよりも比誘電率や
密度が高く、その吸収係数も大きい。従って、非晶質シ
リコン膜に対してGeを含有させることで、その非晶質シ
リコン膜の屈折率nSGが増加する。膜厚をdとすると、
波長λに応じて、反射防止膜に要求される条件は、 であり、屈折率nSGが増加するに従って、膜厚は薄くて
良いことになる。
Generally, a substance containing ions having a higher atomic number at a higher density has a higher refractive index. Here, Ge has a higher atomic number than silicon, a higher relative dielectric constant and density than silicon, and a higher absorption coefficient. Therefore, by incorporating the Ge the amorphous silicon film, the refractive index n SG of the amorphous silicon film increases. Assuming that the film thickness is d,
The conditions required for the antireflection film according to the wavelength λ are as follows: Thus, as the refractive index n SG increases, the film thickness can be reduced.

〔実施例〕〔Example〕

本発明の好適な実施例を図面を参照しながら説明す
る。
Preferred embodiments of the present invention will be described with reference to the drawings.

本実施例のレジスト膜の露光方法では、第1図に示す
ように、基体11上に、被処理膜としてパターニングすべ
きタングステンシリサイド膜2が形成され、その上部に
は所要の膜厚dで非晶質シリコン膜にGeを含有させたa
−Si1-XGeX:H膜1が形成される。このa−Si1-XGeX:H膜
1上には、レジスト膜3が形成され、このレジスト膜3
が所要の光源(例えばg線,h線,i線,或いはエキシマレ
ーザーなど)により選択的に露光され、第1図中破線で
示すようにパターニングされる。
In the method of exposing a resist film according to the present embodiment, as shown in FIG. 1, a tungsten silicide film 2 to be patterned is formed as a film to be processed on a substrate 11, and a non-deposited film having a required film thickness d is formed thereon. A containing Ge in crystalline silicon film
-Si 1-X Ge X : H film 1 is formed. A resist film 3 is formed on the a-Si 1-X Ge X : H film 1.
Is selectively exposed by a required light source (for example, a g-line, an h-line, an i-line, or an excimer laser), and is patterned as shown by a broken line in FIG.

この選択的に露光の際し、本実施例のレジスト膜の露
光方法では、上記a−Si1-XGeX:H膜1によって反射防止
が行われる。すなわち、このa−Si1-XGeX:H膜1の表面
で反射する光と、a−Si1-XGeX:H膜1の底面で反射する
光が、その膜厚dによる光学的な長さの分だけ位相がず
れた状態で干渉し、その反射率が低下する。このとき上
記a−Si1-XGeX:H膜1では、Geを含有している分だけそ
の屈折率nが増加し、薄い膜厚dでの反射率の低減が可
能となる。
At the time of this selective exposure, in the method of exposing the resist film of this embodiment, anti-reflection is performed by the a-Si 1-x Ge x : H film 1 described above. That is, the a-Si 1-X Ge X : the light reflected on the surface of the H film 1, a-Si 1-X Ge X : light reflected at the bottom surface of the H film 1, an optical due to the film thickness d Interference occurs in a state where the phases are shifted by an appropriate length, and the reflectance is reduced. At this time, the refractive index n of the a-Si 1-x Ge x : H film 1 is increased by the amount of Ge, and the reflectance can be reduced at a small film thickness d.

従って、レジスト膜3をマスクとしてエッチングの際
には、薄いために容易にエッチオフすることができ、水
素等の含有量も少なくなって、ポイド等の問題も抑制さ
れることになる。
Therefore, when etching is performed using the resist film 3 as a mask, the film can be easily etched off because it is thin, the content of hydrogen and the like is reduced, and the problem of a void and the like is suppressed.

次に、上述の実施例に基づいて行われた実験について
説明する。
Next, an experiment performed based on the above-described embodiment will be described.

実験は、タングステンシリサイド膜2上にa−Si1-XG
eX:H膜1を形成して、その反射率の波長依存性を調べた
ものであり、比較例としてa−Si1-XGeX:H膜を形成しな
いサンプルについても反射率の波長依存性を調べてい
る。
In the experiment, a-Si 1-X G was formed on the tungsten silicide film 2.
e X: to form a H film 1, which examined the wavelength dependence of the reflectance, a-Si 1-X Ge X As a comparative example: the wavelength dependence of the reflectance for samples which do not form H film I am examining sex.

上記a−Si1-XGeX:H膜1の堆積条件については、Ar
(アルゴン)ガスをキャリアガスとしたSiH4ガス(シラ
ンガス)(10%),100sccmと、Arガスをキャリアガスと
したGeH4ガス(10%),100sccmとを混合して堆積を行っ
ており、真空度は200Torr,処理温度は230℃,時間は30
秒とされ、1356MHz,5Wの高周波電力を印加している。
Regarding the deposition conditions of the a-Si 1-X Ge X : H film 1,
The deposition is carried out by mixing 100 sccm of SiH 4 gas (silane gas) (10%) with carrier gas of (argon) gas and 100 sccm of GeH 4 gas (10%) with carrier gas of Ar gas. Vacuum degree is 200 Torr, processing temperature is 230 ℃, time is 30
In seconds, high-frequency power of 1356 MHz and 5 W is applied.

第2図は、このような各堆積条件で行った実験結果の
データを示しており、曲線A(実線)はタングステンシ
リサイド膜2上にa−Si1-XGeX:H膜1を上記条件で堆積
したデータであり、曲線B(破線)はタングステンシリ
サイド膜2そのものの反射率を示すデータである。な
お、同図中、横軸が波長(nm)であり、縦軸が反射率
(%)である。
FIG. 2 shows the data of the results of experiments performed under these deposition conditions. The curve A (solid line) shows that the a-Si 1-x Ge x : H film 1 was formed on the tungsten silicide film 2 under the above conditions. , And the curve B (broken line) is data indicating the reflectance of the tungsten silicide film 2 itself. In the figure, the horizontal axis is the wavelength (nm), and the vertical axis is the reflectance (%).

第2図に示すように、a−Si1-XGeX:H膜1を形成しな
い比較例においては、曲線Bに示すように、250nm〜850
nmの波長の範囲において、約60%程度の反射率を有して
いる。ところが、a−Si1-XGeX:H膜1を形成した例にお
いては、曲線Aに示すように、全体的にその反射率が低
下しており、300nm〜500nmの主要な光源の波長域では、
40%台の反射率を得ている。従って、タングステンシリ
サイド膜2上にa−Si1-XGeX:H膜1を形成した場合に、
確実に、その反射率を低減できることが判る。さらに、
その曲線Aの波長依存性については、波長に応じて反射
率が変動するような傾向が小さくなっている。従って、
特に波長に限定されず種々の波長に対して適用すること
ができる。
As shown in FIG. 2, in the comparative example in which the a-Si 1-X Ge X : H film 1 was not formed, as shown by the curve B, 250 nm to 850 nm.
It has a reflectance of about 60% in the wavelength range of nm. However, in the example in which the a-Si 1-X Ge X : H film 1 is formed, as shown by the curve A, the reflectance is reduced as a whole, and the wavelength range of the main light source is 300 nm to 500 nm. Then
It has a reflectivity on the order of 40%. Therefore, when the a-Si 1-X Ge X : H film 1 is formed on the tungsten silicide film 2,
It can be seen that the reflectance can be surely reduced. further,
Regarding the wavelength dependence of the curve A, the tendency that the reflectance varies according to the wavelength is small. Therefore,
The present invention is not particularly limited to the wavelength, and can be applied to various wavelengths.

このような実験結果からも明らかなように、反射防止
膜としての非晶質シリコン膜にGeが含まれているため
に、薄い膜厚での反射防止効果をあげることができる。
また、種々な波長の光源に対しての反射防止効果を得る
ことが可能である。
As is clear from such experimental results, since the amorphous silicon film as the antireflection film contains Ge, an antireflection effect can be obtained with a small film thickness.
Further, it is possible to obtain an antireflection effect for light sources of various wavelengths.

〔発明の効果〕〔The invention's effect〕

本発明のレジスト膜の露光方法は、上述のように、非
晶質のa−Si1-XGeX:H膜を反射防止膜として用いている
ことから、薄い膜厚での反射防止を行うことができる。
また、本発明においては、種々な波長の光源に対しての
反射防止効果を得ることも可能である。特に、非晶質の
a−Si1-XGeX:H膜は、短波長の紫外線域付近まで吸収係
数が大きくなるので、エッチング効率のよい露光用の光
の反射率の低減を図ることができ、非晶質シリコン膜を
薄くでき容易にシリサイド膜のエッチングを行うことが
できる。
As described above, the exposure method of the resist film of the present invention uses a non-crystalline a-Si 1-x Ge X : H film as an anti-reflection film. be able to.
In the present invention, it is also possible to obtain an anti-reflection effect for light sources of various wavelengths. In particular, the amorphous a-Si 1-X Ge X : H film has a large absorption coefficient in the vicinity of a short wavelength ultraviolet region, so that it is possible to reduce the reflectance of light for exposure with good etching efficiency. As a result, the amorphous silicon film can be thinned, and the silicide film can be easily etched.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のレジスト膜の露光方法の工程を説明す
るための断面図、第2図はタングステンシリサイド膜上
にa−Si1-XGeX:H膜を形成した場合の反射率の波長依存
性を示す特性図である。 1……a−Si1-XGeX:H膜 2……タングステンシリサイド膜
FIG. 1 is a cross-sectional view for explaining the steps of a method of exposing a resist film according to the present invention, and FIG. 2 is a graph showing the reflectivity when an a-Si 1-X Ge X : H film is formed on a tungsten silicide film. FIG. 4 is a characteristic diagram showing wavelength dependence. 1 a-Si 1-X Ge X : H film 2 tungsten silicide film

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基体上にシリサイド膜を形成し、上記シリ
サイド膜上に非晶質のa−Si1-XGeX:H膜(0<X<1)
を形成し、さらにこの膜上にレジスト膜を形成し、その
後上記レジスト膜を露光することを特徴とするレジスト
膜の露光方法。
1. A silicide film is formed on a substrate, and an amorphous a-Si 1-x Ge x : H film (0 <X <1) is formed on the silicide film.
And further forming a resist film on the film, and thereafter exposing the resist film.
【請求項2】上記シリサイド膜がWSi又はMoSiにより形
成されていることを特徴とする請求項1記載のレジスト
膜の露光方法。
2. The method according to claim 1, wherein said silicide film is formed of WSi or MoSi.
JP63069764A 1988-03-25 1988-03-25 Exposure method of resist film Expired - Fee Related JP2843331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069764A JP2843331B2 (en) 1988-03-25 1988-03-25 Exposure method of resist film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069764A JP2843331B2 (en) 1988-03-25 1988-03-25 Exposure method of resist film

Publications (2)

Publication Number Publication Date
JPH01243521A JPH01243521A (en) 1989-09-28
JP2843331B2 true JP2843331B2 (en) 1999-01-06

Family

ID=13412194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069764A Expired - Fee Related JP2843331B2 (en) 1988-03-25 1988-03-25 Exposure method of resist film

Country Status (1)

Country Link
JP (1) JP2843331B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750442A (en) 1995-09-25 1998-05-12 Micron Technology, Inc. Germanium as an antireflective coating and method of use
KR100243266B1 (en) * 1996-10-24 2000-03-02 윤종용 (Ge, Si)Nx antireflective layer and fabricating method of semiconductor device pattern using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158072A (en) * 1974-11-18 1976-05-21 Matsushita Electric Ind Co Ltd HANDOTAISOCHINOSEIZOHOHO
JPS5893325A (en) * 1981-11-30 1983-06-03 Toshiba Corp Minute processing method

Also Published As

Publication number Publication date
JPH01243521A (en) 1989-09-28

Similar Documents

Publication Publication Date Title
KR100300258B1 (en) Method and structure for forming integrated circuit pattern on semiconductor substrate
JP3320685B2 (en) Fine pattern forming method
US6297521B1 (en) Graded anti-reflective coating for IC lithography
US6297170B1 (en) Sacrificial multilayer anti-reflective coating for mos gate formation
US5677111A (en) Process for production of micropattern utilizing antireflection film
US5672243A (en) Antireflection coating for highly reflective photolithographic layers comprising chromium oxide or chromium suboxide
US6211078B1 (en) Method of improving resist adhesion for use in patterning conductive layers
JP3321100B2 (en) Method of forming antireflection layer in semiconductor device
JP3542118B2 (en) Formation of non-reflective material layer, semiconductor manufacturing method using the same, and method of forming transistor gate stack
JP3545180B2 (en) (Ge, Si) Nx antireflection film and pattern forming method using the same
KR950011563B1 (en) Manufacturing Method of Semiconductor Device
US4714668A (en) Method for patterning layer having high reflectance using photosensitive material
GB2145243A (en) Optical lithographic processes
JP2843331B2 (en) Exposure method of resist film
US6117619A (en) Low temperature anti-reflective coating for IC lithography
JPH07201990A (en) Pattern forming method
JP3339156B2 (en) Method for manufacturing fine pattern and method for manufacturing semiconductor device
JPH0855790A (en) Resist pattern formation method and reflection preventive film formation method
JP3257245B2 (en) Method of forming fine pattern
JPH0855791A (en) Resist pattern formation method and reflection preventive film formation method
JPH05114558A (en) Manufacture of semiconductor device
JP2897691B2 (en) Resist pattern forming method, antireflection film forming method, antireflection film, and semiconductor device
JP3271185B2 (en) Manufacturing method of antireflection film
JPH09180981A (en) Anti-reflection film, forming method thereof, and manufacture of semiconductor device
JPH06132286A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees